Skip to main content

Lymphocytes at the Heart of Wound Healing

  • Chapter
  • First Online:
The Immunology of Cardiovascular Homeostasis and Pathology

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1003))

Abstract

The adult mammalian heart displays negligible regenerative capacity. Therefore, myocardial infarction (MI) often results in an irreversible loss of contractile tissue, leading to a collagenous scar formation, progressive remodelling and heart failure (HF). Over the past few years, emerging evidences indicate that a myocardial ischemic injury mobilizes not only sterile unspecific inflammation but also lymphocyte-mediated immune responses to cardiac auto-antigens. In the current chapter, we depict the infarcted heart as a “wounded” tissue and focus on the dynamic events leading to myocardial repair, with special emphasis on the role played by lymphocytes in this process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Majno G. The healing hand. Man and wound in the ancient world. 1st ed. Cambridge: Harvard University Press; 1975.

    Google Scholar 

  2. Ertl G, Frantz S. Wound model of myocardial infarction. Am J Physiol Heart Circ Physiol. 2005;288(3):H981–3. doi:10.1152/ajpheart.00977.2004.

    Article  CAS  PubMed  Google Scholar 

  3. Task Force on the management of STseamiotESoC, Steg PG, James SK, Atar D, Badano LP, Blomstrom-Lundqvist C, Borger MA, Di Mario C, Dickstein K, Ducrocq G, Fernandez-Aviles F, Gershlick AH, Giannuzzi P, Halvorsen S, Huber K, Juni P, Kastrati A, Knuuti J, Lenzen MJ, Mahaffey KW, Valgimigli M, van 't Hof A, Widimsky P, Zahger D. ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation. Eur Heart J. 2012;33(20):2569–619. doi:10.1093/eurheartj/ehs215.

    Article  CAS  Google Scholar 

  4. McMurray JJ, Adamopoulos S, Anker SD, Auricchio A, Bohm M, Dickstein K, Falk V, Filippatos G, Fonseca C, Gomez-Sanchez MA, Jaarsma T, Kober L, Lip GY, Maggioni AP, Parkhomenko A, Pieske BM, Popescu BA, Ronnevik PK, Rutten FH, Schwitter J, Seferovic P, Stepinska J, Trindade PT, Voors AA, Zannad F, Zeiher A, Guidelines ESCCfP. ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of Cardiology. Developed in collaboration with the Heart Failure Association (HFA) of the ESC. Eur Heart J. 2012;33(14):1787–847. doi:10.1093/eurheartj/ehs104.

    Article  PubMed  Google Scholar 

  5. Ertl G, Frantz S. Healing after myocardial infarction. Cardiovasc Res. 2005;66(1):22–32. doi:10.1016/j.cardiores.2005.01.011.

    Article  CAS  PubMed  Google Scholar 

  6. Frangogiannis NG. Inflammation in cardiac injury, repair and regeneration. Curr Opin Cardiol. 2015;30(3):240–5. doi:10.1097/HCO.0000000000000158.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Nahrendorf M, Pittet MJ, Swirski FK. Monocytes: protagonists of infarct inflammation and repair after myocardial infarction. Circulation. 2010;121(22):2437–45. doi:10.1161/CIRCULATIONAHA.109.916346.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Frantz S, Hofmann U, Fraccarollo D, Schafer A, Kranepuhl S, Hagedorn I, Nieswandt B, Nahrendorf M, Wagner H, Bayer B, Pachel C, Schon MP, Kneitz S, Bobinger T, Weidemann F, Ertl G, Bauersachs J. Monocytes/macrophages prevent healing defects and left ventricular thrombus formation after myocardial infarction. FASEB J. 2013;27(3):871–81. doi:10.1096/fj.12-214049.

    Article  CAS  PubMed  Google Scholar 

  9. Hofmann U, Beyersdorf N, Weirather J, Podolskaya A, Bauersachs J, Ertl G, Kerkau T, Frantz S. Activation of CD4+ T lymphocytes improves wound healing and survival after experimental myocardial infarction in mice. Circulation. 2012;125(13):1652–63. doi:10.1161/CIRCULATIONAHA.111.044164.

    Article  CAS  PubMed  Google Scholar 

  10. Yan X, Anzai A, Katsumata Y, Matsuhashi T, Ito K, Endo J, Yamamoto T, Takeshima A, Shinmura K, Shen W, Fukuda K, Sano M. Temporal dynamics of cardiac immune cell accumulation following acute myocardial infarction. J Mol Cell Cardiol. 2013;62:24–35. doi:10.1016/j.yjmcc.2013.04.023.

    Article  CAS  PubMed  Google Scholar 

  11. Harel-Adar T, Ben Mordechai T, Amsalem Y, Feinberg MS, Leor J, Cohen S. Modulation of cardiac macrophages by phosphatidylserine-presenting liposomes improves infarct repair. Proc Natl Acad Sci U S A. 2011;108(5):1827–32. doi:10.1073/pnas.1015623108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Weirather J, Hofmann UD, Beyersdorf N, Ramos GC, Vogel B, Frey A, Ertl G, Kerkau T, Frantz S. Foxp3+ CD4+ T cells improve healing after myocardial infarction by modulating monocyte/macrophage differentiation. Circ Res. 2014;115(1):55–67. doi:10.1161/CIRCRESAHA.115.303895.

