Advertisement

The Role of Cardiac Tissue Macrophages in Homeostasis and Disease

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1003)

Abstract

Macrophages are principally recognized as an important cell type for removal of tissue debris and as sentinels for tissue damage and foreign antigens. However, macrophages also participate in a diverse range of biological processes including angiogenesis, fibrosis, immune modulation, cell survival, and stem cell mobilization. Cardiac tissue macrophages (cTMs) are a heterogeneous population of phagocytic cells with distinct ontogenetic, phenotypic, and functional characteristics. While our understanding of cTMs has increased substantially over the last 5 years, large gaps in our knowledge regarding the cell biology of cTMs exist, in particular, the development of their unique phenotype and their roles in cardiac homeostasis and tissue stress. This review aims to discuss the current knowledge regarding cTMs and identify key questions that must be addressed to gain a better understanding of the role of cTMs in tissue development, homeostasis, and disease.

Keywords

Cardiac tissue macrophages cTMs Cardiac macrophages Macrophages Heart immune cells Cardiac homeostasis Cardiac ischemia 

List of Abbreviations

BrdU

Bromodeoxyuridine

Ccr

C–C chemokine receptor

CD

Cluster of differentiation

CDC

Cardiosphere-derived cell

Chi3l3

Chitinase 3-like 3

CSF-1

Colony-stimulating factor-1

Csf1r

Colony-stimulating factor 1 receptor

cTM

Cardiac tissue macrophage

Cx3cr1

C-X3-C chemokine receptor 1

Cxcl

Chemokine (C-X-C motif) ligand

DAMPs

Damage-associated molecular patterns

DAPI

4′,6-Diamidino-2-phenylindole

EMP

Erythromyeloid progenitor

GFP

Green fluorescent protein

HSC

Hematopoietic stem cell

IGF-1

Insulin-like growth factor-1

IL

Interleukin

IRF5

Interferon regulatory factor 5

Ly6C

Lymphocyte antigen 6 complex, locus C

Ly6G

Lymphocyte antigen 6 complex, locus G

Lyve-1

Lymphatic vessel endothelial hyaluronan receptor-1

MHCII

Major histocompatibility complex type class II

MI

Myocardial infarction

MIF

Migration inhibitory factor

Mrc1

Mannose receptor, C type 1

MSC

Mesenchymal stem cell

NO

Nitric oxide

PAMPs

Pathogen-associated molecular patterns

PDGF

Platelet-derived growth factor

Retnla

Resistin-like alpha

TGFβ

Transforming growth factor β

TNFα

Tumor necrosis factor α

VEGF

Vascular endothelial growth factor

WT1

Wilms’ tumor 1

References

  1. 1.
    Guilliams M, Ginhoux F, Jakubzick C, Naik SH, Onai N, Schraml BU, et al. Dendritic cells, monocytes and macrophages: a unified nomenclature based on ontogeny. Nat Rev Immunol. 2014;14(8):571–8.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Pinto A, Paolicelli R, Salimova E, Gospocic J, Slonimsky E, Bilbao-Cortes D, et al. An abundant tissue macrophage population in the adult murine heart with a distinct alternatively-activated macrophage profile. PLoS One. 2012;7(5):e36814.CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Pinto AR, Godwin JW, Chandran A, Hersey L, Ilinykh A, Debuque R, et al. Age-related changes in tissue macrophages precede cardiac functional impairment. Aging (Albany). 2014;6:399–413.CrossRefGoogle Scholar
  4. 4.
