A–Z of Scientific and Informal Measures

  • Jan Gyllenbok
Chapter
Part of the Science Networks. Historical Studies book series (SNHS, volume 56)

Abstract

This chapter covers abbreviations, measurement instruments, some often seen informal units and various new, suggested, and obsolete scientific units of measurement, as well as definitions of many dimensionless numbers, names for prefixes and names for large numbers. Only some types of measurement scale, used to categorize and/or quantify variables, are included.

References

  1. [NIST]
    National Institute of Standards and Technology (NIST) Special Publication 811, Guide for the Use of the International System of Units (SI), 1995.Google Scholar
  2. [ISO311]
    International Organization for Standardization (ISO) 31-1, Quantities and units – Part 1: Space and time, Geneva, Switzerland, 1992.Google Scholar
  3. [CATH]
    Cathey, Wade T. June. 1973: On the Steradian. Applied Optics 12, 1097.CrossRefGoogle Scholar
  4. [HAWK2]
    Hawkes, Peter W. The duffieux? 1973: Applied Optics 12, 2537.CrossRefGoogle Scholar
  5. [ROHR]
    Rohr, Moritz von. Ernst Abbe. Jena. Verein für thüringische Geschichte u. Altertumskunde. Zeitschrift. N.F. Beiheft 21. 1940.Google Scholar
  6. [GERT]
    Gerth, Kerstin. Erst Abbe 1840–1905: scientist, entrepreneur, social reformer. Jena: Bussert & Stadeler, 2005.Google Scholar
  7. [BROW4]
    Brown, Earle B. Optical instruments. Brooklyn: Chemical Publ., 1945.Google Scholar
  8. [PAVI]
    Pavia, Donald L., Gary M. Lampman, George S. Kriz and Randall G. Engel. A Small Scale Approach to Organic Laboratory Techniques. 3rd ed. Belmont, CA: Brooks/Cole, Cengage Learning, 2011. Series: Brooks/Cole laboratory series for organic chemistry.Google Scholar
  9. [DEVI]
    De Vinne, Theodore Low. The practice of typography plain printing types a treatise on the processes of type-making, the point system, the names, sizes and styles of types by Theodore Low De Vinne. New York: Oswald, 1925.Google Scholar
  10. [STEW]
    Stewart, G. W. 1926: Direct Absolute Measurement of Acoustic Impedance. Physical Review 28, 1038–1047.CrossRefGoogle Scholar
  11. [CHIU]
    Chiu, Yishu. A Dictionary for Unit Conversion. School of Engineering and Applied Science, George Washington University, 1975.Google Scholar
  12. [DRAZ]
    Drazil, Jaromir Vaclav. Quantities and Units of Measurement: A Dictionary and Handbook. London: Mansell, 1983.Google Scholar
  13. [HAMB]
    Hamburger, Hartog Jakob. De quantitative bepaling van ureum in urine. Utrecht, 1883.Google Scholar
  14. [LEDE]
    Lederer, Jr., Richard M. Colonial American English. A Glossary: Words and Phrases Found in Colonial Writing, Now Archaic, Obscure, Obsolete, Or Whose Meanings Have Changed. Essex, Connecticut: A Verbatim Book, 1985.Google Scholar
  15. [NATUR5]
    Lewis, Ralph A. 1985: Photosynthetically active radiation – a new unit. Nature 316, 582.Google Scholar
  16. [EINS]
    Einstein, Albert. Ideas and options. with an introduction by Alan Lightman. New translations and revisions by Sonja Bargmann. New York: Modern Library, 1994.Google Scholar
  17. [ALLE]
    Allen, Edgar. Sex and internal secretions; a survey of recent research. Baltimore: Williams & Wilkins, 1932.Google Scholar
  18. [ALMQ]
    Almquist, Hermann James. 1936: Purification of the antihemorrhagic vitamin. The Journal Biological Chemistry 114, 241.Google Scholar
  19. [MOHR2]
    Mohr, Peter J. and Barry N. Taylor. 2000: Reviews of Modern Physics 72, 352–495.CrossRefGoogle Scholar
  20. [ESCA]
    Encyclopedie de Science Chimique Appliquee. C. Chabrie, Vol 7. La statique des Fluides. la liquefaction des gaz l’industrie du Froid. par E. H. Amagat. Chabrie. C., 1917.Google Scholar
  21. [FOWL]
    Fowler, Sir Ralph Howard, and Edward Armand Guggenheim. Statistical Thermodynamics: A version of Statistical Mechanics [by R. H. Fowler] for students of physics and chemistry. Cambridge: University Press. 1939.Google Scholar
  22. [BARK]
    Barker, George Frederick. Physics: advanced course, by George F. Barker. New York: H. Holt & company, 1892.Google Scholar
  23. [IUSR]
    International Union for Co-operation in Solar Research. Transaction of the International Union for Co-operation in Solar Research. Manchester: University Press. Conference held in 1907, 20.Google Scholar
  24. [BEAR]
    Bearden, J. A., 1965: X-Ray Wavelength Conversion Factor Λ(λgs). Physical Review 137B, 455.CrossRefGoogle Scholar
  25. [SEEL]
    Seely, Fred B. and Newton Edward Ensign. Analytical Mechanics for Engineers. New York: John Wiley & sons, 1921.Google Scholar
  26. [JEWE]
    Jewett, John W. and Raymond A. Serway. Physics for scientists and engineers with modern physics. 7th ed. Boston, MA: Brooks/Cole, Cengage Learning EMEA, 2007.Google Scholar
  27. [GLAZ]
    Glazebrook, Richard T. 1931: Standards of Measurement: Their History and Development. Nature 128, 17–28.CrossRefGoogle Scholar
  28. [DAVI7]
    Davies, Charles. The metric system, considered with reference to its introduction into the United States: embracing the reports of the Hon. John Quincy Adams, and the lecture of Sir John Herschel. London: A.S. Barnes and company, 1871.Google Scholar
  29. [ASHM]
    Ashman, Edgar Hull R. Essentials of electrocardiography. New York: Macmillan, 1937.Google Scholar
  30. [JERR]
    Jerrard, H. G. and D. B. McNeill. Dictionary of Scientific Units: Including Dimensionless Numbers and Scales. 6th ed. London: Chapman & Hall, 1992.CrossRefGoogle Scholar
  31. [CURT]
    Curtis, Heber. 1913: The unit of stellar distance. Publications of the Astronomical Society of the Pacific 25, 213.CrossRefGoogle Scholar
  32. [NATUR12]
    1923: The International Astronomical Union. Nature, 111, 101.Google Scholar
  33. [ASTO]
    Aston, Francis William. 1931: Report of the British Association for the Advancement of Science. Google Scholar
  34. [MOSE]
    Moseley, Henry Gwyn J. 1913: The High-Frequency Spectra of the Elements. Philosophical Magazine 26, 1024–34.Google Scholar
  35. [MORS2]
    Morselli, Mario. Amedeo Avogadro, a scientific biography. Dordrecht; Boston: D. Reidel Pub. Co.; Hingham, MA: Sold and distributed in the U.S.A. and Canada by Kluwer Academic Publishers, 1984.Google Scholar
  36. [ZUPK5]
    Zupko, Ronald E. A Dictionary of Weights and Measures for the British Isles: The Middle Ages to the Twentieth Century. Philadelphia, PA: the American Philosophical Society, Memoirs #168, 1985.Google Scholar
  37. [GRAY5]
    Gray, Andrew. The theory and practice of absolute measurements in electricity and magnetism. London and New York: Macmillan and Co., 1893.Google Scholar
  38. [SCHW4]