    Article  CAS  PubMed  Google Scholar 

  13. Frantz S, Nahrendorf M. Cardiac macrophages and their role in ischaemic heart disease. Cardiovasc Res. 2014;102(2):240–8. doi:10.1093/cvr/cvu025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hofmann U, Frantz S. Role of lymphocytes in myocardial injury, healing, and remodeling after myocardial infarction. Circ Res. 2015;116(2):354–67. doi:10.1161/CIRCRESAHA.116.304072.

    Article  CAS  PubMed  Google Scholar 

  15. Lv H, Havari E, Pinto S, Gottumukkala RV, Cornivelli L, Raddassi K, Matsui T, Rosenzweig A, Bronson RT, Smith R, Fletcher AL, Turley SJ, Wucherpfennig K, Kyewski B, Lipes MA. Impaired thymic tolerance to alpha-myosin directs autoimmunity to the heart in mice and humans. J Clin Invest. 2011;121(4):1561–73. doi:10.1172/JCI44583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cooper MD. The early history of B cells. Nat Rev Immunol. 2015;15(3):191–7. doi:10.1038/nri3801.

    Article  CAS  PubMed  Google Scholar 

  17. LeBien TW, Tedder TF. B lymphocytes: how they develop and function. Blood. 2008;112(5):1570–80. doi:10.1182/blood-2008-02-078071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bornholz B, Roggenbuck D, Jahns R, Boege F. Diagnostic and therapeutic aspects of beta1-adrenergic receptor autoantibodies in human heart disease. Autoimmun Rev. 2014;13(9):954–62. doi:10.1016/j.autrev.2014.08.021.

    Article  CAS  PubMed  Google Scholar 

  19. De Scheerder I, Vandekerckhove J, Robbrecht J, Algoed L, De Buyzere M, De Langhe J, De Schrijver G, Clement D. Post-cardiac injury syndrome and an increased humoral immune response against the major contractile proteins (actin and myosin). Am J Cardiol. 1985;56(10):631–3.

    Article  PubMed  Google Scholar 

  20. Kaya Z, Leib C, Katus HA. Autoantibodies in heart failure and cardiac dysfunction. Circ Res. 2012;110(1):145–58. doi:10.1161/CIRCRESAHA.111.243360.

    Article  CAS  PubMed  Google Scholar 

  21. O'Donohoe TJ, Schrale RG, Ketheesan N. The role of anti-myosin antibodies in perpetuating cardiac damage following myocardial infarction. Int J Cardiol. 2016;209:226–33. doi:10.1016/j.ijcard.2016.02.035.

    Article  PubMed  Google Scholar 

  22. Busche MN, Pavlov V, Takahashi K, Stahl GL. Myocardial ischemia and reperfusion injury is dependent on both IgM and mannose-binding lectin. Am J Physiol Heart Circ Physiol. 2009;297(5):H1853–9. doi:10.1152/ajpheart.00049.2009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Haas MS, Alicot EM, Schuerpf F, Chiu I, Li J, Moore FD, Carroll MC. Blockade of self-reactive IgM significantly reduces injury in a murine model of acute myocardial infarction. Cardiovasc Res. 2010;87(4):618–27. doi:10.1093/cvr/cvq141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Medei EH, Nascimento JH, Pedrosa RC, Carvalho AC. Role of autoantibodies in the physiopathology of Chagas’ disease. Arq Bras Cardiol. 2008;91(4):257–62. 281-256

    Article  PubMed  PubMed Central  Google Scholar 

  25. Rose NR. Myocarditis: infection versus autoimmunity. J Clin Immunol. 2009;29(6):730–7. doi:10.1007/s10875-009-9339-z.

    Article  CAS  PubMed  Google Scholar 

  26. Deubner N, Berliner D, Schlipp A, Gelbrich G, Caforio AL, Felix SB, Fu M, Katus H, Angermann CE, Lohse MJ, Ertl G, Stork S, Jahns R, Etiology, Titre-Course, and Survival-Study Group. Cardiac beta1-adrenoceptor autoantibodies in human heart disease: rationale and design of the Etiology, Titre-Course, and Survival (ETiCS) Study. Eur J Heart Fail. 2010;12(7):753–62. doi:10.1093/eurjhf/hfq072.

    Article  CAS  PubMed  Google Scholar 

  27. Sorman A, Zhang L, Ding Z, Heyman B. How antibodies use complement to regulate antibody responses. Mol Immunol. 2014;61(2):79–88. doi:10.1016/j.molimm.2014.06.010.

    Article  PubMed  CAS  Google Scholar 

  28. Mkaddem SB, Christou I, Rossato E, Berthelot L, Lehuen A, Monteiro RC. IgA, IgA receptors, and their anti-inflammatory properties. Curr Top Microbiol Immunol. 2014;382:221–35. doi:10.1007/978-3-319-07911-0_10.

    PubMed  Google Scholar 

  29. Coutinho A, Kazatchkine MD, Avrameas S. Natural autoantibodies. Curr Opin Immunol. 1995;7(6):812–8.

    Article  CAS  PubMed  Google Scholar 

  30. Dighiero G, Lymberi P, Holmberg D, Lundquist I, Coutinho A, Avrameas S. High frequency of natural autoantibodies in normal newborn mice. J Immunol. 1985;134(2):765–71.

    CAS  PubMed  Google Scholar 

  31. Haury M, Sundblad A, Grandien A, Barreau C, Coutinho A, Nobrega A. The repertoire of serum IgM in normal mice is largely independent of external antigenic contact. Eur J Immunol. 1997;27(6):1557–63. doi:10.1002/eji.1830270635.

    Article  CAS  PubMed  Google Scholar 

  32. Jerne NK. The Nobel Lectures in Immunology. The Nobel Prize for Physiology or Medicine, 1984. The generative grammar of the immune system. Scand J Immunol. 1993;38(1):1–9.

