Immune Functions and Properties of Resident Cells in the Heart and Cardiovascular System: Pericytes

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1003)

Abstract

This chapter provides an introduction to pericyte physiology. Pericytes are smooth muscle-like cells that wrap around vessels and arterioles. Here, we discuss their structure, function, contractility and interaction with other cells including immune cells and finally their role in pathological processes. Additionally, we discuss recent studies describing pericyte populations in the heart and their potential as targets for future cardiac therapeutic interventions.

Keywords

Pericytes Angiogenesis Capillaries Vasoactivity Myocardial infarction Macrophages Leukocytes 

References

  1. 1.
    Bergers G, Song S. The role of pericytes in blood-vessel formation and maintenance. Neuro-Oncology. 2005;7(4):452–64. doi: 10.1215/S1152851705000232.CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Hirschi K, D'amore PA. Pericytes in the microvasculature. Cardiovasc Res. 1996;32(4):687–98.CrossRefPubMedGoogle Scholar
  3. 3.
    Kennedy-Lydon TM, Crawford C, Wildman SP, Peppiatt-Wildman CM. Renal pericytes: regulators of medullary blood flow. Acta Physiol. 2012;207(2):212–25. doi: 10.1111/apha.12026.CrossRefGoogle Scholar
  4. 4.
    Shepro D, Morel NM. Pericyte physiology. FASEB J. 1993;7:1031.PubMedGoogle Scholar
  5. 5.
    Dore-Duffy P, Katychev A, Wang X, Van Buren E. CNS microvascular pericytes exhibit multipotential stem cell activity. J Cereb Blood Flow Metab. 2006;26(5):613–24. doi: 10.1038/sj.jcbfm.9600272.CrossRefPubMedGoogle Scholar
  6. 6.
    Peppiatt CM, Howarth C, Mobbs P, Attwell D. Bidirectional control of CNS capillary diameter by pericytes. Nature. 2006;443(7112):700–4. doi: 10.1038/nature05193.CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Herman IM, D'amore PA. Microvascular pericytes contain muscle and nonmuscle actins. J Cell Biol. 1985;101:43.CrossRefPubMedGoogle Scholar
  8. 8.
    Joyce NC, Haire MF, Palade GE. Contractile proteins in pericytes. I. Immunoperoxidase localization of tropomyosin. J Cell Biol. 1985;100(5):1379–86.CrossRefPubMedGoogle Scholar
  9. 9.
    Nehls V, Drenckhahn D. Heterogeneity of microvascular pericytes for smooth-muscle type alpha-actin. J Cell Biol. 1991;113(1):147–54.CrossRefPubMedGoogle Scholar
  10. 10.
    Armulik A, Genové G, Betsholtz C. Pericytes: developmental, physiological, and pathological perspectives, problems, and promises. Dev Cell. 2011;21(2):193–215. doi: 10.1016/j.devcel.2011.07.001.CrossRefPubMedGoogle Scholar
  11. 11.
    Crawford C, Kennedy-Lydon T, Sprott C, Desai T. An intact kidney slice model to investigate vasa recta properties and function in situ. Nephron Physiol. 2012;120:17. doi: 10.1159/000339110.CrossRefGoogle Scholar
  12. 12.
    Crawford C, Kennedy-Lydon TM, Callaghan H, Sprott C, Simmons RL, Sawbridge L, Syme HM, Unwin RJ, Wildman SSP, Peppiatt-Wildman CM. Extracellular nucleotides affect pericyte-mediated regulation of rat in situ vasa recta diameter. Acta Physiol (Oxf). 2011;202(3):241–51. doi: 10.1111/j.1748-1716.2011.02310.x.CrossRefGoogle Scholar
  13. 13.
    Kennedy-Lydon T, Crawford C, Wildman SS, Peppiatt-Wildman CM. Nonsteroidal anti-inflammatory drugs alter vasa recta diameter via pericytes. Am J Physiol Renal Physiol. 2015;309(7):F648–57. doi: 10.1152/ajprenal.00199.2015.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Rucker HK, Wynder HJ, Thomas WE. Cellular mechanisms of CNS pericytes. Brain Res Bull. 2000;51(5):363–9.CrossRefPubMedGoogle Scholar
  15. 15.
