Advertisement

The Role of the Immune System Beyond the Fight Against Infection

Chapter
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 1003)

Abstract

The immune system was identified as a protective factor during infectious diseases over a century ago. Current definitions and textbook information are still largely influenced by these early observations, and the immune system is commonly presented as a defence machinery. However, host defence is only one manifestation of the immune system’s overall function in the maintenance of tissue homeostasis and system integrity. In fact, the immune system is integral part of fundamental physiological processes such as development, reproduction and wound healing, and a close crosstalk between the immune system and other body systems such as metabolism, the central nervous system and the cardiovascular system is evident. Research and medical professionals in an expanding range of areas start to recognise the implications of the immune system in their respective fields.

This chapter provides a brief historical perspective on how our understanding of the immune system has evolved from a defence system to an overarching surveillance machinery to maintain tissue integrity. Current perspectives on the non-defence functions of classical immune cells and factors will also be discussed.

Keywords

Immune system Defence ‘Non-self-recognition’ ‘Danger hypothesis’ ‘Tissue integrity’ Homeostasis 

References

  1. 1.
    Retief FP, Cilliers L. The epidemic of Athens, 430-426 BC. S Afr Med J. 1998;88(1):50–3.PubMedGoogle Scholar
  2. 2.
    Plotkin SA. Vaccines: past, present and future. Nat Med. 2005;11(4 Suppl):S5–11.CrossRefPubMedGoogle Scholar
  3. 3.
    King LS. Dr. Koch’s postulates. J Hist Med Allied Sci. 1952;7(4):350–61.CrossRefPubMedGoogle Scholar
  4. 4.
    The Nobel Prize in Physiology or Medicine 1905: Nobel Media; 2013 Available from: http://www.nobelprize.org/nobel_prizes/medicine/laureates/1905/.
  5. 5.
    Woolhouse ME, Webster JP, Domingo E, Charlesworth B, Levin BR. Biological and biomedical implications of the co-evolution of pathogens and their hosts. Nat Genet. 2002;32(4):569–77.CrossRefPubMedGoogle Scholar
  6. 6.
    Decaestecker E, Gaba S, Raeymaekers JA, Stoks R, Van Kerckhoven L, Ebert D, et al. Host-parasite ‘Red Queen’ dynamics archived in pond sediment. Nature. 2007;450(7171):870–3.CrossRefPubMedGoogle Scholar
  7. 7.
    Janeway CA Jr. Approaching the asymptote? Evolution and revolution in immunology. Cold Spring Harb Symp Quant Biol. 1989;54(Pt 1):1–13.CrossRefPubMedGoogle Scholar
  8. 8.
    Janeway CA Jr. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today. 1992;13(1):11–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol. 2003;21:335–76.CrossRefPubMedGoogle Scholar
  10. 10.
    Bailey M. Evolution of the immune system at geological and local scales. Curr Opin HIV AIDS. 2012;7(3):214–20.CrossRefPubMedGoogle Scholar
  11. 11.
    Leulier F, Lemaitre B. Toll-like receptors--taking an evolutionary approach. Nat Rev Genet. 2008;9(3):165–78.CrossRefPubMedGoogle Scholar
  12. 12.
    Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol. 1994;12:991–1045.CrossRefPubMedGoogle Scholar
  13. 13.
    Land W, Schneeberger H, Schleibner S, Illner WD, Abendroth D, Rutili G, et al. The beneficial effect of human recombinant superoxide dismutase on acute and chronic rejection events in recipients of cadaveric renal transplants. Transplantation. 1994;57(2):211–7.CrossRefPubMedGoogle Scholar
  14. 14.
    Manson J, Thiemermann C, Brohi K. Trauma alarmins as activators of damage-induced inflammation. Br J Surg. 2012;99(Suppl 1):12–20.CrossRefPubMedGoogle Scholar
  15. 15.