    Google Scholar 

  33. Merbl Y, Zucker-Toledano M, Quintana FJ, Cohen IR. Newborn humans manifest autoantibodies to defined self molecules detected by antigen microarray informatics. J Clin Invest. 2007;117(3):712–8. doi:10.1172/JCI29943.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Lacroix-Desmazes S, Kaveri SV, Mouthon L, Ayouba A, Malanchere E, Coutinho A, Kazatchkine MD. Self-reactive antibodies (natural autoantibodies) in healthy individuals. J Immunol Methods. 1998;216(1–2):117–37.

    Article  CAS  PubMed  Google Scholar 

  35. Nobrega A, Haury M, Grandien A, Malanchere E, Sundblad A, Coutinho A. Global analysis of antibody repertoires. II. Evidence for specificity, self-selection and the immunological “homunculus” of antibodies in normal serum. Eur J Immunol. 1993;23(11):2851–9. doi:10.1002/eji.1830231119.

    Article  CAS  PubMed  Google Scholar 

  36. Quintana FJ, Cohen IR. The natural autoantibody repertoire and autoimmune disease. Biomed Pharmacother. 2004;58(5):276–81. doi:10.1016/j.biopha.2004.04.011.

    Article  CAS  PubMed  Google Scholar 

  37. Nishio N, Ito S, Suzuki H, Isobe K. Antibodies to wounded tissue enhance cutaneous wound healing. Immunology. 2009;128(3):369–80. doi:10.1111/j.1365-2567.2009.03119.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang M, Austen WG Jr, Chiu I, Alicot EM, Hung R, Ma M, Verna N, Xu M, Hechtman HB, Moore FD Jr, Carroll MC. Identification of a specific self-reactive IgM antibody that initiates intestinal ischemia/reperfusion injury. Proc Natl Acad Sci U S A. 2004;101(11):3886–91. doi:10.1073/pnas.0400347101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Weiser MR, Williams JP, Moore FD Jr, Kobzik L, Ma M, Hechtman HB, Carroll MC. Reperfusion injury of ischemic skeletal muscle is mediated by natural antibody and complement. J Exp Med. 1996;183(5):2343–8.

    Article  CAS  PubMed  Google Scholar 

  40. Silverman GJ. Protective natural autoantibodies to apoptotic cells: evidence of convergent selection of recurrent innate-like clones. Ann N Y Acad Sci. 2015;1362:164–75. doi:10.1111/nyas.12788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Williams JP, Pechet TT, Weiser MR, Reid R, Kobzik L, Moore FD Jr, Carroll MC, Hechtman HB. Intestinal reperfusion injury is mediated by IgM and complement. J Appl Physiol (1985). 1999;86(3):938–42.

    CAS  Google Scholar 

  42. Zhang M, Alicot EM, Chiu I, Li J, Verna N, Vorup-Jensen T, Kessler B, Shimaoka M, Chan R, Friend D, Mahmood U, Weissleder R, Moore FD, Carroll MC. Identification of the target self-antigens in reperfusion injury. J Exp Med. 2006;203(1):141–52. doi:10.1084/jem.20050390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pummerer CL, Luze K, Grassl G, Bachmaier K, Offner F, Burrell SK, Lenz DM, Zamborelli TJ, Penninger JM, Neu N. Identification of cardiac myosin peptides capable of inducing autoimmune myocarditis in BALB/c mice. J Clin Invest. 1996;97(9):2057–62. doi:10.1172/JCI118642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sihag S, Haas MS, Kim KM, Guerrero JL, Beaudoin J, Alicot EM, Schuerpf F, Gottschall JD, Puro RJ, Madsen JC, Sachs DH, Newman W, Carroll MC, Allan JS. Natural IgM blockade limits infarct expansion and left ventricular dysfunction in a swine myocardial infarct model. Circ Cardiovasc Interv. 2016;9(1):e002547. doi:10.1161/CIRCINTERVENTIONS.115.002547.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Diepenhorst GM, Ciurana CL, Diaz Padilla N, Boekholdt SM, Krijnen PA, Lagrand WK, Niessen HW, Hack CE. IgM antibodies against apoptotic cells and phosphorylcholine in patients with acute myocardial infarction in relation to infarct size and inflammatory response. Adv Clin Exp Med. 2012;21(4):455–67.

    PubMed  Google Scholar 

  46. Parnes O. From interception to incorporation: degeneracy and promiscuous recognition as precursors of a paradigm shift in immunology. Mol Immunol. 2004;40(14–15):985–91. doi:10.1016/j.molimm.2003.11.021.

    Article  CAS  PubMed  Google Scholar 

  47. Kyaw T, Tipping P, Bobik A, Toh BH. Protective role of natural IgM-producing B1a cells in atherosclerosis. Trends Cardiovasc Med. 2012;22(2):48–53. doi:10.1016/j.tcm.2012.06.011.

    Article  CAS  PubMed  Google Scholar 

  48. Dangas G, Konstadoulakis MM, Epstein SE, Stefanadis CI, Kymionis GD, Toutouza MG, Liakos C, Sadaniantz A, Cohen AM, Chesebro JH, Toutouzas PK. Prevalence of autoantibodies against contractile proteins in coronary artery disease and their clinical implications. Am J Cardiol. 2000;85(7):870–2. A876, A879

    Article  CAS  PubMed  Google Scholar 

  49. De Scheerder I, Vandekerckhove J, De Schrijver G, Hoste M, Clement D, Wieme R, Pannier R. Detection of anti-contractile antibodies after cardiac surgery using ELISA assay. Clin Exp Immunol. 1985;60(2):403–6.