    Schwenter, Daniel. Geometriae Practicae Novae Tractatus/3, Mensula Praetoriana: Beschreibung deß Nutzlichen Geometrischen Tischleins, von dem fürtrefflichen vnd weitberühmten Mathematico M. Johanne Praetorio S. erfunden: durch welches mit sonderbarem vortheil gantz behend vnd leichtlich allerley weite, breite, höhe, tieffe, wie auch allerley flechen Innhalt abgemessen, in grund gelegt vnd andere nutzliche sachen erkundigt werden können. Nürnberg: Halbmayer, 1618.Google Scholar
  39. [HILL4]
    Hill, Harry M. 1966: Bed Forms Due to a Fluid Stream. Journal of the Hydraulics Division, ASCE. Vol. 92, No. HY2, Proc. Paper 4724, pp. 111–126.Google Scholar
  40. [KISH]
    Kishino, Y. Powder and Grains 2001: Proceedings of the Fourth International Conference on Micromechanics of Granular Media, Sendai, Japan, 21–25 May 2001. Lisse, Netherlands; Exton, PA: A. A. Balkema, 2001.Google Scholar
  41. [BLAD]
    Bladergroen, W. 1951: A Unit of Wave-number. Nature 167, 4261, 1075.CrossRefGoogle Scholar
  42. [TUMA]
    Tuma, Jan J. Technology mathematics handbook: definitions, formulas, graphs, systems of units, procedures, conversion tables, numerical tables. New York: McGraw-Hill, 1975.Google Scholar
  43. [RMS]
    Royal Meteorological Society. 1951: Obituary. The Quarterly Journal of the Royal Meteorological Society 77, 333, 529.Google Scholar
  44. [FRIE2]
    Friedman, Robert Marc. Appropriating the Weather: Bjerknes and the construction of a modern meteorology. Ithica: Cornell University Press, 1989.Google Scholar
  45. [GLAZ2]
    Glazebrook, Richard T. A dictionary of applied physics. London: Macmillan & Co., 1922–23. Google Scholar
  46. [CLAR3]
    Clark, Josiah Latimer. A dictionary of metric and other useful measures. London: E. & F. N. Spon, 1891.Google Scholar
  47. [SACE]
    Sacerdote, Gino Giacomo. 1936: L’ applicazione delle unità M.K.S. elettromagnetiche (Giorgi) nel campo dell’elettroacustica. Alta Frequenza 5, 9, 570–5.Google Scholar
  48. [HOLL2]
    Holloway, M.G. and C.P. Baker 1972: How the Barn was Born. Physics Today 25, 7, 9.CrossRefGoogle Scholar
  49. [HOLL3]
    Holloway, M. G. and C. P. Baker. Note on the origin of the term ‘barn’. Los Alamos Research Report, LAMS 523. Report submitted: 13 September 1944. Report issued: 5 March 1947. Google Scholar
  50. [IUPAP]
    International Union of Pure and Applied Physics. Report of the 10th General Assembly. Ottawa, 1960.Google Scholar
  51. [IEEE]
    Institute of Electrical and Electronics Engineers and American National Standards Institute. American National Standard for Use of the International System of Units (SI): The Modern Metric System. ASTM SI 10™-2002. New York: Institute of Electrical and Electronics Engineers, 2002.Google Scholar
  52. [HUSK]
    Huschke, Ralph E. ed. [Principal contrib.: C. E. P. Brooks …], Glossary of Meteorology. Sponsored by U.S. Department of Commerce, Weather Bureau et. al., Boston: American Meteorological Society, 1959.Google Scholar
  53. [BJER]
    Bjerknes, Vilhelm. Dynamic meteorology and hydrography: Tables, Hydrographic tables. Washington: Carnegie Institution, 1911.Google Scholar
  54. [FORD]
    Ford-Robertson, F. C., ed. Terminology of forest science, technology practice and products. Washington, DC: Society of American Foresters, 1971.Google Scholar
  55. [WENG]
    Wenger, Karl F., ed. Forestry handbook, 2nd ed. New York: John Wiley and Sons, 1984.Google Scholar
  56. [BIGI]
    Biging, Greg S. and Lee C. Wensel. 1988: The effect of eccentricity on the estimation of basal area and basal area increment of coniferous trees. Forensic Science International 34, 4, 621.Google Scholar
  57. [CHAC2]
    Chacko, V. J. 1961: A Study of the Shape of Cross Section of Stems and the Accuracy of Calliper Measurement. The Indian Forester 87, 12, 758.Google Scholar
  58. [MATÉ]
    Matérn, Bertil. 1956: On the geometry of the cross-section of a stem: Om stamtvärsnittets geometri. Meddelande från Statens skogsforkninginstitut 46, 11.Google Scholar
  59. [HOAR]
    Hoare, W. E., E. S. Hedges and B. T. K. Barry. The Technology of Tinplate. London: Edward Arnold, 1965.Google Scholar
  60. [WONG]
    Wong, Dominic W. S. The ABCs of gene cloning. 2nd ed. New York, NY: Springer, 2006.Google Scholar
  61. [WORL]
    Worlidge, John. Dictionarium Rusticum & Urbanicum: or, A Dictionary Of all sorts of Country Affairs, Handicraft, Trading, and Merchandizing. [etc.]. London: J. Nicholson, 1704. (Reprinted in facsimile by Sherwin & Freutel, Los Angeles, 1970.)Google Scholar
  62. [WILL9]
    Williams, Brian. Karl Benz. New York: Bookwright, 1991.Google Scholar
  63. [POLV]
    Polvani, Giovanni. 1951: On giving a distinct Name to the fundamental Unit of Mass. Nuovo Cimento Supplemento 8, 2, 180–97.CrossRefGoogle Scholar
  64. [LICH2]
    Lichtman, Marshall A., William Joseph Williams, Ernest Beutler, Kenneth Kaushansky, Thomas J. Kipps, Uri Seligsohn and Josef Prchal. Williams Hematology. 7th ed. New York, NY: McGraw-Hill Professional, 2005.Google Scholar
  65. [MCEW]
    McEwen, Alfred S. and Michael C. Malin. 1989: Dynamics of Mount St. Helens’ 1980 pyroclastic flows, rockslide-avalanche, lahars, and blast. Journal of Volcanology and Geothermal Research 37, 3–4, 205–31.CrossRefGoogle Scholar
  66. [PAGE]
    Page, Chester Hall and Paul Vigoureux, eds. The International Bureau of Weights and Measures 1875–1975. Translation of the BIPM Centennial Volume. U.S. Dept. of Commerce, National Bureau of Standards Special Publication 420. Washington, D.C.: U.S. Government Printing Office, 1975. Series: NBS special publications, 420.Google Scholar
  67. [ADAM]
    Adams, Douglas and John Lloyd. The Meaning of Liff. London: Pan Books and Faber & Faber, 1983.Google Scholar
  68. [RUFF]
    Ruffini, Nino and Veronica Milito. Encyclopedia Frobozzica. Madrid: Infocom, 1993.Google Scholar
  69. [MOON]
    Moon, Parry. 1942: A system of photometric concepts. Journal of the Optical Society of America 32, 348–62.CrossRefGoogle Scholar
  70. [PROJ]
    Project Muse. Studies in Philology. University of North Carolina (1793–1962). Philological Club, University of North Carolina Press, 1953.Google Scholar
  71. [SWAI]
    Swaim, Kathleen M. A Reading of Gulliver’s Travels. The Hauge: Mouton, 1972. Series: De proprietatibus litterarum, Series Didactica, 1.Google Scholar
  72. [TUNB]
    Tunbridge, Paul. Lord Kelvin: his influence on electrical measurements and units. London: P. Peregrinus on behalf of the Institution of Electrical Engineers, 1992. Series: History of technology series, 18.Google Scholar
  73. [FENN]
    Fenna, Donald. Elsevier’s Encyclopedic Dictionary of Measures. Amsterdam: Elsevier Science, 1998.Google Scholar
  74. [HART]
    Hartree, D. R. 1928: Theory and Methods. Mathematical Proceedings of the Cambridge Philosophical Society 24, 1, 89–110.CrossRefGoogle Scholar
  75. [RÖSE]
    Röseberg, Ulrich. Niels Bohr. Leben und Werk eines Atomphysikers, 1885–1962. 3rd ed. Berlin, Heidelberg and New York: Spektrum Verlag. 1992.Google Scholar