    Chan JK, Roth J, Oppenheim JJ, Tracey KJ, Vogl T, Feldmann M, et al. Alarmins: awaiting a clinical response. J Clin Invest. 2012;122(8):2711–9.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Barrat FJ, Meeker T, Gregorio J, Chan JH, Uematsu S, Akira S, et al. Nucleic acids of mammalian origin can act as endogenous ligands for Toll-like receptors and may promote systemic lupus erythematosus. J Exp Med. 2005;202(8):1131–9.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Basu S, Binder RJ, Ramalingam T, Srivastava PK. CD91 is a common receptor for heat shock proteins gp96, hsp90, hsp70, and calreticulin. Immunity. 2001;14(3):303–13.CrossRefPubMedGoogle Scholar
  18. 18.
    Ahrens S, Zelenay S, Sancho D, Hanc P, Kjaer S, Feest C, et al. F-actin is an evolutionarily conserved damage-associated molecular pattern recognized by DNGR-1, a receptor for dead cells. Immunity. 2012;36(4):635–45.CrossRefPubMedGoogle Scholar
  19. 19.
    Scaffidi P, Misteli T, Bianchi ME. Release of chromatin protein HMGB1 by necrotic cells triggers inflammation. Nature. 2002;418(6894):191–5.CrossRefPubMedGoogle Scholar
  20. 20.
    Yamasaki S, Ishikawa E, Sakuma M, Hara H, Ogata K, Saito T. Mincle is an ITAM-coupled activating receptor that senses damaged cells. Nat Immunol. 2008;9(10):1179–88.CrossRefPubMedGoogle Scholar
  21. 21.
    Moussion C, Ortega N, Girard JP. The IL-1-like cytokine IL-33 is constitutively expressed in the nucleus of endothelial cells and epithelial cells in vivo: a novel ‘alarmin’? PLoS One. 2008;3(10):e3331.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Eigenbrod T, Park JH, Harder J, Iwakura Y, Nunez G. Cutting edge: critical role for mesothelial cells in necrosis-induced inflammation through the recognition of IL-1 alpha released from dying cells. J Immunol. 2008;181(12):8194–8.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Zhou R, Tardivel A, Thorens B, Choi I, Tschopp J. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 2010;11(2):136–40.CrossRefPubMedGoogle Scholar
  24. 24.
    Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, et al. NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 2010;464(7293):1357–61.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Mariathasan S, Weiss DS, Newton K, McBride J, O’Rourke K, Roose-Girma M, et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature. 2006;440(7081):228–32.CrossRefPubMedGoogle Scholar
  26. 26.
    Tauber AI. The birth of immunology. III. The fate of the phagocytosis theory. Cell Immunol. 1992;139(2):505–30.CrossRefPubMedGoogle Scholar
  27. 27.
    Desjardins M, Houde M, Gagnon E. Phagocytosis: the convoluted way from nutrition to adaptive immunity. Immunol Rev. 2005;207:158–65.CrossRefPubMedGoogle Scholar
  28. 28.
    Solomon JM, Rupper A, Cardelli JA, Isberg RR. Intracellular growth of Legionella pneumophila in Dictyostelium discoideum, a system for genetic analysis of host-pathogen interactions. Infect Immun. 2000;68(5):2939–47.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Lichanska AM, Hume DA. Origins and functions of phagocytes in the embryo. Exp Hematol. 2000;28(6):601–11.CrossRefPubMedGoogle Scholar
  30. 30.
    Aderem A, Underhill DM. Mechanisms of phagocytosis in macrophages. Annu Rev Immunol. 1999;17:593–623.CrossRefPubMedGoogle Scholar
  31. 31.
    Pfeifer JD, Wick MJ, Roberts RL, Findlay K, Normark SJ, Harding CV. Phagocytic processing of bacterial antigens for class I MHC presentation to T cells. Nature. 1993;361(6410):359–62.CrossRefPubMedGoogle Scholar
  32. 32.
    Oakley OR, Frazer ML, Ko C. Pituitary-ovary-spleen axis in ovulation. Trends Endocrinol Metab. 2011;22(9):345–52.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Care AS, Diener KR, Jasper MJ, Brown HM, Ingman WV, Robertson SA. Macrophages regulate corpus luteum development during embryo implantation in mice. J Clin Invest. 2013;123(8):3472–87.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Carlock CI, Wu J, Zhou C, Tatum K, Adams HP, Tan F, et al. Unique temporal and spatial expression patterns of IL-33 in ovaries during ovulation and estrous cycle are associated with ovarian tissue homeostasis. J Immunol. 2014;193(1):161–9.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Brannstrom M, Mayrhofer G, Robertson SA. Localization of leukocyte subsets in the rat ovary during the periovulatory period. Biol Reprod. 1993;48(2):277–86.CrossRefPubMedGoogle Scholar
  36. 36.