    PubMed  PubMed Central  Google Scholar 

  50. Pang H, Liao Y, Wang Z, Dong J, Lu Q. Effect of anti-cardiac myosin antibody on prognosis of patients with acute myocardial infarction. J Tongji Med Univ. 2000;20(1):46–8.

    Article  CAS  PubMed  Google Scholar 

  51. Warraich RS, Griffiths E, Falconar A, Pabbathi V, Bell C, Angelini G, Suleiman MS, Yacoub MH. Human cardiac myosin autoantibodies impair myocyte contractility: a cause-and-effect relationship. FASEB J. 2006;20(6):651–60. doi:10.1096/fj.04-3001com.

    Article  CAS  PubMed  Google Scholar 

  52. Neumann DA, Lane JR, Wulff SM, Allen GS, LaFond-Walker A, Herskowitz A, Rose NR. In vivo deposition of myosin-specific autoantibodies in the hearts of mice with experimental autoimmune myocarditis. J Immunol. 1992;148(12):3806–13.

    CAS  PubMed  Google Scholar 

  53. Caforio AL, Angelini A, Blank M, Shani A, Kivity S, Goddard G, Doria A, Schiavo A, Testolina M, Bottaro S, Marcolongo R, Thiene G, Iliceto S, Shoenfeld Y. Passive transfer of affinity-purified anti-heart autoantibodies (AHA) from sera of patients with myocarditis induces experimental myocarditis in mice. Int J Cardiol. 2015;179:166–77. doi:10.1016/j.ijcard.2014.10.165.

    Article  PubMed  Google Scholar 

  54. Li Y, Heuser JS, Cunningham LC, Kosanke SD, Cunningham MW. Mimicry and antibody-mediated cell signaling in autoimmune myocarditis. J Immunol. 2006;177(11):8234–40.

    Article  CAS  PubMed  Google Scholar 

  55. Boivin V, Beyersdorf N, Palm D, Nikolaev VO, Schlipp A, Muller J, Schmidt D, Kocoski V, Kerkau T, Hunig T, Ertl G, Lohse MJ, Jahns R. Novel receptor-derived cyclopeptides to treat heart failure caused by anti-beta1-adrenoceptor antibodies in a human-analogous rat model. PLoS One. 2015;10(2):e0117589. doi:10.1371/journal.pone.0117589.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Caforio AL, Tona F, Bottaro S, Vinci A, Dequal G, Daliento L, Thiene G, Iliceto S. Clinical implications of anti-heart autoantibodies in myocarditis and dilated cardiomyopathy. Autoimmunity. 2008;41(1):35–45. doi:10.1080/08916930701619235.

    Article  CAS  PubMed  Google Scholar 

  57. Wallukat G, Fu ML, Magnusson Y, Hjalmarson A, Hoebeke J, Wollenberger A. Agonistic effects of anti-peptide antibodies and autoantibodies directed against adrenergic and cholinergic receptors: absence of desensitization. Blood Press Suppl. 1996;3:31–6.

    CAS  PubMed  Google Scholar 

  58. Magnusson Y, Wallukat G, Guillet JG, Hjalmarson A, Hoebeke J. Functional analysis of rabbit anti-peptide antibodies which mimic autoantibodies against the beta 1-adrenergic receptor in patients with idiopathic dilated cardiomyopathy. J Autoimmun. 1991;4(6):893–905.

    Article  CAS  PubMed  Google Scholar 

  59. Tate K, Magnusson Y, Viguier M, Lengagne R, Hjalmarson A, Guillet JG, Hoebeke J. Epitope analysis of T- and B-cell response against the human beta 1-adrenoceptor. Biochimie. 1994;76(2):159–64.

    Article  CAS  PubMed  Google Scholar 

  60. Wallukat G, Morwinski R, Magnusson Y, Hoebeke J, Wollenberger A. Autoantibodies against the beta 1-adrenergic receptor in myocarditis and dilated cardiomyopathy: localization of two epitopes. Z Kardiol. 1992;81(Suppl 4):79–83.

    PubMed  Google Scholar 

  61. Stork S, Boivin V, Horf R, Hein L, Lohse MJ, Angermann CE, Jahns R. Stimulating autoantibodies directed against the cardiac beta1-adrenergic receptor predict increased mortality in idiopathic cardiomyopathy. Am Heart J. 2006;152(4):697–704. doi:10.1016/j.ahj.2006.05.004.

    Article  PubMed  CAS  Google Scholar 

  62. Jahns R, Boivin V, Hein L, Triebel S, Angermann CE, Ertl G, Lohse MJ. Direct evidence for a beta 1-adrenergic receptor-directed autoimmune attack as a cause of idiopathic dilated cardiomyopathy. J Clin Invest. 2004;113(10):1419–29. doi:10.1172/JCI20149.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Munch G, Boivin-Jahns V, Holthoff HP, Adler K, Lappo M, Truol S, Degen H, Steiger N, Lohse MJ, Jahns R, Ungerer M. Administration of the cyclic peptide COR-1 in humans (phase I study): ex vivo measurements of anti-beta1-adrenergic receptor antibody neutralization and of immune parameters. Eur J Heart Fail. 2012;14(11):1230–9. doi:10.1093/eurjhf/hfs118.