    Park F, Mattson DL, Roberts LA, Cowley AW. Evidence for the presence of smooth muscle alpha-actin within pericytes of the renal medulla. Am J Phys. 1997;273(5):R1742–8.Google Scholar
  16. 16.
    Elfont RM, Sundaresan PR, Sladek CD. Adrenergic-receptors on cerebral microvessels - pericyte contribution. Am J Phys. 1989;256(1):R224–30.Google Scholar
  17. 17.
    Ferrari-Dileo G, Davis EB. Effects of cholinergic and adrenergic agonists on adenylate cyclase activity of retinal microvascular pericytes in culture. Invest Ophthalmol Vis Sci. 1992;33(1):42.PubMedGoogle Scholar
  18. 18.
    Sakagami K, Wu DM, Puro DG. Physiology of rat retinal pericytes: modulation of ion channel activity by serum-derived molecules. J Physiol. 1999;521(Pt 3):637–50.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    von Beckerath N, Nees S, Neumann FJ, Krebs B, Juchem G, Schömig A. An inward rectifier and a voltage-dependent K+ current in single, cultured pericytes from bovine heart. Cardiovasc Res. 2000;46(3):569–78.CrossRefGoogle Scholar
  20. 20.
    Berweck S, Lepple-Wienhues A, Stöss M, Wiederholt M. Large conductance calcium-activated potassium channels in cultured retinal pericytes under normal and high-glucose conditions. Arch Eur J Physiol. 1994;427(1–2):9–16.CrossRefGoogle Scholar
  21. 21.
    Carmeliet P. Angiogenesis in life, disease and medicine. Nature. 2005;438(7070):932–6. doi: 10.1038/nature04478.CrossRefPubMedGoogle Scholar
  22. 22.
    Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, Jeltsch M, et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol. 2003;161(6):1163–77. doi: 10.1083/jcb.200302047.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Franco M, Roswall P, Cortez E, Hanahan D, Pietras K. Pericytes promote endothelial cell survival through induction of autocrine VEGF-A signaling and Bcl-w expression. Blood. 2011;118(10):2906–17. doi: 10.1182/blood-2011-01-331694.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Jain RK. Molecular regulation of vessel maturation. Nat Med. 2003;9(6):685–93. doi: 10.1038/nm0603-685.CrossRefPubMedGoogle Scholar
  25. 25.
    Hellström M, Gerhardt H, Kalén M, Li X, Eriksson U, Wolburg H, Betsholtz C. Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol. 2001;153(3):543–53.CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Levéen P, Pekny M, Gebre-Medhin S, Swolin B, Larsson E, Betsholtz C. Mice deficient for PDGF B show renal, cardiovascular, and hematological abnormalities. Genes Dev. 1994;8(16):1875–87.CrossRefPubMedGoogle Scholar
  27. 27.
    Lindahl P, Johansson BR, Levéen P, Betsholtz C. Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science. 1997;277(5323):242–5.CrossRefPubMedGoogle Scholar
  28. 28.
    Humphreys BD, Lin S-L, Kobayashi A, Hudson TE, Nowlin BT, Bonventre JV, Todd Valerius M, McMahon AP, Duffield JS. Fate tracing reveals the pericyte and not epithelial origin of myofibroblasts in kidney fibrosis. Am J Pathol. 2010;176(1):85–97. doi: 10.2353/ajpath.2010.090517.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Paquet-Fifield S, Schlüter H, Li A, Aitken T, Gangatirkar P, Blashki D, Koelmeyer R, et al. A role for pericytes as microenvironmental regulators of human skin tissue regeneration. J Clin Investig. 2009;119:2795. doi: 10.1172/JCI38535DS1.PubMedPubMedCentralGoogle Scholar
  30. 30.
    Balabanov R, Washington R, Wagnerova J. CNS microvascular pericytes express macrophage-like function, cell surface integrin αM, and macrophage marker ED-2. Microvascular Res. 1996;52:127.CrossRefGoogle Scholar
  31. 31.