    Cohen PE, Nishimura K, Zhu L, Pollard JW. Macrophages: important accessory cells for reproductive function. J Leukoc Biol. 1999;66(5):765–72.PubMedGoogle Scholar
  37. 37.
    Pollard JW, Hennighausen L. Colony stimulating factor 1 is required for mammary gland development during pregnancy. Proc Natl Acad Sci U S A. 1994;91(20):9312–6.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Van Nguyen A, Pollard JW. Colony stimulating factor-1 is required to recruit macrophages into the mammary gland to facilitate mammary ductal outgrowth. Dev Biol. 2002;247(1):11–25.CrossRefPubMedGoogle Scholar
  39. 39.
    Ingman WV, Wyckoff J, Gouon-Evans V, Condeelis J, Pollard JW. Macrophages promote collagen fibrillogenesis around terminal end buds of the developing mammary gland. Dev Dyn. 2006;235(12):3222–9.CrossRefPubMedGoogle Scholar
  40. 40.
    Gouon-Evans V, Rothenberg ME, Pollard JW. Postnatal mammary gland development requires macrophages and eosinophils. Development. 2000;127(11):2269–82.PubMedGoogle Scholar
  41. 41.
    Gouon-Evans V, Lin EY, Pollard JW. Requirement of macrophages and eosinophils and their cytokines/chemokines for mammary gland development. Breast Cancer Res. 2002;4(4):155–64.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Erlebacher A. Mechanisms of T cell tolerance towards the allogeneic fetus. Nat Rev Immunol. 2013;13(1):23–33.CrossRefPubMedGoogle Scholar
  43. 43.
    Tayade C, Black GP, Fang Y, Croy BA. Differential gene expression in endometrium, endometrial lymphocytes, and trophoblasts during successful and abortive embryo implantation. J Immunol. 2006;176(1):148–56.CrossRefPubMedGoogle Scholar
  44. 44.
    Habbeddine M, Verbeke P, Karaz S, Bobe P, Kanellopoulos-Langevin C. Leukocyte population dynamics and detection of IL-9 as a major cytokine at the mouse fetal-maternal interface. PLoS One. 2014;9(9):e107267.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    von Rango U. Fetal tolerance in human pregnancy--a crucial balance between acceptance and limitation of trophoblast invasion. Immunol Lett. 2008;115(1):21–32.CrossRefGoogle Scholar
  46. 46.
    Koopman LA, Kopcow HD, Rybalov B, Boyson JE, Orange JS, Schatz F, et al. Human decidual natural killer cells are a unique NK cell subset with immunomodulatory potential. J Exp Med. 2003;198(8):1201–12.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Zhang J, Chen Z, Smith GN, Croy BA. Natural killer cell-triggered vascular transformation: maternal care before birth? Cell Mol Immunol. 2011;8(1):1–11.CrossRefPubMedGoogle Scholar
  48. 48.
    Trundley A, Gardner L, Northfield J, Chang C, Moffett A. Methods for isolation of cells from the human fetal-maternal interface. Methods Mol Med. 2006;122:109–22.Google Scholar
  49. 49.
    Houser BL. Decidual macrophages and their roles at the maternal-fetal interface. Yale J Biol Med. 2012;85(1):105–18.PubMedPubMedCentralGoogle Scholar
  50. 50.
    Abrahams VM, Kim YM, Straszewski SL, Romero R, Mor G. Macrophages and apoptotic cell clearance during pregnancy. Am J Reprod Immunol. 2004;51(4):275–82.CrossRefPubMedGoogle Scholar
  51. 51.
    Moffett A, Loke C. Immunology of placentation in eutherian mammals. Nat Rev Immunol. 2006;6(8):584–94.CrossRefPubMedGoogle Scholar
  52. 52.