    Article  PubMed  CAS  Google Scholar 

  64. Cohen-Sfady M, Nussbaum G, Pevsner-Fischer M, Mor F, Carmi P, Zanin-Zhorov A, Lider O, Cohen IR. Heat shock protein 60 activates B cells via the TLR4-MyD88 pathway. J Immunol. 2005;175(6):3594–602.

    Article  CAS  PubMed  Google Scholar 

  65. Coutinho A. Genetic control of B-cell responses. II. Identification of the spleen B-cell defect in C3H/HeJ mice. Scand J Immunol. 1976;5(1–2):129–40.

    Article  CAS  PubMed  Google Scholar 

  66. Peng SL. Signaling in B cells via Toll-like receptors. Curr Opin Immunol. 2005;17(3):230–6. doi:10.1016/j.coi.2005.03.003.

    Article  CAS  PubMed  Google Scholar 

  67. Teichmann LL, Schenten D, Medzhitov R, Kashgarian M, Shlomchik MJ. Signals via the adaptor MyD88 in B cells and DCs make distinct and synergistic contributions to immune activation and tissue damage in lupus. Immunity. 2013;38(3):528–40. doi:10.1016/j.immuni.2012.11.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zouggari Y, Ait-Oufella H, Bonnin P, Simon T, Sage AP, Guerin C, Vilar J, Caligiuri G, Tsiantoulas D, Laurans L, Dumeau E, Kotti S, Bruneval P, Charo IF, Binder CJ, Danchin N, Tedgui A, Tedder TF, Silvestre JS, Mallat Z. B lymphocytes trigger monocyte mobilization and impair heart function after acute myocardial infarction. Nat Med. 2013;19(10):1273–80. doi:10.1038/nm.3284.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Iwata Y, Yoshizaki A, Komura K, Shimizu K, Ogawa F, Hara T, Muroi E, Bae S, Takenaka M, Yukami T, Hasegawa M, Fujimoto M, Tomita Y, Tedder TF, Sato S. CD19, a response regulator of B lymphocytes, regulates wound healing through hyaluronan-induced TLR4 signaling. Am J Pathol. 2009;175(2):649–60. doi:10.2353/ajpath.2009.080355.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Goodchild TT, Robinson KA, Pang W, Tondato F, Cui J, Arrington J, Godwin L, Ungs M, Carlesso N, Weich N, Poznansky MC, Chronos NA. Bone marrow-derived B cells preserve ventricular function after acute myocardial infarction. JACC Cardiovasc Interv. 2009;2(10):1005–16. doi:10.1016/j.jcin.2009.08.010.

    Article  PubMed  Google Scholar 

  71. Coutinho A. Innate immunity: from lymphocyte mitogens to Toll-like receptors and back. Curr Opin Immunol. 2003;15(6):599–602. doi:10.1016/j.coi.2003.09.020.

    Article  CAS  PubMed  Google Scholar 

  72. Jackson SW, Kolhatkar NS, Rawlings DJ. B cells take the front seat: dysregulated B cell signals orchestrate loss of tolerance and autoantibody production. Curr Opin Immunol. 2015;33:70–7. doi:10.1016/j.coi.2015.01.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Davis MM. T cell receptor gene diversity and selection. Annu Rev Biochem. 1990;59:475–96. doi:10.1146/annurev.bi.59.070190.002355.

    Article  CAS  PubMed  Google Scholar 

  74. Malissen B, Bongrand P. Early T cell activation: integrating biochemical, structural, and biophysical cues. Annu Rev Immunol. 2015;33:539–61. doi:10.1146/annurev-immunol-032414-112158.

    Article  CAS  PubMed  Google Scholar 

  75. Rossjohn J, Gras S, Miles JJ, Turner SJ, Godfrey DI, McCluskey J. T cell antigen receptor recognition of antigen-presenting molecules. Annu Rev Immunol. 2015;33:169–200. doi:10.1146/annurev-immunol-032414-112334.

    Article  CAS  PubMed  Google Scholar 

  76. Rudolph MG, Stanfield RL, Wilson IA. How TCRs bind MHCs, peptides, and coreceptors. Annu Rev Immunol. 2006;24:419–66. doi:10.1146/annurev.immunol.23.021704.115658.

    Article  CAS  PubMed  Google Scholar 

  77. Komarowska I, Coe D, Wang G, Haas R, Mauro C, Kishore M, Cooper D, Nadkarni S, Fu H, Steinbruchel DA, Pitzalis C, Anderson G, Bucy P, Lombardi G, Breckenridge R, Marelli-Berg FM. Hepatocyte growth factor receptor c-Met instructs T cell cardiotropism and promotes T cell migration to the heart via autocrine chemokine release. Immunity. 2015;42(6):1087–99. doi:10.1016/j.immuni.2015.05.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mosmann TR, Cherwinski H, Bond MW, Giedlin MA, Coffman RL. Two types of murine helper T cell clone. I. Definition according to profiles of lymphokine activities and secreted proteins. J Immunol. 1986;136(7):2348–57.

    CAS  PubMed  Google Scholar 

  79. Zhu J, Paul WE. CD4 T cells: fates, functions, and faults. Blood. 2008;112(5):1557–69. doi:10.1182/blood-2008-05-078154.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, Kelly TE, Saulsbury FT, Chance PF, Ochs HD. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet. 2001;27(1):20–1. doi:10.1038/83713.

    Article  CAS  PubMed  Google Scholar 

  81. Liston A, Nutsch KM, Farr AG, Lund JM, Rasmussen JP, Koni PA, Rudensky AY. Differentiation of regulatory Foxp3+ T cells in the thymic cortex. Proc Natl Acad Sci U S A. 2008;105(33):11903–8. doi:10.1073/pnas.0801506105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M. Immunologic self-tolerance maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol. 1995;155(3):1151–64.