  76. [WEIS3]
    Weiss, Pierre. 1911: Sur la rationalié des rapports des moments magnétiques des atomes et un nouveau constituant universel de la matière. Comptes Rendus de l’Académie des Sciences 152, 187.Google Scholar
  77. [ALLE3]
    Allen, H. Stanley. 1914: Numerical Relationships between Electronic and Atomic Constants. Proceedings oft he Physical Society 27, 425.Google Scholar
  78. [MARK2]
    Markowsky, George. 1992: Misconceptions About the Golden Ratio. College Mathematics Journal 23, 2–19.CrossRefGoogle Scholar
  79. [SKIN2]
    Skinner, John Stuart. The Dog and the Sportsman: Embracing the Uses, Breeding, Training, Diseases, Etc., Etc., of Dogs, and an Account of the Different Kinds of Game, with Their Habits. Also Hints to Shooters, with Various Useful Recipes, etc. Lea & Blanchard, 1845.Google Scholar
  80. [JOHN4]
    Johnson, Thomas Burgeland. The shooter’s companion: or, A description of pointers and setters … Of the breeding of pointers … Of training dogs for the gun; Of scent …The fowling piece fully considered … Of percussion powder … Of gunpowder … Shooting illustrated; and the art of shooting flying …The game … 2nd ed. London: Sherwood, Jones, and Co., 1823.Google Scholar
  81. [MOOR]
    Moore, J. B. 1954: Electrical Engineering 73, 959–60.Google Scholar
  82. [HANE]
    Hanes, R. M. 1949: A scale of subjective brightness. Journal of Experimental Physiology 39, 438–52.Google Scholar
  83. [PETE3]
    Peterson, T. F. Nightwork: A History of Hacks and Pranks at MIT. Cambridge, Mass.: MIT Press, 2003.Google Scholar
  84. [FISC2]
    Fischer A. 1969: Geological time – distannce rates: the Bubnoff unit. Bulletin of Geological Society of America 80, 3.CrossRefGoogle Scholar
  85. [TERR3]
    Terrien, J. 1965: Scientific metrology on the international plane and the Bureau International des Poids et Mesures. Metrologia 1, 2, 15.CrossRefGoogle Scholar
  86. [CHES]
    Chester H. Page and Paul Vigoureux, ed. The International Bureau of Weights and Measures 1875–1975. Translation of the BIPM Centennial Volume. U.S. Dept. of Commerce, National Bureau of Standards Special Publication 420. Washington, D.C.: U.S. Government Printing Office, May 1975.Google Scholar
  87. [CUSH]
    Cushman–Roisin, Bernoit. Introduction to Geophysical Fluid Dynamics, Englewoods Cliff: Prentice Hall, 1994.Google Scholar
  88. [RAYM]
    Raymond, Eric S. New Hacker´s Dictionary. 3rd ed. New York: MIT Press, 1996.Google Scholar
  89. [SAND3]
    Sandler, Jeff. 1980: Everything you need to know about little batteries. Popular Mechanics 154, 5, 151–154.Google Scholar
  90. [MICH]
    Michelson, A. A..1878: Experimental Determination of the Velocity of Light. Proceedings of the American Association for the Advancement of Science 27, 71–77.Google Scholar
  91. [NEWC2]
    Newcomb, Simon. 1886: The Velocity of Light. Nature 13, 29–32.Google Scholar
  92. [RUIZ]
    Ruiz-Funes Garcia, Mariano. Derecho consuetudinario y economica popular de la provincia de Murcia. Madrid, 1916. Google Scholar
  93. [SCHM]
    Schmidt, Ernst. ‘International system of units. MKSA system in applied thermodynamics.’ In Systems of Units. National and International Aspects. ed. Carl F. Kayan. Publication No. 57 of the AAAS. Washington, D. C.: American Association for the Advancement of Science, 1959.Google Scholar
  94. [DIEM]
    Diem, K. and C. Lentner, ed. Documenta Geigy. Scientific Tables. 7th ed. Ardsley, NY: Geigy Pharmaceuticals, 1970.Google Scholar
  95. [WEB13]
    Webster’s Revised Unabridged Dictionary. G. & C. Merriam, 1913.Google Scholar
  96. [NEWM]
    Newman, Thelma R., Jay Hartley Newman and Lee Scott Newman. The Lamp and Lighting Book: Designs, Elements, Materials, Shades for Standing Lamps, Ceiling and Wall Fixtures. Crown Publishers, 1976.Google Scholar
  97. [CARM]
    Carmichael, R. D. 1910: Note on a New Number Theory Function. Bulletin of the American Mathematical Society 16, 232–238.CrossRefGoogle Scholar
  98. [ALFO]
    Alford, W. R., A. Granville and C. Pomerance. 1994: There are Infinitely Many Carmichael Numbers. Annals of Mathematics 139, 703–722.CrossRefGoogle Scholar
  99. [NATI2]
    National Association of Secondary School. Breaking Ranks: Changing an American Institution. Reston, VA: National Association of Secondary School Principals, 1996.Google Scholar
  100. [DYBK]
    Dybkær, R. and K. Jørgensen. Quantities and Units in Clinical Chemistry. Munksgaard: Copenhagen, 1969. Google Scholar
  101. [PÓLY]
    Pólya, G. 1956: On Picture-Writing. The American Mathematical Montly 63, 689–697.CrossRefGoogle Scholar
  102. [NATI]
    National Research Council. A Glossary of Terms in Nuclear Science and Technology. New York: American Society of Mechanical Engineers, 1955.Google Scholar
  103. [HALD]
    Haldane, B. S. 1919: The combination of linkage values, and the calculation of distances between linked factors. Journal of Genetics 8, 299–309.CrossRefGoogle Scholar
  104. [KOSA]
    Kosambi, D. D. 1944: The estimation of map distance from recombination values. Annals of Eugenics 12, 172–175.CrossRefGoogle Scholar
  105. [WELL2]
    Weller, Joel Ira. Quantitative Trait Loci Analysis in Animals. 2nd ed. CABI, 2009.Google Scholar
  106. [SWIN6]
    Swindells, J. F., J. R. Coe and T. B. Godfrey. National Bureau of Standards Research paper 2279. Washington: USGPO, 1952.Google Scholar
  107. [BROW8]
    Brown, Andrew. The neutron and the bomb: a biography of Sir James Chadwick. Oxford and New York: Oxford University Press, 1997.CrossRefGoogle Scholar
  108. [NATUR10]
    Harrison, R. D. and N. Thorley. 1960: The Unit of Neutron Flux. Nature 188, 571.CrossRefGoogle Scholar
  109. [NATUR11]
    McGill, I. S., D. C. Menzies and M. R. Price. 1961: The Unit of Neutron Flux. Nature 190, 162.CrossRefGoogle Scholar
  110. [CHAM]
    Champernowne, D. G. 1933: The construction of decimals normal in the scale of ten. Journal of the London Mathematical Society 8, 254–260.CrossRefGoogle Scholar
  111. [MAHL]
    Mahler, K. 1937: Arithmetische Eigenschaften einer Klasse von Dezimalbrüchen, Proc. Konin. Neder. Akad. Wet. Ser. A. 40, 421–428.Google Scholar
  112. [ANGR]
    Angrist, S. W. and L. G. Hepler, Order and chaos: Laws of energy and entropy. New York: Basic Books, 1967.Google Scholar
  113. [MCNO]
    McNown, J. S. 1976: When Time Flowed: The Story of the Clepsydra. La Houille Blanche 5, 347–353.CrossRefGoogle Scholar
  114. [GAGG]
    Gagge, A., A. Pharo, C. Burton and H. C. Bazett. 1941: A practical system of units for the description of the heat exchange of man with his environmen. Science 94, 2445, 429.CrossRefGoogle Scholar
  115. [LEMA3]
    Le Maraic, A. L. and John P. Ciaramella. The complete metric system with the international system of units (SI). Abbey Books, 1973.Google Scholar