    Lobov IB, Rao S, Carroll TJ, Vallance JE, Ito M, Ondr JK, et al. WNT7b mediates macrophage-induced programmed cell death in patterning of the vasculature. Nature. 2005;437(7057):417–21.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Rao S, Lobov IB, Vallance JE, Tsujikawa K, Shiojima I, Akunuru S, et al. Obligatory participation of macrophages in an angiopoietin 2-mediated cell death switch. Development. 2007;134(24):4449–58.CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Wood W, Turmaine M, Weber R, Camp V, Maki RA, McKercher SR, et al. Mesenchymal cells engulf and clear apoptotic footplate cells in macrophageless PU.1 null mouse embryos. Development. 2000;127(24):5245–52.PubMedGoogle Scholar
  55. 55.
    Nishikawa A, Murata E, Akita M, Kaneko K, Moriya O, Tomita M, et al. Roles of macrophages in programmed cell death and remodeling of tail and body muscle of Xenopus laevis during metamorphosis. Histochem Cell Biol. 1998;109(1):11–7.CrossRefPubMedGoogle Scholar
  56. 56.
    Baer MM, Bilstein A, Caussinus E, Csiszar A, Affolter M, Leptin M. The role of apoptosis in shaping the tracheal system in the Drosophila embryo. Mech Dev. 2010;127(1–2):28–35.CrossRefPubMedGoogle Scholar
  57. 57.
    Stanley ER, Chen DM, Lin HS. Induction of macrophage production and proliferation by a purified colony stimulating factor. Nature. 1978;274(5667):168–70.CrossRefPubMedGoogle Scholar
  58. 58.
    Van Wesenbeeck L, Odgren PR, MacKay CA, D’Angelo M, Safadi FF, Popoff SN, et al. The osteopetrotic mutation toothless (tl) is a loss-of-function frameshift mutation in the rat Csf1 gene: Evidence of a crucial role for CSF-1 in osteoclastogenesis and endochondral ossification. Proc Natl Acad Sci U S A. 2002;99(22):14303–8.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Wiktor-Jedrzejczak W, Bartocci A, Ferrante AW Jr, Ahmed-Ansari A, Sell KW, Pollard JW, et al. Total absence of colony-stimulating factor 1 in the macrophage-deficient osteopetrotic (op/op) mouse. Proc Natl Acad Sci U S A. 1990;87(12):4828–32.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Reemst K, Noctor SC, Lucassen PJ, Hol EM. The indispensable roles of microglia and astrocytes during brain development. Front Hum Neurosci. 2016;10:566.CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Marin-Teva JL, Dusart I, Colin C, Gervais A, van Rooijen N, Mallat M. Microglia promote the death of developing Purkinje cells. Neuron. 2004;41(4):535–47.CrossRefPubMedGoogle Scholar
  62. 62.
    Michaelson MD, Bieri PL, Mehler MF, Xu H, Arezzo JC, Pollard JW, et al. CSF-1 deficiency in mice results in abnormal brain development. Development. 1996;122(9):2661–72.PubMedGoogle Scholar
  63. 63.
    Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M, Panzanelli P, et al. Synaptic pruning by microglia is necessary for normal brain development. Science. 2011;333(6048):1456–8.CrossRefPubMedGoogle Scholar
  64. 64.
    Trapp BD, Wujek JR, Criste GA, Jalabi W, Yin X, Kidd GJ, et al. Evidence for synaptic stripping by cortical microglia. Glia. 2007;55(4):360–8.CrossRefPubMedGoogle Scholar
  65. 65.
    Rappert A, Bechmann I, Pivneva T, Mahlo J, Biber K, Nolte C, et al. CXCR3-dependent microglial recruitment is essential for dendrite loss after brain lesion. J Neurosci. 2004;24(39):8500–9.CrossRefPubMedGoogle Scholar
  66. 66.
    Yokoyama A, Sakamoto A, Kameda K, Imai Y, Tanaka J. NG2 proteoglycan-expressing microglia as multipotent neural progenitors in normal and pathologic brains. Glia. 2006;53(7):754–68.CrossRefPubMedGoogle Scholar
  67. 67.