    CAS  PubMed  Google Scholar 

  83. Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133(5):775–87. doi:10.1016/j.cell.2008.05.009.

    Article  CAS  PubMed  Google Scholar 

  84. Burzyn D, Kuswanto W, Kolodin D, Shadrach JL, Cerletti M, Jang Y, Sefik E, Tan TG, Wagers AJ, Benoist C, Mathis D. A special population of regulatory T cells potentiates muscle repair. Cell. 2013;155(6):1282–95. doi:10.1016/j.cell.2013.10.054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Pacholczyk R, Ignatowicz H, Kraj P, Ignatowicz L. Origin and T cell receptor diversity of Foxp3+CD4+CD25+ T cells. Immunity. 2006;25(2):249–59. doi:10.1016/j.immuni.2006.05.016.

    Article  CAS  PubMed  Google Scholar 

  86. Pacholczyk R, Kern J. The T-cell receptor repertoire of regulatory T cells. Immunology. 2008;125(4):450–8. doi:10.1111/j.1365-2567.2008.02992.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Arpaia N, Green JA, Moltedo B, Arvey A, Hemmers S, Yuan S, Treuting PM, Rudensky AY. A distinct function of regulatory T cells in tissue protection. Cell. 2015;162(5):1078–89. doi:10.1016/j.cell.2015.08.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Yang Z, Day YJ, Toufektsian MC, Xu Y, Ramos SI, Marshall MA, French BA, Linden J. Myocardial infarct-sparing effect of adenosine A2A receptor activation is due to its action on CD4+ T lymphocytes. Circulation. 2006;114(19):2056–64. doi:10.1161/CIRCULATIONAHA.106.649244.

    Article  CAS  PubMed  Google Scholar 

  89. Burzyn D, Benoist C, Mathis D. Regulatory T cells in nonlymphoid tissues. Nat Immunol. 2013;14(10):1007–13. doi:10.1038/ni.2683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schenkel JM, Masopust D. Tissue-resident memory T cells. Immunity. 2014;41(6):886–97. doi:10.1016/j.immuni.2014.12.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Ramos GC, van den Berg A, Nunes-Silva V, Weirather J, Peters L, Burkard M, Friedrich M, Pinnecker J, Abeßer M, Heinze KG, Schuh K, Beyersdorf N, Kerkau T, Demengeot J, Frantz S, and Hofmann U. Myocardial aging as a T-cell–mediated phenomenon PNAS. 2017;114(12):E2420–9. doi:10.1073/pnas.1621047114.

  92. Hofmann U, Frantz S. Role of T-cells in myocardial infarction. Eur Heart J. 2015; doi:10.1093/eurheartj/ehv639.

    PubMed Central  Google Scholar 

  93. Lu L, Li G, Rao J, Pu L, Yu Y, Wang X, Zhang F. In vitro induced CD4(+)CD25(+)Foxp3(+) Tregs attenuate hepatic ischemia-reperfusion injury. Int Immunopharmacol. 2009;9(5):549–52. doi:10.1016/j.intimp.2009.01.020.

    Article  CAS  PubMed  Google Scholar 

  94. Ke D, Fang J, Fan L, Chen Z, Chen L. Regulatory T cells contribute to rosuvastatin-induced cardioprotection against ischemia-reperfusion injury. Coron Artery Dis. 2013;24(4):334–41. doi:10.1097/MCA.0b013e3283608c12.

    Article  PubMed  Google Scholar 

  95. Mathes D, Weirather J, Nordbeck P, Arias-Loza AP, Burkard M, Pachel C, Kerkau T, Beyersdorf N, Frantz S, Hofmann U. CD4+ Foxp3+ T-cells contribute to myocardial ischemia-reperfusion injury. J Mol Cell Cardiol. 2016 Dec;101:99–105. doi: 10.1016/j.yjmcc.2016.10.007. Epub 2016 Oct 19.

  96. Matsumoto K, Ogawa M, Suzuki J, Hirata Y, Nagai R, Isobe M. Regulatory T lymphocytes attenuate myocardial infarction-induced ventricular remodeling in mice. Int Heart J. 2011;52(6):382–7.

    Article  CAS  PubMed  Google Scholar 

  97. Saxena A, Bjorkbacka H, Strom A, Rattik S, Berg KE, Gomez MF, Fredrikson GN, Nilsson J, Hultgardh-Nilsson A. Mobilization of regulatory T cells in response to carotid injury does not influence subsequent neointima formation. PLoS One. 2012;7(12):e51556. doi:10.1371/journal.pone.0051556.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Saxena A, Dobaczewski M, Rai V, Haque Z, Chen W, Li N, Frangogiannis NG. Regulatory T cells are recruited in the infarcted mouse myocardium and may modulate fibroblast phenotype and function. Am J Physiol Heart Circ Physiol. 2014;307(8):H1233–42. doi:10.1152/ajpheart.00328.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Sharir R, Semo J, Shimoni S, Ben-Mordechai T, Landa-Rouben N, Maysel-Auslender S, Shaish A, Entin-Meer M, Keren G, George J. Experimental myocardial infarction induces altered regulatory T cell hemostasis, and adoptive transfer attenuates subsequent remodeling. PLoS One. 2014;9(12):e113653. doi:10.1371/journal.pone.0113653.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Tang TT, Yuan J, Zhu ZF, Zhang WC, Xiao H, Xia N, Yan XX, Nie SF, Liu J, Zhou SF, Li JJ, Yao R, Liao MY, Tu X, Liao YH, Cheng X. Regulatory T cells ameliorate cardiac remodeling after myocardial infarction. Basic Res Cardiol. 2012;107(1):232. doi:10.1007/s00395-011-0232-6.