  116. [COHE2]
    Cohen, E., Richard, Tomislav Cvitas, Ian Mills, Jeremy G. Frey and Bertil Holmstrom. Quantities, units and symbols in physical chemistry. 3rd ed. Cambridge: Royal Society of Chemistry, 2007.Google Scholar
  117. [DIRA]
    Dirac, P. A. M. 1937: The cosmological constants. Nature 139, 323.CrossRefGoogle Scholar
  118. [POTI]
    Potier, Alfred. ed. Mémoires de Coulomb. Paris: Gauthier-Villars, 1884.Google Scholar
  119. [CLAR]
    Clarke, Frank Wigglesworth. Weights, Measures, and Money of All Nations. New York: D. Appelton & Co, 1875.Google Scholar
  120. [LOVE2]
    Love, Catherine E. Webster’s New World Italian Dictionary. New York: John Wiley and Sons Ltd, 1992.Google Scholar
  121. [STOB]
    Stobart, Tom and Millie Owen. The Cook’s Encyclopedia: Ingredients and Processes. New York: Harper & Row, 1981.Google Scholar
  122. [MALL]
    Mallet, Lucien. 1925: Direct measurement of the γ radiation received by the tissues. British Journal of Radiology 30, 155.Google Scholar
  123. [KENN4]
    Kennelly, A[rthur] E. 1936: Journal of the Institute of Electrical Engineers 78, 241.Google Scholar
  124. [WYCO]
    Wycoff, R. D., H. G. Botset, M. Muskat and D. W. Reed. 1933: Review of Scientific Instruments 4. 395.Google Scholar
  125. [HALD2]
    Haldane, J. B. S. 1948: Human Evolution. The British Medical Journal 2, 788.CrossRefGoogle Scholar
  126. [SARV]
    Sarvis, Shirley. ed. Trader Vic’s bartender’s guide. Garden City, N.Y., Doubleday, 1972.Google Scholar
  127. [LORD]
    Lord, John. Sizes – The Illustrated Encyclopedia. New York: Harper Perennial, 1995.Google Scholar
  128. [MART7]
    Martin, W. H. 1929: Decibel–The name for the Transmission Unit. Bell System Technical Journal 1, January.Google Scholar
  129. [DEAN2]
    Dean, W.R., 1927: Motion of fluid in a curved pipe. Philosophical Magazine Series7 20, 208–23.Google Scholar
  130. [DEAN3]
    Dean, W. R., 1928: The stream-line motion of fluid in a curved pipe. Philosophical Magazine Series 7 5, 673–95.CrossRefGoogle Scholar
  131. [FAIR2]
    Fairbrother, Fred. 1934: The dipole moments of the halogen hydrides in solution Transactions of the Faraday Society, 30.CrossRefGoogle Scholar
  132. [RAOVV]
    Rao, Vepa V. Lakshmana. The Decibel Notation: its application to radio and accoustics. New York: Chemical Publishing Co., 1946.Google Scholar
  133. [MORR2]
    Morris, Alfred. The decibel notation and its application to the technique of power transmission. Epson, 1937.Google Scholar
  134. [RAOVV2]
    Rao, Vepa V. Lakshmana and S. Lakshminaraynan, 1955: The Decilit: A New Name for the Logartíthmic Unit of Relative Magnitudes. Journal of the Acoustic Society of America 27, 376.CrossRefGoogle Scholar
  135. [GREE5]
    Green, E. I., 1954: Electrical Engineering 73, 597.CrossRefGoogle Scholar
  136. [HORT2]
    Hortin, J. W. 1954: The bewildering decibel. Electrical Engineering 73, 550–5.CrossRefGoogle Scholar
  137. [KLEI]
    Klein, H. Arthur. The World of Measurements. New York: Simon and Schuster, 1974.Google Scholar
  138. [SING2]
    Singh, S. Fermat’s Enigma: The Epic Quest to Solve the World’s Greatest Mathematical Problem. New York: Walker, 1997.Google Scholar
  139. [DICK2]
    Dickson, L. E. History of the Theory of Numbers, Vol. 1: Divisibility and Primality. New York: Dover, 2005.Google Scholar
  140. [CROS2]
    Crosland, Maurice P. Gay-Lussac. scientist and bourgeois. Cambridge: Cambridge University Press, 1978.CrossRefGoogle Scholar
  141. [CHAN]
    Chandler, C[harles] F[rederick]. The Baumé Hydrometers. National Academy of Sciences, Vol. 3. Washington, D.C.: U. S. Government Printing Office, 1881.Google Scholar
  142. [HUST]
    Huston, Charles. 1879: The Effect of Continued and Progressively Increasing Strain upon Iron. Journal of the Franklin Institute 107, 1, 41–4.CrossRefGoogle Scholar
  143. [WILS3]
    Wilson, John Arthur. The chemistry of leather manufacture. New York: Chemical Catalog Co, 1923.Google Scholar
  144. [FRIE3]
    Friedrichsen, Per and Chr. Gorm Tortzen. Ole Rømer – Korrespondance og afhandlinger samt et udvalg af dokumenter. Copenhagen: C. A. Reitzels Forlag, 2001.Google Scholar
  145. [SCHW6]
    Schweigger, J. S. C. Journal für Chemie und Physik. Nürnberg: Schrag, 1823, pp. 476–8.Google Scholar
  146. [PARK8]
    Parker, Henry C. and Elizabeth W. Parker, 1924: The calibration of cells for conductance measurements III. Absolute measurements on the specific conductance of certain potassium chloride solutions. Journal of the American Chemical Society 46, 312–35.CrossRefGoogle Scholar
  147. [HALD3]
    Haldane, J. B. S., Nature, 1960: ‘Dex’ or ‘Order of Magnitude’? 187, 879.CrossRefGoogle Scholar
  148. [BOUC]
    Boucher, Donald Frederick. Dimensionless numbers: for fluid mechanics, heat transfer, mass transfer and chemical reaction. American Institute of Chemical Engineers, 1963.Google Scholar
  149. [IPSE]
    Ipsen, David Carl. Units, dimensions, and dimensionless numbers. McGraw-Hill paperbacks in science, mathematics and engineering. New York: McGraw-Hill, 1960.Google Scholar
  150. [THOM6]
    Thompson, Silvanus Phillips. Light vivible and invisible. 2nd ed. London: Macmillan, 1928.Google Scholar
  151. [DOBS]
    Dobson, G. M. B. 1968: Forty year’s research on atmospheric ozone at Oxford. Applied Optics 7, 387–405.CrossRefGoogle Scholar
  152. [SALB]
    Salby, M. “The atmosphere.” In K. E. Trenberth, ed., Climate System Modeling. Cambridge Univ. Press, 1992, pp. 53–115.Google Scholar
  153. [WOLF]
    Wolff, H. G., J. D. Hardy, and H. Goodell. 1940: Studies on pain: Measurement of the effect of morphine, codeine, and other opiates on the pain threshold and an analysis of their relation to the pain experience. Journal of Clinical Investigation 19(4), 659–77.CrossRefGoogle Scholar
  154. [WOLF2]
    Wolff, H. G., J. D. Hardy, and H. Goodell. 1941: Measurement of the effect on the pain threshold of acetylsalicylic acid, acetanilid, acetophenetidin, aminopyrine, ethyl alcohol, trichloroethylene, a barbiturate, quinine, ergotamine tartrate and caffeine: An analysis of their relation to the pain experience. Journal of Clinical Investigation 20, 63–5.CrossRefGoogle Scholar
  155. [NEWE]
    Newell, Homer Edward. High altitude rocket research. New York: Academic Press, 1953.Google Scholar
  156. [ROBE7]
    Robertson, Stuart and Frederic Gomes Cassidy. The development of modern English. 2nd ed. New York: Prentice-Hall, 1954.Google Scholar
  157. [LEWI10]
    Lewis, Robert Alan. CRC Dictionary of Agricultural Sciences. Boca Raton: CRC Press, 2001.Google Scholar
  158. [YOUN]
    Youngmark, Lore. Yarn counts – count conversions and calculations. Handweavers Studio Monograph Series No. 4. London: Handweavers Studio and Gallery Limited, 1980.Google Scholar
  159. [PIKL]