    Butovsky O, Bukshpan S, Kunis G, Jung S, Schwartz M. Microglia can be induced by IFN-gamma or IL-4 to express neural or dendritic-like markers. Mol Cell Neurosci. 2007;35(3):490–500.CrossRefPubMedGoogle Scholar
  68. 68.
    Ekdahl CT, Claasen JH, Bonde S, Kokaia Z, Lindvall O. Inflammation is detrimental for neurogenesis in adult brain. Proc Natl Acad Sci U S A. 2003;100(23):13632–7.CrossRefPubMedPubMedCentralGoogle Scholar
  69. 69.
    Monje ML, Toda H, Palmer TD. Inflammatory blockade restores adult hippocampal neurogenesis. Science. 2003;302(5651):1760–5.CrossRefPubMedGoogle Scholar
  70. 70.
    Mallat M, Houlgatte R, Brachet P, Prochiantz A. Lipopolysaccharide-stimulated rat brain macrophages release NGF in vitro. Dev Biol. 1989;133(1):309–11.CrossRefPubMedGoogle Scholar
  71. 71.
    Elkabes S, DiCicco-Bloom EM, Black IB. Brain microglia/macrophages express neurotrophins that selectively regulate microglial proliferation and function. J Neurosci. 1996;16(8):2508–21.PubMedGoogle Scholar
  72. 72.
    Sunderkotter C, Steinbrink K, Goebeler M, Bhardwaj R, Sorg C. Macrophages and angiogenesis. J Leukoc Biol. 1994;55(3):410–22.PubMedGoogle Scholar
  73. 73.
    Gerhardt H, Golding M, Fruttiger M, Ruhrberg C, Lundkvist A, Abramsson A, et al. VEGF guides angiogenic sprouting utilizing endothelial tip cell filopodia. J Cell Biol. 2003;161(6):1163–77.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Fantin A, Vieira JM, Gestri G, Denti L, Schwarz Q, Prykhozhij S, et al. Tissue macrophages act as cellular chaperones for vascular anastomosis downstream of VEGF-mediated endothelial tip cell induction. Blood. 2010;116(5):829–40.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Mirza R, DiPietro LA, Koh TJ. Selective and specific macrophage ablation is detrimental to wound healing in mice. Am J Pathol. 2009;175(6):2454–62.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Goren I, Allmann N, Yogev N, Schurmann C, Linke A, Holdener M, et al. A transgenic mouse model of inducible macrophage depletion: effects of diphtheria toxin-driven lysozyme M-specific cell lineage ablation on wound inflammatory, angiogenic, and contractive processes. Am J Pathol. 2009;175(1):132–47.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Nahrendorf M, Swirski FK, Aikawa E, Stangenberg L, Wurdinger T, Figueiredo JL, et al. The healing myocardium sequentially mobilizes two monocyte subsets with divergent and complementary functions. J Exp Med. 2007;204(12):3037–47.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Arnold L, Henry A, Poron F, Baba-Amer Y, van Rooijen N, Plonquet A, et al. Inflammatory monocytes recruited after skeletal muscle injury switch into antiinflammatory macrophages to support myogenesis. J Exp Med. 2007;204(5):1057–69.CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Frantz S, Hofmann U, Fraccarollo D, Schafer A, Kranepuhl S, Hagedorn I, et al. Monocytes/macrophages prevent healing defects and left ventricular thrombus formation after myocardial infarction. FASEB J. 2013;27(3):871–81.CrossRefPubMedGoogle Scholar
  80. 80.
    Sattler S, Rosenthal N. The neonate versus adult mammalian immune system in cardiac repair and regeneration. Biochim Biophys Acta. 2016;1863(7 Pt B):1813–21.CrossRefPubMedGoogle Scholar
  81. 81.
    Gallego-Colon E, Sampson RD, Sattler S, Schneider MD, Rosenthal N, Tonkin J. Cardiac-restricted IGF-1Ea overexpression reduces the early accumulation of inflammatory myeloid cells and mediates expression of extracellular matrix remodelling genes after myocardial infarction. Mediat Inflamm. 2015;2015:484357.CrossRefGoogle Scholar
  82. 82.