    Heidt T, Courties G, Dutta P, Sager H, Sebas M, Iwamoto Y, et al. Differential contribution of monocytes to heart macrophages in steady-state and after myocardial infarction. Circ Res. 2014;115:284–95.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Epelman S, Lavine K, Beaudin A, Sojka D, Carrero J, Calderon B, et al. Embryonic and adult-derived resident cardiac macrophages are maintained through distinct mechanisms at steady state and during inflammation. Immunity. 2014;40(1):91–104.CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Molawi K, Wolf Y, Kandalla PK, Favret J, Hagemeyer N, Frenzel K, et al. Progressive replacement of embryo-derived cardiac macrophages with age. J Exp Med. 2014;211(11):2151–8.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Jung S, Aliberti J, Graemmel P, Sunshine MJ, Kreutzberg GW, Sher A, et al. Analysis of fractalkine receptor CX(3)CR1 function by targeted deletion and green fluorescent protein reporter gene insertion. Mol Cell Biol. 2000;20(11):4106–14.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Pinto AR, Ilinykh A, Ivey MJ, Kuwabara JT, D’Antoni ML, Debuque R, et al. Revisiting cardiac cellular composition. Circ Res. 2016;118(3):400–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Leid JM, Carrelha J, Boukarabila H, Epelman S, Jacobsen SE, Lavine KJ. Primitive embryonic macrophages are required for coronary development and maturation. Circ Res. 2016;118:1488–511.CrossRefGoogle Scholar
  10. 10.
    Stevens SM, Gise A, VanDusen N, Zhou B, Pu WT. Epicardium is required for cardiac seeding by yolk sac macrophages, precursors of resident macrophages of the adult heart. Dev Biol. 2016;413(2):153–9.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Sasmono RT, Oceandy D, Pollard JW, Tong W, Pavli P, Wainwright BJ, et al. A macrophage colony-stimulating factor receptor-green fluorescent protein transgene is expressed throughout the mononuclear phagocyte system of the mouse. Blood. 2003;101(3):1155–63.CrossRefPubMedGoogle Scholar
  12. 12.
    Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N, Kierdorf K, et al. A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science. 2012;336(6077):86–90.CrossRefPubMedGoogle Scholar
  13. 13.
    Gomez Perdiguero E, Klapproth K, Schulz C, Busch K, Azzoni E, Crozet L, et al. Tissue-resident macrophages originate from yolk-sac-derived erythro-myeloid progenitors. Nature. 2015;518(7540):547–51.CrossRefPubMedGoogle Scholar
  14. 14.
    Hoeffel G, Chen J, Lavin Y, Low D, Almeida FF, See P, et al. C-Myb(+) erythro-myeloid progenitor-derived fetal monocytes give rise to adult tissue-resident macrophages. Immunity. 2015;42(4):665–78.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Sheng J, Ruedl C, Karjalainen K. Most tissue-resident macrophages except microglia are derived from fetal hematopoietic stem cells. Immunity. 2015;43(2):382–93.CrossRefPubMedGoogle Scholar
  16. 16.
    Conboy MJ, Conboy IM, Rando TA. Heterochronic parabiosis: historical perspective and methodological considerations for studies of aging and longevity. Aging Cell. 2013;12(3):525–30.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, et al. Fate mapping reveals origins and dynamics of monocytes and tissue macrophages under homeostasis. Immunity. 2013;38(1):79–91.CrossRefPubMedGoogle Scholar
  18. 18.
    Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB, Leboeuf M, et al. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity. 2013;38(4):792–804.CrossRefPubMedGoogle Scholar
  19. 19.
    Serbina NV, Pamer EG. Monocyte emigration from bone marrow during bacterial infection requires signals mediated by chemokine receptor CCR2. Nat Immunol. 2006;7(3):311–7.CrossRefPubMedGoogle Scholar
  20. 20.
    Ginhoux F, Guilliams M. Tissue-resident macrophage ontogeny and homeostasis. Immunity. 2016;44(3):439–49.CrossRefPubMedGoogle Scholar
  21. 21.
    Lim JP, Gleeson PA. Macropinocytosis: an endocytic pathway for internalising large gulps. Immunol Cell Biol. 2011;89(8):836–43.CrossRefPubMedGoogle Scholar
  22. 22.
    Pinto AR, Godwin JW, Rosenthal NA. Macrophages in cardiac homeostasis, injury responses and progenitor cell mobilisation. Stem Cell Res. 2014;13(3 Pt B):705–14.CrossRefPubMedGoogle Scholar
  23. 23.