    Pikler, Andrew G. 1966: Logarithmic Frequency Systems. The Journal of the Acoustical Society of America 39, 6, 1102.CrossRefGoogle Scholar
  160. [NEGR]
    Negretti, Enrico Angelo Lodovico. A treatise on meteorological instruments: explanatory of their scientific principles, method of construction, and practical utility. London: Negretti & Zambra’s Establishments, 1864.Google Scholar
  161. [BARR3]
    Barrows, Edward M. Animal behavior desk reference: a dictionary of animal behavior, ecology, and evolution. 2nd ed. Boca Raton, Fla: CRC Press, 2001.Google Scholar
  162. [GLIC]
    Glick, Thomas F. Irrigation and Society in Medieval Valencia. Cambridge, MA: Harvard University Press, 1970.CrossRefGoogle Scholar
  163. [WATE4]
    Water Division, Office of the Attorney General of Texas. Memorandum on the Spanish and Mexican Irrigation System of San Antonio. Austin, 1959.Google Scholar
  164. [GARD2]
    Gardner, Matin. The Sixth Book of Mathematical Games from Scientific American. Chicago, IL: University of Chicago Press, 1984.Google Scholar
  165. [MORR]
    Morris, Christopher G. Academic Press dictionary of science and technology. San Diego: Academic Press, 1992.Google Scholar
  166. [DAUB]
    d’ Aubuisson de Voisins, J[ean] F[rançois]. Translated by Joseph Bennett. A treatise of hydraulics, for the tax of engineers. Van Nostrand, 1858.Google Scholar
  167. [GRAT]
    Grattan-Guinness, Ivor. Convolutions in French mathematics, 1800–1840: from the calculus and mechanics to mathematical analysis and mathematical physics. Basel: Birkhäuser, 1990.CrossRefGoogle Scholar
  168. [KRET2]
    Kretz, François Xavier. Cours de mécanique appliquée aux machines. Paris: Gauthier-Villars, 1874.Google Scholar
  169. [TIPL]
    Tipler, Paul Allen, and Gene Mosca. Physics for scientists and engineers. 5th ed. W.H. Freeman, 2003.Google Scholar
  170. [BRID2]
    Bridgman, Percy Williams. Biographical memoir of William Duane, 1872–1935. City of Washington, 1938.Google Scholar
  171. [GLAS3]
    Glasser, O., Physical Foundations of Radiology. New York: Harper, 1952.Google Scholar
  172. [ALLE2]
    Allen, Clabon Walter and Arthur N. Cox. Allen’s Astrophysical Quantities. New York: AIP Press, 2000.Google Scholar
  173. [ASME]
    American Society of Mechanical Engineers. Paper 1960 WA201–WA290. Google Scholar
  174. [MCMI]
    McMillan, Gregory K. and Douglas M. Considine. Process/industrial Instruments and Controls Handbook. McGraw-Hill Professional, 1999.Google Scholar
  175. [EURO]
    European Brewing Commission Staff. Elsevier’s Dictionary of Brewing. French & European Publications, Inc., 1983.Google Scholar
  176. [ROSS2]
    Rossotti, Francis J. C. and Hazel Rossotti. The determination of stability constants: and other equilibrium constants in solution. McGraw-Hill, 1961.Google Scholar
  177. [PERR]
    Perrin, William F., Bernd Würsig and J. G. M. Thewissen. Encyclopedia of Marine Mammals. 2nd ed. Academic Press, 2008.Google Scholar
  178. [OERT]
    Oertel, Herbert, Ludwig Prandtl, M. Böhle and Katherine Mayes. Prandtl’s Essentials of Fluid Mechanics. Springer, 2004.Google Scholar
  179. [HUGH]
    Hughes, William F., John A. Brighton, and Nicholas Winowich. Schaum’s Outline of Theory and Problems of Fluid Dynamics. McGraw-Hill Professional, 1999.Google Scholar
  180. [EDDI]
    Eddington, Arthur. Mathematical Theory of Relativity. London: Cambridge University Press, 1923.Google Scholar
  181. [BERT]
    Bertotti, B., R. Balbinot and S. Bergia. Modern Cosmology in Retrospect. Cambridge University Press, 1990.Google Scholar
  182. [HARD2]
    Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, 1999.Google Scholar
  183. [DOWE]
    Doweiko, Harold E. Concepts of chemical dependency. 4th ed. Brooks/Cole Pub. Co., 1998.Google Scholar
  184. [MULL4]
    Mullen, Paul W. Modern gas analysis. Interscience Publishers, 1955.Google Scholar
  185. [GILP]
    Gilpin, William and Thomas Dick Lauder. Remarks on Forest Scenery, and Other Woodland Views. Fraser, 1834.Google Scholar
  186. [MCIN]
    McIntosh, Charles. The New and Improved Practical Gardener and Modern Horticulturist: Exhibiting the Latest and Most Approved Management of Kitchen, Fruit and Flower Gardens, the Green-house, Hot-house, Conservatory, & c. & c. for Every Month in the Year: with an Appendix on the New Tank System of Producing Bottom … T. Kelly, 1856Google Scholar
  187. [VANS]
    van Spronsen, J. W. The Periodic System of Chemical Elements. New York: Elsevier, 1969.Google Scholar
  188. [DYKE]
    Dyke, Philip P. G. Coastal and Shelf Sea Modelling. New York: Springer, 2001.CrossRefGoogle Scholar
  189. [PARK2]
    Parker, Sybil P. McGraw-Hill dictionary of mechanical and design engineering. McGraw-Hill Book Co., 1984.Google Scholar
  190. [THOM2]
    Thomson, V. V. 1867: British Association for the Advancement of Science.Google Scholar
  191. [RICH4]
    Richardson, O. W., and K. T. Compton. 1912: Philosophical Magazine 24, 583.Google Scholar
  192. [RMP2]
    1931: Review of Modern Physics 3, 432.Google Scholar
  193. [SCHW]
    Schwenkhagen, Hans Fritz. Fachwörterbuch Elektrotechnik: Deutsch-Englisch, Englisch-Deutsch. W. Girardet, 1959.Google Scholar
  194. [JACO2]
    Jacobson, Bo O. Rheology and elastohydrodynamic lubrication. Elsevier, 1991.Google Scholar
  195. [ARMO]
    Armour, Robert A. Gods and myths of Ancient Egypt. 2nd ed. American Univ in Cairo Press, 2001.Google Scholar
  196. [SHIE]
    Shields, Christopher. The Blackwell Guide to Ancient Philosophy. 3rd ed. Wiley-Blackwell, 2006.Google Scholar
  197. [IUB2]
    International Union of Biochemistry. Report of the Commission on Enzymes. Oxford: Pergamon Press, 1961.Google Scholar
  198. [CAUG]
    Caughey, David A. and M. M. Hafez. Frontiers of computational fluid dynamics 2006. Computational Fluid Dymanics Series. World Scientific, 2005.Google Scholar
  199. [EÖTV]
    Eötvös, Loránd. “Roland Eötvös gesammelte Arbeiten” In Auftrage der Ungarischen Akademie der Wissenschaften hrsg. von P. Selényi. Budapest: Akadémiai Kiadó, 1953.Google Scholar
  200. [MACK]
    Mackenzie, James. The general grievances and oppression of the isles of Orkney and Shetland. Edinburgh: Neill & Co., 1836.Google Scholar
  201. [NEBE]
    Nebergall, William Harrison, Frederic C. Schmidt and Henry F. Holtzclaw. 2nd ed. General chemistry. Heath, 1963.Google Scholar
  202. [BSI]
    British Standard Institution. Tars for road purposes. 76: 1974.Google Scholar
  203. [FUID]
    Fuidge, Guy Hamilton. 1937: The Equi-viscous temperature of Road Tars. Journal of the Society of Chemical Industry 56, 422–7.Google Scholar
  204. [FUID2]
    Fuidge, Guy Hamilton. 1936: The Viscosity of Tar – Its Significance in the Surfacing of Roads. Journal of the Society of Chemical Industry 55, 16, 301–9.CrossRefGoogle Scholar