    Lam P-y, Huttenlocher A. Interstitial leukocyte migration in vivo. Curr Opin Cell Biol. 2013;25(5):650–8. doi: 10.1016/j.ceb.2013.05.007.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Proebstl D, Voisin M-B, Woodfin A, Whiteford J, D’Acquisto F, Jones GE, Rowe D, Nourshargh S. Pericytes support neutrophil subendothelial cell crawling and breaching of venular walls in vivo. J Exp Med. 2012;209(6):1219–34. doi: 10.1084/jem.20111622.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Stark K, Eckart A, Haidari S, Tirniceriu A, Lorenz M, von Brühl M-L, Gärtner F, et al. Capillary and arteriolar pericytes attract innate leukocytes exiting through venules and ‘instruct’ them with pattern-recognition and motility programs. Nat Immunol. 2012;14(1):41–51. doi: 10.1038/ni.2477.CrossRefPubMedGoogle Scholar
  34. 34.
    Pieper C, Marek JJ, Unterberg M, Schwerdtle T, Galla H-J. Brain capillary pericytes contribute to the immune defense in response to cytokines or LPS in vitro. Brain Res. 2014;1550(March):1–8. doi: 10.1016/j.brainres.2014.01.004.CrossRefPubMedGoogle Scholar
  35. 35.
    Hung CF, Mittelsteadt KL, Brauer R, McKinney BL, Hallstrand TS, Parks WC, Chen P, et al. Lung pericyte-like cells are functional immune sentinel cells. Am J Physiol Lung Cell Mol Physiol. 2017; doi: 10.1152/ajplung.00349.2016.PubMedGoogle Scholar
  36. 36.
    Bell RD, Winkler EA, Sagare AP, Singh I, LaRue B, Deane R, Zlokovic BV. Pericytes control key neurovascular functions and neuronal phenotype in the adult brain and during brain aging. Neuron. 2010;68(3):409–27. doi: 10.1016/j.neuron.2010.09.043.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Benjamin LE, Golijanin D, Itin A, Pode D, Keshet E. Selective ablation of immature blood vessels in established human tumors follows vascular endothelial growth factor withdrawal. J Clin Investig. 1999;103(2):159–65. doi: 10.1172/JCI5028.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Morikawa S, Baluk P, Kaidoh T, Haskell A, Jain RK, McDonald DM. Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol. 2002;160(3):985–1000. doi: 10.1016/S0002-9440(10)64920-6.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Cai J, Boulton M. The pathogenesis of diabetic retinopathy: old concepts and new questions. Eye (Lond). 2002;16(3):242–60. doi: 10.1038/sj/eye/6700133.CrossRefGoogle Scholar
  40. 40.
    Tu Z, Li Y, Smith DS, Sheibani N, Huang S, Kern T, Lin F. Retinal pericytes inhibit activated T cell proliferation. Invest Ophthalmol Vis Sci. 2011;52(12):9005–10. doi: 10.1167/iovs.11-8008.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Duffield JS, Humphreys BD. Origin of new cells in the adult kidney: results from genetic labeling techniques. Kidney Int. 2011;79(5):494–501. doi: 10.1038/ki.2010.338.CrossRefPubMedGoogle Scholar
  42. 42.
    Smith SW, Chand S, Savage COS. Biology of the renal pericyte. Nephrol Dial Transplant. 2012;27(6):2149–55. doi: 10.1093/ndt/gfs134.CrossRefPubMedGoogle Scholar
  43. 43.
    Kida Y, Duffield JS. Pivotal role of pericytes in kidney fibrosis. Clin Exp Pharmacol Physiol. 2011;38(7):467–73. doi: 10.1111/j.1440-1681.2011.05531.x.CrossRefPubMedGoogle Scholar
  44. 44.
    Liu Y. Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol. 2011;7(12):684–96. doi: 10.1038/nrneph.2011.149.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Lin S-L, Kisseleva T, Brenner DA, Duffield JS. Pericytes and perivascular fibroblasts are the primary source of collagen-producing cells in obstructive fibrosis of the kidney. Am J Pathol. 2008;173(6):1617–27. doi: 10.2353/ajpath.2008.080433.CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Wada T, Sakai N, Matsushima K, Kaneko S. Fibrocytes: a new insight into kidney fibrosis. Kidney Int. 2007;72(3):269–73. doi: 10.1038/sj.ki.5002325.CrossRefPubMedGoogle Scholar