    Sunderkotter C, Steinbrink K, Goebeler M, Bhardwaj R, Sorg C. Macrophages and angiogenesis. J Leukoc Biol. 1994;55(3):410–22.PubMedGoogle Scholar
  24. 24.
    Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Prykhozhij S, et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood. 2010;116(5):829–40.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Yoshida H, Hayashi S, Kunisada T, Ogawa M, Nishikawa S, Okamura H, et al. The murine mutation osteopetrosis is in the coding region of the macrophage colony stimulating factor gene. Nature. 1990;345(6274):442–4.CrossRefPubMedGoogle Scholar
  26. 26.
    Lavine KJ, Epelman S, Uchida K, Weber KJ, Nichols CG, Schilling JD, et al. Distinct macrophage lineages contribute to disparate patterns of cardiac recovery and remodeling in the neonatal and adult heart. Proc Natl Acad Sci U S A. 2014;111(45):16029–34.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Varol C, Mildner A, Jung S. Macrophages: development and tissue specialization. Annu Rev Immunol. 2015;33:643–75.CrossRefPubMedGoogle Scholar
  28. 28.
    Lavin Y, Winter D, Blecher-Gonen R, David E, Keren-Shaul H, Merad M, et al. Tissue-resident macrophage enhancer landscapes are shaped by the local microenvironment. Cell. 2014;159(6):1312–26.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Gosselin D, Link VM, Romanoski CE, Fonseca GJ, Eichenfield DZ, Spann NJ, et al. Environment drives selection and function of enhancers controlling tissue-specific macrophage identities. Cell. 2014;159(6):1327–40.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    van de Laar L, Saelens W, De Prijck S, Martens L, Scott CL, Van Isterdael G, et al. Yolk sac macrophages, fetal liver, and adult monocytes can colonize an empty niche and develop into functional tissue-resident macrophages. Immunity. 2016;44:755–68.CrossRefPubMedGoogle Scholar
  31. 31.
    Butovsky O, Jedrychowski MP, Moore CS, Cialic R, Lanser AJ, Gabriely G, et al. Identification of a unique TGF-beta-dependent molecular and functional signature in microglia. Nat Neurosci. 2014;17(1):131–43.CrossRefPubMedGoogle Scholar
  32. 32.
    Makwana M, Jones LL, Cuthill D, Heuer H, Bohatschek M, Hristova M, et al. Endogenous transforming growth factor beta 1 suppresses inflammation and promotes survival in adult CNS. J Neurosci. 2007;27(42):11201–13.CrossRefPubMedGoogle Scholar
  33. 33.
    Okabe Y, Medzhitov R. Tissue-specific signals control reversible program of localization and functional polarization of macrophages. Cell. 2014;157(4):832–44.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Rosas M, Davies LC, Giles PJ, Liao CT, Kharfan B, Stone TC, et al. The transcription factor Gata6 links tissue macrophage phenotype and proliferative renewal. Science. 2014;344(6184):645–8.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    van Hout GP, Arslan F, Pasterkamp G, Hoefer IE. Targeting danger-associated molecular patterns after myocardial infarction. Expert Opin Ther Targets. 2016;20(2):223–39.CrossRefPubMedGoogle Scholar
  36. 36.
    Zhang W, Lavine KJ, Epelman S, Evans SA, Weinheimer CJ, Barger PM, et al. Necrotic myocardial cells release damage-associated molecular patterns that provoke fibroblast activation in vitro and trigger myocardial inflammation and fibrosis in vivo. J Am Heart Assoc. 2015;4(6):e001993.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Liu J, Wang H, Li J. Inflammation and inflammatory cells in myocardial infarction and reperfusion injury: a double-edged sword. Clin Med Insights Cardiol. 2016;10:79–84.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Ivey CL, Williams FM, Collins PD, Jose PJ, Williams TJ. Neutrophil chemoattractants generated in two phases during reperfusion of ischemic myocardium in the rabbit. Evidence for a role for C5a and interleukin-8. J Clin Invest. 1995;95(6):2720–8.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Vinten-Johansen J. Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc Res. 2004;61(3):481–97.CrossRefPubMedGoogle Scholar