  205. [LLEW]
    Llewellyn, Evan Clifford. The Influence of Low Dutch on the English Vocabulary. New York: Oxford University Press, 1936.Google Scholar
  206. [HOMA]
    Homans, George Caspar. Sentiments & Activities: Essays in Social Science. Transaction Publishers, 1988.Google Scholar
  207. [PART]
    Partington, James Riddick A Text-book of Thermdynamicswith special reference to chemistry. London: Constable, 1913.CrossRefGoogle Scholar
  208. [BREW]
    Brewster, David. A treatise on optics. London: Longman, Brown, Green & Longman’s, 1852.Google Scholar
  209. [EMMO]
    Emmons, W. F. 1927: The Clinical Eriometer. Quarterly Journal of Medicine XXI, Pl. VI, Fig. 3.Google Scholar
  210. [EMMO2]
    Emmons, W. F. 1931: Measurement of fiber diameters by the diffraction method. Review of Scientific Instruments 2, 263.CrossRefGoogle Scholar
  211. [BROC2]
    Brockmeyer, E. Life and Works of A. K. Erlang. Transactions of the Danish Academy of Technical Sciences, vol. 2. Copenhagen: Akademiet for de Tekniske Videnskaber, 1948.Google Scholar
  212. [DUNN]
    Dunning, F. B. and Randall G. Hulet. Atomic, Molecular, and Optical Physics: Atoms and molecules. San Diego: Academic Press, 1996.Google Scholar
  213. [SINC3]
    Sinclair, Charles Gordon. International Dictionary of Food & Cooking. Chicago: Fitzroy Dearborn, 2001.Google Scholar
  214. [EVAN2]
    Evans, Matthew and Gabriella Cossi. Italy: World Food. Oakland, CA: Lonely Planet, 2000.Google Scholar
  215. [MARC]
    Marcet, William. 1888: A New Form of Eudiometer. Proceedings of the Royal Society of London 44, 383–7.CrossRefGoogle Scholar
  216. [CHUN]
    Chung, Jin S. at the International Society of Offshore and Polar Engineers, Mohamed Sayed at the International Society of Offshore and Polar Engineers, Hiroshi Saeki and Toshiaki Setoguchi. The proceedings of the eleventh (2001) International Offshore and Polar Engineering Conference: Presented At: The Eleventh (2001) International Offshore and Polar Engineering Conference : Held in Stavanger, Norway, June 17–22, 2001. Norway International offshore and polar engineering conference 11 Stavanger, ISOPE, 2001.Google Scholar
  217. [ALUM]
    Alumni Magazines Associated. The Manual of Alumni Work. The Association of Alumni Secretaries, 1924, p. 124.Google Scholar
  218. [JACO3]
    Jacobson, Ralph E. and Alan Horder. The Manual of Photography: Photographic and Digital Imaging. Boston, MA: Focal Press, 1971.Google Scholar
  219. [POLK]
    Polk, C. Sources, propagation, amplitude, and temporal variation of extremely low frequency (0–100 Hz) electromagnetic fields. In: Biologic and clinical effects of low frequency magnetic and electric fields. Llaurado, J.G., Anthony Sances and J. H. Battocletti, ed. Springfield, Illinois: Charles C. Thomas, 1974.Google Scholar
  220. [GEAN]
    Geankoplis, Christie J. Transport processes and unit operations. 3rd ed. Engelwood Cliffs, N.J.: Prentice Hall, 1993.Google Scholar
  221. [HAVE]
    Havens, W. W. “Modern physics has its unit problems” In Systems of Units. National and International Aspects. Carl F. Kayan. ed. Publication No. 57 of the AAAS. Washington, DC: American Association for the Advancement of Science, 1959.Google Scholar
  222. [HOFS3]
    Hofstadter, Robert. 1956: Electron Scattering and Nuclear Structure. Reviews of Modern Physics 28, 3, 214–54.CrossRefGoogle Scholar
  223. [LONG2]
    Long, C. C. and A. Y.Finlay. 1991: The finger-tip unit – a new practical measure. Clinical and Experimental Dermatology 16, 6, 444–7.CrossRefGoogle Scholar
  224. [AIEE2]
    American Institute of Electrical Engineers. American standard definitions of electrical terms. New York: American Institute of Electrical Engineers, 1941. Reference 55.05.075.Google Scholar
  225. [LAKE]
    Lakes, Arthur. Geology of Colorado and Western are Deposits. Denver, Colo.: The Chain & Hardy Company, 1893.Google Scholar
  226. [GOLD3]
    Goldwater, Leonard John. Mercury; a history of quicksilver. Baltimore: York Press, 1972.Google Scholar
  227. [HOFS4]
    Hofstetter, Henry W., Morris S. Berman, John R. Griffin and Ronald W. Everson. 5th ed. Dictionary of visual science and related clinical terms. Boston; Oxford: Butterworth-Heinemann, 2000.Google Scholar
  228. [SUMM]
    Summers, Wilford I. ed. American Electricians’ Handbook. 12th ed. New York: McGraw-Hill, 1992.Google Scholar
  229. [RICH6]
    Richardson, Lawrence. A new topographical dictionary of ancient Rome. 2nd ed. Baltimore: John Hopkins University Press, 1992, p. 297.Google Scholar
  230. [WINC]
    Winch, Ralph P. Electricity and magnetism. New York: Prentice-Hall, 1963. Series: Prentice-Hall physics series.Google Scholar
  231. [BICK4]
    Bickerman, J. J. 1938: The unit of foaminess. Transactions of the Faraday Society 34, 634.CrossRefGoogle Scholar
  232. [KROT]
    Krotov, V. V., A. G. Nekrasov and A. I. Rusanov. 1996: A new method for studying foaminess. Mendeleev Commun. 6, 5, 178.CrossRefGoogle Scholar
  233. [HARP]
    Harper, D. R. 1928: Journal of the Washington Academy of Science 18, 469.Google Scholar
  234. [VERN]
    Vernotte, Pierre. 1931: L’unité rationnelle dans le domaine de la conduction thermique. Journal de Physique et Le Radium 2, 376.CrossRefGoogle Scholar
  235. [GUGG]
    Guggenheim, E. A. 1941: “Names of Electrical Units” (letter to the editor) Nature 148, 3764, 751.CrossRefGoogle Scholar
  236. [SOLO2]
    Solomon, I. Précis de radiothérapie profonde. Paris: Masson, 1926.Google Scholar
  237. [BECL]
    Béclère A. 1900: La mesure indirecte du pouvoir de pénétration des rayons Röntgen à l’aide du spintermètre. Bulletin de l’Association française d’Électrologie 7, 44–7.Google Scholar
  238. [HONE]
    Hone, E. Wade. Land & property research in the United States. Ancestry Publishing, 1997.Google Scholar
  239. [TAYL8]
    Taylor, William B. Landlord and Peasant in Colonial Oaxaca. Stanford: Stanford University Press, 1972.Google Scholar
  240. [MARI]
    Mariano Galván Riviera. Ordenanzas de Tierras y Aguas, ó sea: Formulario Geométrico-Judicial … 2nd ed. Mexico [City]: Leandro J. Valdes, 1844.Google Scholar
  241. [ALBA]
    Albarède, Francis. Geochemistry: An Introduction. Cambridge University Press, 2003.Google Scholar
  242. [LAWR]
    Lawrence, Martha C. Murder in Scorpio. St. Martin’s Press, 1996.Google Scholar
  243. [ZÜLL]
    Zülling, Sergio. Luigi Galvani, 1732–1789. Der Entdecker der Bioelektrizität. Basel, 1969. Thesis.Google Scholar
  244. [IEC64]
    International Electrotechnical Commission. Recommendations in the field of quantities and units used in electricity. IEC Publication 164. Geneva, 1964.Google Scholar
  245. [BIER]
    Biermann, Kurt-Reinhard. Carl Friedrich Gauss. der “Fürst der Mathematiker” in Briefen und Gesprächen.herausgegeben von Kurt-R. Biermann. München: C.H. Beck. 1990.Google Scholar