    Article  PubMed  Google Scholar 

  101. Hünig T. The rise and fall of the CD28 superagonist TGN1412 and its return as TAB08: a personal account. FEBS J. 2016;283(18):3325–34. doi: 10.1111/febs.13754. Epub 2016 Jun 6.

  102. Wang YP, Xie Y, Ma H, Su SA, Wang YD, Wang JA, Xiang MX. Regulatory T lymphocytes in myocardial infarction: a promising new therapeutic target. Int J Cardiol. 2016;203:923–8. doi:10.1016/j.ijcard.2015.11.078.

    Article  PubMed  Google Scholar 

  103. Curato C, Slavic S, Dong J, Skorska A, Altarche-Xifro W, Miteva K, Kaschina E, Thiel A, Imboden H, Wang J, Steckelings U, Steinhoff G, Unger T, Li J. Identification of noncytotoxic and IL-10-producing CD8+AT2R+ T cell population in response to ischemic heart injury. J Immunol. 2010;185(10):6286–93. doi:10.4049/jimmunol.0903681.

    Article  CAS  PubMed  Google Scholar 

  104. Skorska A, von Haehling S, Ludwig M, Lux CA, Gaebel R, Kleiner G, Klopsch C, Dong J, Curato C, Altarche-Xifro W, Slavic S, Unger T, Steinhoff G, Li J, David R. The CD4(+) AT2R(+) T cell subpopulation improves post-infarction remodelling and restores cardiac function. J Cell Mol Med. 2015;19(8):1975–85. doi:10.1111/jcmm.12574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Nindl V, Maier R, Ratering D, De Giuli R, Zust R, Thiel V, Scandella E, Di Padova F, Kopf M, Rudin M, Rulicke T, Ludewig B. Cooperation of Th1 and Th17 cells determines transition from autoimmune myocarditis to dilated cardiomyopathy. Eur J Immunol. 2012;42(9):2311–21. doi:10.1002/eji.201142209.

    Article  CAS  PubMed  Google Scholar 

  106. Eriksson U, Kurrer MO, Bingisser R, Eugster HP, Saremaslani P, Follath F, Marsch S, Widmer U. Lethal autoimmune myocarditis in interferon-gamma receptor-deficient mice: enhanced disease severity by impaired inducible nitric oxide synthase induction. Circulation. 2001;103(1):18–21.

    Article  CAS  PubMed  Google Scholar 

  107. Eriksson U, Kurrer MO, Sebald W, Brombacher F, Kopf M. Dual role of the IL-12/IFN-gamma axis in the development of autoimmune myocarditis: induction by IL-12 and protection by IFN-gamma. J Immunol. 2001;167(9):5464–9.

    Article  CAS  PubMed  Google Scholar 

  108. Moalem G, Leibowitz-Amit R, Yoles E, Mor F, Cohen IR, Schwartz M. Autoimmune T cells protect neurons from secondary degeneration after central nervous system axotomy. Nat Med. 1999;5(1):49–55. doi:10.1038/4734.

    Article  CAS  PubMed  Google Scholar 

  109. Schwartz M, Cohen I, Lazarov-Spiegler O, Moalem G, Yoles E. The remedy may lie in ourselves: prospects for immune cell therapy in central nervous system protection and repair. J Mol Med. 1999;77(10):713–7. doi:10.1007/s001099900047.

    Article  CAS  PubMed  Google Scholar 

  110. Schwartz M, Cohen IR. Autoimmunity can benefit self-maintenance. Immunol Today. 2000;21(6):265–8.

    Article  CAS  PubMed  Google Scholar 

  111. Christ T, Dobrev D, Wallukat G, Schuler S, Ravens U. Acute hemodynamic effects during immunoadsorption in patients with dilated cardiomyopathy positive for beta 1-adrenoceptor autoantibodies. Methods Find Exp Clin Pharmacol. 2001;23(3):141–4.

    Article  CAS  PubMed  Google Scholar 

  112. Dandel M, Wallukat G, Englert A, Lehmkuhl HB, Knosalla C, Hetzer R. Long-term benefits of immunoadsorption in beta(1)-adrenoceptor autoantibody-positive transplant candidates with dilated cardiomyopathy. Eur J Heart Fail. 2012;14(12):1374–88. doi:10.1093/eurjhf/hfs123.

    Article  CAS  PubMed  Google Scholar 

  113. Gullestad L, Aass H, Fjeld JG, Wikeby L, Andreassen AK, Ihlen H, Simonsen S, Kjekshus J, Nitter-Hauge S, Ueland T, Lien E, Froland SS, Aukrust P. Immunomodulating therapy with intravenous immunoglobulin in patients with chronic heart failure. Circulation. 2001;103(2):220–5.

    Article  CAS  PubMed  Google Scholar 

  114. Gullestad L, Orn S, Dickstein K, Eek C, Edvardsen T, Aakhus S, Askevold ET, Michelsen A, Bendz B, Skardal R, Smith HJ, Yndestad A, Ueland T, Aukrust P. Intravenous immunoglobulin does not reduce left ventricular remodeling in patients with myocardial dysfunction during hospitalization after acute myocardial infarction. Int J Cardiol. 2013;168(1):212–8. doi:10.1016/j.ijcard.2012.09.092.