  40. 40.
    Duilio C, Ambrosio G, Kuppusamy P, DiPaula A, Becker LC, Zweier JL. Neutrophils are primary source of O2 radicals during reperfusion after prolonged myocardial ischemia. Am J Physiol Heart Circ Physiol. 2001;280(6):H2649–57.PubMedGoogle Scholar
  41. 41.
    Ma Y, Yabluchanskiy A, Lindsey ML. Neutrophil roles in left ventricular remodeling following myocardial infarction. Fibrogenesis Tissue Repair. 2013;6(1):11.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Dutta P, Sager HB, Stengel KR, Naxerova K, Courties G, Saez B, et al. Myocardial infarction activates CCR2(+) hematopoietic stem and progenitor cells. Cell Stem Cell. 2015;16(5):477–87.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Swirski FK, Nahrendorf M, Etzrodt M, Wildgruber M, Cortez-Retamozo V, Panizzi P, et al. Identification of splenic reservoir monocytes and their deployment to inflammatory sites. Science. 2009;325(5940):612–6.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Leuschner F, Panizzi P, Chico-Calero I, Lee WW, Ueno T, Cortez-Retamozo V, et al. Angiotensin-converting enzyme inhibition prevents the release of monocytes from their splenic reservoir in mice with myocardial infarction. Circ Res. 2010;107(11):1364–73.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 2004;25(12):677–86.CrossRefPubMedGoogle Scholar
  46. 46.
    Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest. 2012;122(3):787–95.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med. 2007;204(12):3037–47.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Murray PJ, Wynn TA. Obstacles and opportunities for understanding macrophage polarization. J Leukoc Biol. 2011;89(4):557–63.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Hilgendorf I, Gerhardt LM, Tan TC, Winter C, Holderried TA, Chousterman BG, et al. Ly-6Chigh monocytes depend on Nr4a1 to balance both inflammatory and reparative phases in the infarcted myocardium. Circ Res. 2014;114(10):1611–22.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Leuschner F, Dutta P, Gorbatov R, Novobrantseva TI, Donahoe JS, Courties G, et al. Therapeutic siRNA silencing in inflammatory monocytes in mice. Nat Biotechnol. 2011;29(11):1005–10.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Dewald O, Zymek P, Winkelmann K, Koerting A, Ren G, Abou-Khamis T, et al. CCL2/monocyte chemoattractant protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ Res. 2005;96(8):881–9.CrossRefPubMedGoogle Scholar
  52. 52.
    Shiraishi M, Shintani Y, Shintani Y, Ishida H, Saba R, Yamaguchi A, et al. Alternatively activated macrophages determine repair of the infarcted adult murine heart. J Clin Invest. 2016;126:2151–66.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Leblond AL, Klinkert K, Martin K, Turner EC, Kumar AH, Browne T, et al. Systemic and cardiac depletion of M2 macrophage through CSF-1R signaling inhibition alters cardiac function post myocardial infarction. PLoS One. 2015;10(9):e0137515.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Nahrendorf M, Pittet MJ, Swirski FK. Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation. 2010;121(22):2437–45.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Hulsmans M, Sam F, Nahrendorf M. Monocyte and macrophage contributions to cardiac remodeling. J Mol Cell Cardiol. 2016;93:149–55.CrossRefPubMedGoogle Scholar
  56. 56.