  246. [MCGL]
    McGlashan, Maxwell Len. Physico-chemical quantities and units: the grammar and spelling of physical chemistry. London: Royal Institute of Chemistry, 1968.Google Scholar
  247. [TAYL7]
    Taylor, Edwin F. Introductory Mechanics. New York: Wiley, 1963.Google Scholar
  248. [DERE]
    Derelanko, Michael J. and Mannfred A. Hollinger. Handbook of toxicology. 2nd ed. CRC Press, 2001.Google Scholar
  249. [NESH]
    Neshan Tiratsoo, Eric. Natural gas: a study. Beaconsfield: Scientific Press Ltd, 1972.Google Scholar
  250. [GIUG]
    Giuga, G. 1950: Su una presumibile proprietà caratteristica dei numeri primi. Istituto Lombardo, Accademia di Scienze e Lettere Rend. A 83, 511–528.Google Scholar
  251. [TAKA]
    Takashi Agoh. 1995: On Giuga’s conjecture. Manuscripta Mathematica 87, 4, 501–10.CrossRefGoogle Scholar
  252. [BORW]
    Borwein, D., J. M. Borwein, P. B. Borwein and R. Girgensohn. 1996: Giuga’s Conjecture on Primality. American Mathematical Monthly 103, 40–50.CrossRefGoogle Scholar
  253. [PRIC]
    Price, Edward W. 1957: New Unit of Mass. American Journal of Phyics 25, 2, 120.CrossRefGoogle Scholar
  254. [MILL6]
    Mills, Blake D. 1959: New Unit of Mass. American Journal of Phyics 27, 1, 62.CrossRefGoogle Scholar
  255. [GULL3]
    Gulliver, Lemuel Jun. (Pseudonym of Jonathan Swift). Modern Gulliver’s Travel. Lilliput: being a new journey to that … island. Containing a faithful account of … those famous little people from the year 1702 … to … 1796. London: T. Chapman. 1796.Google Scholar
  256. [LIVI]
    Livio, Mario. The Golden Ratio: The Story of Phi, the World’s Most Astonishing Number. New York: Broadway Books, 2002.Google Scholar
  257. [HOFS]
    Hofstetter, Kurt. 2006: A 4-Step Construction of the Golden Ratio. Forum Geometricorum 6, 179–80.Google Scholar
  258. [WELL]
    Wells, D. The Penguin Dictionary of Curious and Interesting Numbers. New York: Penguin Books, 1986.Google Scholar
  259. [JAKO2]
    Jakob, Max. Heat Transfer. Vol. 1. New York: John Wiley & Sons, 1949.Google Scholar
  260. [GROE]
    Groeber, H. Die Grundgezetze der Warmeleitung und des Warmeuberganges. Berlin: Juliua Springer, 1921.Google Scholar
  261. [TAYL6]
    Taylor, Lauriston S. Organization for Radiation Protection The Operations of the ICRP and NCRP 1928–1974. DOE/TIC 10124. Springfield: National Technical Information Service, 1979.Google Scholar
  262. [RUSS2]
    Russel, Jeffrey S. Perspectives in Civil Engineering: Commemorating the 150th Anniversary of the American Society of Civil Engineers. ASCE Publications, 2003.Google Scholar
  263. [LIND3]
    Lind, James. A Treatise on the Scurvy, in three parts: containing an inquiry into the nature, causes and cure, of that disease; together with … Edinburgh: Sands, Murray and Cochran, 1753.Google Scholar
  264. [HART4]
    Hartley, R.V.L. 1928: Transmission of Information. Bell System Technical Journal, July.CrossRefGoogle Scholar
  265. [STAN2]
    Stanford Massey, Bernard. Measures in science and engineering: their expression, relation and interpretation. Ellis Horwood Ltd, 1986.Google Scholar
  266. [SHUL]
    Shull, H. and G. G. Hall. 1959: Atomic units. Nature 184, 4698, 1559.CrossRefGoogle Scholar
  267. [HART5]
    Hartree, D. R. 1927: The Wave Mechanics of an Atom with an Non-Coulomb Central Field. Part I. Theory and Methods. Proceedings of the Cambridge Philosophical Society 24, 91.CrossRefGoogle Scholar
  268. [AITC]
    Aitchison, Ian Johnston Rhind and Anthony J. G. Hey Gauge Theories in Particle Physics: A practical introduction. 3rd ed. Bristol: Institute of Physics Publishing, 2003, p. 346.Google Scholar
  269. [HEDS]
    Hedström, B. O. A. 1952: Flow of plastics materials in pipes. Journal of Industrial and Engeneering Chemistry 44, 3, 651–56.CrossRefGoogle Scholar
  270. [HEFN]
    von Hefner-Alteneck, Friedrich Franz. 1884: Vorschlag zur Beschaffung einer konstanten Lichteinheit (“Recommendation for provision of a constant light standard”). Electrotechnische Zeitschrifte 5, 20–24.Google Scholar
  271. [BAKE]
    Baker, R. C. Flow measurement handbook: industrial designs, operating principles, performance, and applications. Cambridge and New York: Cambridge University Press, 2000.CrossRefGoogle Scholar
  272. [HOPP]
    Hoppus, Edward. Hoppus’s measurer for timber, stone, &c. Edinburgh: Gall & Inglis, 1810.Google Scholar
  273. [BABC]
    Babcock & Wilcox Company. Steam, Its Generation and Use. 34th ed. New York: Babcock & Wilcox, 1911.Google Scholar
  274. [COLV]
    Colvin, Fred H. and Frank A Stanley. American Machinists’ Handbook. 2nd ed. New York: McGraw-Hill, 1914.Google Scholar
  275. [DENI2]
    Denis-Papin, Maurice and Jean Castellan. Métrologie Générale. Tome II. 5th ed. Paris: Dunod, 1971.Google Scholar
  276. [HOFS2]
    Hofstadter, Douglas. I Am a Strange Loop. New York: Basic Books, 2007.Google Scholar
  277. [HUNE]
    Huneker, James Gibbons. Chopin: The Man and His Music. Plain Label Books, 1913.Google Scholar
  278. [NAHI]
    Nahin, Paul Joel. An Imaginary Tale: The Story of √-1. Princeton: Princeton University Press, 1998.Google Scholar
  279. [CONW]
    Conway, John Horton and Richard K. Guy. The Book of Numbers. New York: Springer-Verlag, 1996.CrossRefGoogle Scholar
  280. [HAIN]
    Hainworth, Henry. A collector’s dictionary. Taylor & Francis, 1981.Google Scholar
  281. [IHLS]
    Ihlseng, Magnus Colbjørn and Eugene Benjamin Wilson. A manual of mining: Based on the course of lectures on mining delivered at the School of Mines of the state of Colorado. 4th ed. J. Wiley, 1905.Google Scholar
  282. [REDM]
    Redmayne, Richard Augustine Studdert. Modern Practice in Mining, V. 1–4. Longmans, Green, and Co., 1911.Google Scholar
  283. [ITC]
    International Textbook Company. International Library of Technology: A Series of Textbooks for Persons Engaged in the Engineering Professions and Trades, Or for Those who Desire Information Concerning Them. International Textbook Co., 1907.Google Scholar
  284. [GAMO]
    Gamow, George. 1968: Nature 219, 765.CrossRefGoogle Scholar
  285. [FRIE]
    Friedman, Herbert and National Geographic Society (U.S.). The Amazing Universe. The National Geographic Society, Special Publications Division, 1975.Google Scholar
  286. [GLAS]
    Glasstone, Samuel and Alexander Sesonske. Nuclear Reactor Engineering. 3rd ed. New York: Van Nostrand Reinhold, 1981.Google Scholar
  287. [NORD]
    Nordheim, L[other] W[olfgang]. Manhattan District Declassified Document No. 35, June 14, 1946.Google Scholar
  288. [RABI]
    Rabin, Dan and Carl Forget. The Dictionary of Beer and Brewing. 2nd rev. ed. Taylor & Francis, 1998.Google Scholar
  289. [GRAF]
    Graf, Rudolf F. Modern Dictionary of Electronics. Newnes, 1999.CrossRefGoogle Scholar
  290. [HOUS]