    Article  PubMed  Google Scholar 

  115. Frenkel D, Pachori AS, Zhang L, Dembinsky-Vaknin A, Farfara D, Petrovic-Stojkovic S, Dzau VJ, Weiner HL. Nasal vaccination with troponin reduces troponin specific T-cell responses and improves heart function in myocardial ischemia-reperfusion injury. Int Immunol. 2009;21(7):817–29. doi:10.1093/intimm/dxp051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Gonnella PA, Del Nido PJ, McGowan FX. Oral tolerization with cardiac myosin peptide (614-629) ameliorates experimental autoimmune myocarditis: role of STAT 6 genes in BALB/CJ mice. J Clin Immunol. 2009;29(4):434–43. doi:10.1007/s10875-009-9290-z.

    Article  CAS  PubMed  Google Scholar 

  117. Kaya Z, Dohmen KM, Wang Y, Schlichting J, Afanasyeva M, Leuschner F, Rose NR. Cutting edge: a critical role for IL-10 in induction of nasal tolerance in experimental autoimmune myocarditis. J Immunol. 2002;168(4):1552–6.

    Article  CAS  PubMed  Google Scholar 

  118. Ramos GC, Dalbo S, Leite DP, Goldfeder E, Carvalho CR, Vaz NM, Assreuy J. The autoimmune nature of post-infarct myocardial healing: oral tolerance to cardiac antigens as a novel strategy to improve cardiac healing. Autoimmunity. 2012;45(3):233–44. doi:10.3109/08916934.2011.647134.

    Article  CAS  PubMed  Google Scholar 

  119. Wang Y, Afanasyeva M, Hill SL, Kaya Z, Rose NR. Nasal administration of cardiac myosin suppresses autoimmune myocarditis in mice. J Am Coll Cardiol. 2000;36(6):1992–9.

    Article  CAS  PubMed  Google Scholar 

  120. Eun HC, Jun-Ho L, Eun-Hye P, Hyo Eun P, Nam-Chul J, Tae-Hoon K, Yoon-Seok K, Eunmin K, Ki-Bae S, Cheongsoo P, Kwan-Soo H, Kwonyoon K, Jie-Young S, Han Geuk S, Dae-Seog L, Kiyuk C. Infarcted Myocardium-Primed Dendritic Cells Improve Remodeling and Cardiac Function After Myocardial Infarction by Modulating the Regulatory T Cell and Macrophage Polarization. Circulation. 2017;135:1444–1457. https://doi.org/10.1161/CIRCULATIONAHA.116.023106.

  121. Tauber AI. Metchnikoff and the phagocytosis theory. Nat Rev Mol Cell Biol. 2003;4(11):897–901. doi:10.1038/nrm1244.

    Article  CAS  PubMed  Google Scholar 

  122. Porrello ER, Mahmoud AI, Simpson E, Hill JA, Richardson JA, Olson EN, Sadek HA. Transient regenerative potential of the neonatal mouse heart. Science. 2011;331(6020):1078–80. doi:10.1126/science.1200708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Laflamme MA, Murry CE. Heart regeneration. Nature. 2011;473(7347):326–35. doi:10.1038/nature10147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Metchnikoff E. Lectures on the comparative pathology of inflammation (trans: Starling FA, Starling EH.), Kegan Paul, Trench, Trübner & Co, Ltd. 1891.

    Google Scholar 

  125. Cohen IR. Activation of benign autoimmunity as both tumor and autoimmune disease immunotherapy: a comprehensive review. J Autoimmun. 2014;54:112–7. doi:10.1016/j.jaut.2014.05.002.

    Article  CAS  PubMed  Google Scholar 

  126. Ramos GC. Inflammation as an animal development phenomenon. Clin Dev Immunol. 2012;2012:983203. doi:10.1155/2012/983203.

    Article  PubMed  Google Scholar 

  127. Vaz NM, Carvalho CR. On the origin of immunopathology. J Theor Biol. 2015;375:61–70. doi:10.1016/j.jtbi.2014.06.006.

    Article  CAS  PubMed  Google Scholar 

  128. Kloner RA, Fishbein MC, Lew H, Maroko PR, Braunwald E. Mummification of the infarcted myocardium by high dose corticosteroids. Circulation. 1978;57(1):56–63.

    Article  CAS  PubMed  Google Scholar 

  129. Aurora AB, Porrello ER, Tan W, Mahmoud AI, Hill JA, Bassel-Duby R, Sadek HA, Olson EN. Macrophages are required for neonatal heart regeneration. J Clin Invest. 2014;124(3):1382–92. doi:10.1172/JCI72181.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Han C, Nie Y, Lian H, Liu R, He F, Huang H, Hu S. Acute inflammation stimulates a regenerative response in the neonatal mouse heart. Cell Res. 2015;25(10):1137–51. doi:10.1038/cr.2015.110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Huang WC, Yang CC, Chen IH, Liu YM, Chang SJ, Chuang YJ. Treatment of glucocorticoids inhibited early immune responses and impaired cardiac repair in adult zebrafish. PLoS One. 2013;8(6):e66613. doi:10.1371/journal.pone.0066613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo Campos Ramos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nunes-Silva, V., Frantz, S., Ramos, G.C. (2017). Lymphocytes at the Heart of Wound Healing. In: Sattler, S., Kennedy-Lydon, T. (eds) The Immunology of Cardiovascular Homeostasis and Pathology. Advances in Experimental Medicine and Biology, vol 1003. Springer, Cham. https://doi.org/10.1007/978-3-319-57613-8_11

Download citation

Publish with us

Policies and ethics