    Kaikita K, Hayasaki T, Okuma T, Kuziel WA, Ogawa H, Takeya M. Targeted deletion of CC chemokine receptor 2 attenuates left ventricular remodeling after experimental myocardial infarction. Am J Pathol. 2004;165(2):439–47.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Hayasaki T, Kaikita K, Okuma T, Yamamoto E, Kuziel WA, Ogawa H, et al. CC chemokine receptor-2 deficiency attenuates oxidative stress and infarct size caused by myocardial ischemia-reperfusion in mice. Circ J. 2006;70(3):342–51.CrossRefPubMedGoogle Scholar
  58. 58.
    Majmudar MD, Keliher EJ, Heidt T, Leuschner F, Truelove J, Sena BF, et al. Monocyte-directed RNAi targeting CCR2 improves infarct healing in atherosclerosis-prone mice. Circulation. 2013;127(20):2038–46.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Frangogiannis NG, Dewald O, Xia Y, Ren G, Haudek S, Leucker T, et al. Critical role of monocyte chemoattractant protein-1/CC chemokine ligand 2 in the pathogenesis of ischemic cardiomyopathy. Circulation. 2007;115(5):584–92.CrossRefPubMedGoogle Scholar
  60. 60.
    Zhao G, Wang S, Wang Z, Sun A, Yang X, Qiu Z, et al. CXCR6 deficiency ameliorated myocardial ischemia/reperfusion injury by inhibiting infiltration of monocytes and IFN-gamma-dependent autophagy. Int J Cardiol. 2013;168(2):853–62.CrossRefPubMedGoogle Scholar
  61. 61.
    Zamilpa R, Kanakia R, Cigarroa J, Dai Q, Escobar GP, Martinez H, et al. CC chemokine receptor 5 deletion impairs macrophage activation and induces adverse remodeling following myocardial infarction. Am J Physiol Heart Circ Physiol. 2011;300(4):H1418–26.CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Gao XM, Liu Y, White D, Su Y, Drew BG, Bruce CR, et al. Deletion of macrophage migration inhibitory factor protects the heart from severe ischemia-reperfusion injury: a predominant role of anti-inflammation. J Mol Cell Cardiol. 2011;50(6):991–9.CrossRefPubMedGoogle Scholar
  63. 63.
    Krausgruber T, Blazek K, Smallie T, Alzabin S, Lockstone H, Sahgal N, et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat Immunol. 2011;12(3):231–8.CrossRefPubMedGoogle Scholar
  64. 64.
    Courties G, Heidt T, Sebas M, Iwamoto Y, Jeon D, Truelove J, et al. In vivo silencing of the transcription factor IRF5 reprograms the macrophage phenotype and improves infarct healing. J Am Coll Cardiol. 2014;63(15):1556–66.CrossRefPubMedGoogle Scholar
  65. 65.
    Santini M, Tsao L, Monassier L, Theodoropoulos C, Carter J, Lara-Pezzi E, et al. Enhancing repair of the mammalian heart. Circ Res. 2007;100(12):1732–40.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Li B, Setoguchi M, Wang X, Andreoli A, Leri A, Malhotra A, et al. Insulin-like growth factor-1 attenuates the detrimental impact of nonocclusive coronary artery constriction on the heart. Circ Res. 1999;84(9):1007–19.CrossRefPubMedGoogle Scholar
  67. 67.
    Gallego-Colon E, Sampson RD, Sattler S, Schneider MD, Rosenthal N, Tonkin J. Cardiac-restricted IGF-1Ea overexpression reduces the early accumulation of inflammatory myeloid cells and mediates expression of extracellular matrix remodelling genes after myocardial infarction. Mediat Inflamm. 2015;2015:484357.CrossRefGoogle Scholar
  68. 68.
    de Couto G, Liu W, Tseliou E, Sun B, Makkar N, Kanazawa H, et al. Macrophages mediate cardioprotective cellular postconditioning in acute myocardial infarction. J Clin Invest. 2015;125(8):3147–62.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Ben-Mordechai T, Holbova R, Landa-Rouben N, Harel-Adar T, Feinberg MS, Abd Elrahman I, et al. Macrophage subpopulations are essential for infarct repair with and without stem cell therapy. J Am Coll Cardiol. 2013;62(20):1890–901.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Australian Regenerative Medicine InstituteMonash UniversityMelbourneAustralia
  2. 2.The Jackson LaboratoryBar HarborUSA

Personalised recommendations