    Tonkin J, Temmerman L, Sampson RD, Gallego-Colon E, Barberi L, Bilbao D, et al. Monocyte/macrophage-derived IGF-1 orchestrates murine skeletal muscle regeneration and modulates autocrine polarization. Mol Ther. 2015;23(7):1189–200.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Lin SL, Li B, Rao S, Yeo EJ, Hudson TE, Nowlin BT, et al. Macrophage Wnt7b is critical for kidney repair and regeneration. Proc Natl Acad Sci U S A. 2010;107(9):4194–9.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Zhang MZ, Yao B, Yang S, Jiang L, Wang S, Fan X, et al. CSF-1 signaling mediates recovery from acute kidney injury. J Clin Invest. 2012;122(12):4519–32.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Meijer C, Wiezer MJ, Diehl AM, Schouten HJ, Schouten HJ, Meijer S, et al. Kupffer cell depletion by CI2MDP-liposomes alters hepatic cytokine expression and delays liver regeneration after partial hepatectomy. Liver. 2000;20(1):66–77.CrossRefPubMedGoogle Scholar
  86. 86.
    Glod J, Kobiler D, Noel M, Koneru R, Lehrer S, Medina D, et al. Monocytes form a vascular barrier and participate in vessel repair after brain injury. Blood. 2006;107(3):940–6.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    London A, Cohen M, Schwartz M. Microglia and monocyte-derived macrophages: functionally distinct populations that act in concert in CNS plasticity and repair. Front Cell Neurosci. 2013;7:34.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Seno H, Miyoshi H, Brown SL, Geske MJ, Colonna M, Stappenbeck TS. Efficient colonic mucosal wound repair requires Trem2 signaling. Proc Natl Acad Sci U S A. 2009;106(1):256–61.CrossRefPubMedGoogle Scholar
  89. 89.
    Martin P, Leibovich SJ. Inflammatory cells during wound repair: the good, the bad and the ugly. Trends Cell Biol. 2005;15(11):599–607.CrossRefPubMedGoogle Scholar
  90. 90.
    DiPietro LA. Wound healing: the role of the macrophage and other immune cells. Shock. 1995;4(4):233–40.CrossRefPubMedGoogle Scholar
  91. 91.
    Russell SE, Walsh PT. Sterile inflammation - do innate lymphoid cell subsets play a role? Front Immunol. 2012;3:246.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Cai Y, Shen X, Ding C, Qi C, Li K, Li X, et al. Pivotal role of dermal IL-17-producing gammadelta T cells in skin inflammation. Immunity. 2011;35(4):596–610.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Barlow JL, Bellosi A, Hardman CS, Drynan LF, Wong SH, Cruickshank JP, et al. Innate IL-13-producing nuocytes arise during allergic lung inflammation and contribute to airways hyperreactivity. J Allergy Clin Immunol. 2012;129(1):191–8 e1-4.CrossRefPubMedGoogle Scholar
  94. 94.
    Dudakov JA, Hanash AM, Jenq RR, Young LF, Ghosh A, Singer NV, et al. Interleukin-22 drives endogenous thymic regeneration in mice. Science. 2012;336(6077):91–5.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Kim HY, Chang YJ, Subramanian S, Lee HH, Albacker LA, Matangkasombut P, et al. Innate lymphoid cells responding to IL-33 mediate airway hyperreactivity independently of adaptive immunity. J Allergy Clin Immunol. 2012;129(1):216–27 e1-6.CrossRefPubMedGoogle Scholar
  96. 96.
    Sattler S, Smits HH, Xu D, Huang FP. The evolutionary role of the IL-33/ST2 system in host immune defence. Arch Immunol Ther Exp. 2013;61(2):107–17.CrossRefGoogle Scholar
  97. 97.
    Allen JE, Wynn TA. Evolution of Th2 immunity: a rapid repair response to tissue destructive pathogens. PLoS Pathog. 2011;7(5):e1002003.CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Schneider DS, Ayres JS. Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nat Rev Immunol. 2008;8(11):889–95.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.National Heart and Lung InstituteImperial College LondonLondonUK

Personalised recommendations