  47. 47.
    Kriz W, Kaissling B, Le Hir M. Epithelial-mesenchymal transition (EMT) in kidney fibrosis: fact or fantasy? J Clin Investig. 2011;121(2):468–74. doi: 10.1172/JCI44595.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Chen WCW, Baily JE, Corselli M, Díaz ME, Sun B, Xiang G, Gray GA, Huard J, Péault B. Human myocardial pericytes: multipotent mesodermal precursors exhibiting cardiac specificity. Stem Cells. 2015;33(2):557–73. doi: 10.1002/stem.1868.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    O'Farrell FM, Attwell D. A role for pericytes in coronary no-reflow. Nat Rev Cardiol. 2014;11(7):427–32. doi: 10.1038/nrcardio.2014.58.CrossRefPubMedGoogle Scholar
  50. 50.
    Pinto AR, Ilinykh A, Ivey MJ, Kuwabara JT, D'Antoni ML, Debuque R, Chandran A, et al. Revisiting cardiac cellular composition. Circ Res. 2016;118(3):400–9. doi: 10.1161/CIRCRESAHA.115.307778.CrossRefPubMedGoogle Scholar
  51. 51.
    Birbrair A, Tan Z, Files DC, Mannava S, Smith T, Wang Z-M, Messi ML, Mintz A, Delbono O. Type-1 pericytes accumulate after tissue injury and produce collagen in an organ-dependent manner. Stem Cell Res Ther. 2014;5(6):122. doi: 10.1186/scrt512.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Corselli M, Chen C-W, Sun B, Solomon Y, Peter Rubin J, Péault B. The tunica adventitia of human arteries and veins as a source of mesenchymal stem cells. Stem Cells Dev. 2012;21(8):1299–308. doi: 10.1089/scd.2011.0200.CrossRefPubMedGoogle Scholar
  53. 53.
    Avolio E, Rodriguez-Arabaolaza I, Spencer HL, Riu F, Mangialardi G, Slater SC, Rowlinson J, et al. Expansion and characterization of neonatal cardiac pericytes provides a novel cellular option for tissue engineering in congenital heart disease. J Am Heart Assoc. 2015;4(6):e002043. doi: 10.1161/JAHA.115.002043.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Katare RG, Madeddu P. Pericytes from human veins for treatment of myocardial ischemia. Trends Cardiovasc Med. 2013;23:66. doi: 10.1016/j.tcm.2012.09.002.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Chen C-W, Okada M, Proto JD, Gao X, Sekiya N, Beckman SA, Corselli M, et al. Human pericytes for ischemic heart repair. Stem Cells. 2013;31(2):305–16. doi: 10.1002/stem.1285.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Guimarães-Camboa N, Cattaneo P, Sun Y, Moore-Morris T, Yusu G, Dalton ND, Rockenstein E, et al. Pericytes of multiple organs do not behave as mesenchymal stem cells in vivo. Cell Stem Cell. 2017;20:345. doi: 10.1016/j.stem.2016.12.006.CrossRefPubMedGoogle Scholar
  57. 57.
    Boström K, Watson KE, Horn S, Wortham C. Bone morphogenetic protein expression in human atherosclerotic lesions. J Clin Investig. 1993;91:1800.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Orekhov AN, Andreeva ER, Andrianova IV, Bobryshev YV. Peculiarities of cell composition and cell proliferation in different type atherosclerotic lesions in carotid and coronary arteries. Atherosclerosis. 2010;212(2):436–43. doi: 10.1016/j.atherosclerosis.2010.07.009.CrossRefPubMedGoogle Scholar
  59. 59.
    Orekhov AN, Bobryshev YV, Chistiakov DA. The complexity of cell composition of the intima of large arteries: focus on pericyte-like cells. Cardiovasc Res. 2014;103(4):438–51. doi: 10.1093/cvr/cvu168.CrossRefPubMedGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Heart Science, NHLIImperial College LondonLondonUK

Personalised recommendations