    Houston, Edwin James, A Dictionary of Electrical Words, Terms and Phrases. The W. J. Johnston company, 1898.Google Scholar
  291. [JIEE]
    1947: J. Int. Elect. Engrs. 94, 342.Google Scholar
  292. [MELA]
    Melaragno, Michele G. Quantification in Science: The VNR Dictionary of Engineering Units and Measures. CRC Press, 1991.CrossRefGoogle Scholar
  293. [HAWK]
    Hawkins, Nehemiah. Hawkins’ Electrical Dictionary: A Cyclopedia of Words, Terms, Phrases and Data Used in the Electric Arts, Trades and Sciences. Audel, 1910.Google Scholar
  294. [LEWI]
    Lewis, G. N. and M. Randall, 1921: Journal of the American Chemical Society 43, 1140.CrossRefGoogle Scholar
  295. [CLAR2]
    Clark, Christine Lewis. The make-it-yourself shoe book. New York: Knopf, 1977.Google Scholar
  296. [WHO]
    World Health Organization. Guidelines for Drinking-water Quality. 1984.Google Scholar
  297. [SCHO2]
    Schoentjes, H. Les Grandeurs Électriques et leurs Unités. 2nd ed. revised and augmented. Paris: Librairie de Gauthier-Villars Éditeur, 1884. Google Scholar
  298. [GANO]
    Ganot, Adolphe. Problems and Examples in Physics. An appendix to the seventh and other editions of Ganot’s Elementary Treatise on Physics. London: Longmans & Co, 1876.Google Scholar
  299. [BAAS]
    British Association for the Advancement of Science. Reports of the Committee on Electrical Standards appointed by the British Association for the Advancement of Science…With a report to the Royal Society on units of electrical resistance, by William Thomson Kelvin, Fleeming Jenkin, James Prescott Joule and James Clerk Maxwell. London: E & F. Spon, 1873. Google Scholar
  300. [BROW2]
    Brown, R. H. and C. Hazard. 1951: Montly Notices of the Royal Astronomical Society 111, 365.CrossRefGoogle Scholar
  301. [JANS]
    Jansky, Karl G. 1932: Proceedings of the Institute of Radio Engineers 20, 1920.CrossRefGoogle Scholar
  302. [ADMI]
    Admiralty Handbook of Wireless Telegraphy, volume 1, Magnetism and Electricity. London: H.M.S.O., 1938.Google Scholar
  303. [GRAY]
    Gray, E. W. 1788: Observations on the Manner in which Glass is Charged with the Electric Fluid. Philosophical Transactions of the Royal Society 77, 407–409.Google Scholar
  304. [HARR]
    Harris, William S. 1834: Philosophical Magazine 4, 436.Google Scholar
  305. [PHIL]
    Philosophical Magazine: A Journal of Theoretical, Experimental and Applied Physics. Publ. by Taylor & Francis, 1856, p. 358.Google Scholar
  306. [HVIS]
    Hvistendahl, H. S. Engineering Units and Physical Quantities. London: Macmillan and Co., 1964.Google Scholar
  307. [JONE]
    Jones, R. C. 1959: Proceedings of the IEEE 47, 1495.Google Scholar
  308. [HARR2]
    Harris, William S. 1834: Philosophical Transactions of the Royal Society 12, 206–221.Google Scholar
  309. [CLOT]
    Clothier, W. K. 1965: Metrologia 1, 181–184.CrossRefGoogle Scholar
  310. [TAYL]
    Taylor, B. N. and T. J. Witt. 1989: New International Electrical Reference Standards Based on the Josephson and Quantum Hall Effects. Metrologia 26, 47–62.CrossRefGoogle Scholar
  311. [TAYL2]
    Taylor, Barry N. Guide for the Use of the International System of Units (SI): The Metric System. Gaithersburg, MD: U.S. Dept. of Commerce, Technology Administration, National Institute of Standards and Technology, 1995. Series: NIST special publication, 811.Google Scholar
  312. [RADI]
    British Standard 2597. Glossary of terms used in radiology, 1959.Google Scholar
  313. [TRAN2]
    Transactions of the American Society of Mechanical Engineers. American Society of Mechanical Engineers, 1900.Google Scholar
  314. [KAPP]
    Kapp, G. 1886: J. Soc. Tele. Engrs. And Elect. 15, 518.Google Scholar
  315. [KAPR]
    Kaprekar, D. R. 1980–81: On Kaprekar numbers. J. Rec. Math. 13, 81–82.Google Scholar
  316. [CHAR]
    Charosh, M. 1981–82: Some Applications of Casting Out 999…’s. Journal of Recreational Mathematics 14, 111–118.Google Scholar
  317. [IANN]
    Iannucci, Douglas E. 2000: The Kaprekar Numbers. Journal of Integer Sequences 3, article 00.1.2.Google Scholar
  318. [METR]
    2000: Metrologia 37, 6, and 671–676.Google Scholar
  319. [IUB3]
    International Union of Biochemistry, Nomenclature Committee. 1979: Units of enzyme activity: Recommendations 1978. The European Journal of Biochemistry 97, 319–320.CrossRefGoogle Scholar
  320. [IUPAC]
    IUPAC-IUB Commission on Biochemical Nomenclature. Enzyme Nomenclature, Recommendations 1972. Elsevier: Amsterdam, 1973. Google Scholar
  321. [MEGG1]
    Meggers, W. F. 1951: Journal of the Optical Society of America 41, 1064.CrossRefGoogle Scholar
  322. [MEGG2]
    Meggers, W. F. (as reporter) 1953: Journal of the Optical Society of America 43, 410–413.Google Scholar
  323. [METR2]
    1968: Metrologica 5, 41.Google Scholar
  324. [WINT]
    Wintgens, Jean Nicolas. Coffee: Growing, Processing, Sustainable Production: A Guidebook for Growers, Processors, Traders, and Researchers. 2nd ed. Weinhein: Wiley-VCH, 2009.Google Scholar
  325. [SOLO]
    Solomito, M., J. J. Ritts and H. C. Claiborne. AVKER, A Program for Determining Neutron Kerma Factors for Use in Energy Deposition Calculations. ORNL-TM-2558, 1969.Google Scholar
  326. [SUNC]
    SUN Commission Report. Document SUN 56–7.Google Scholar
  327. [PHYS]
    1957: Physics Today 10, 3, 30–35.Google Scholar
  328. [BIPM]
    Bureau International des Poids et Mesures. The International System of Units (SI). 7th ed. Paris, 1998.Google Scholar
  329. [OHAN]
    O’Hanian, Hans C. Physics. W. W. Norton: New York, 1985.Google Scholar
  330. [BÄCK]
    Bäckström, Matts. “The clear MKS system. Contra the obscure old technical unit system.” In Systems of Units. National and International Aspects. ed. Carl F. Kayaned. Publication No. 57 of the AAAS. Washington, D. C.: American Association for the Advancement of Science, 1959.Google Scholar
  331. [RUPP]
    Ruppel, G. “Germany’s approach to reconciling system usages.” In Systems of Units. National and International Aspects. ed. Carl F. Kayan. Publication No. 57 of the AAAS. Washington, D. C.: American Association for the Advancement of Science, 1959.Google Scholar
  332. [ACSFS]
    The Journal of Physical Chemistry. American Chemical Society and Faraday Society. Mack Print. Co., 1928.Google Scholar
  333. [PHIL2]
    Philosophical Magazine: A Journal of Theoretical, Experimental and Applied Physics. Publ. by Taylor & Francis, 1888.Google Scholar
  334. [SAS]
    Sas, R. K. and Frederick Bernard Pidduck. The Metre-Kilogram-Second System of Electrical Units. London: Methuen and Co., 1947. Series: Methuen’s monographs on physical subjects.Google Scholar
  335. [SENA]
    Sena, L. A. Units of Physical Quantities and their Dimensions. (G. Lieb, translator). Moscow: Mir Publishers, 1972.Google Scholar
  336. [KING2]
    King, Earl J. and A. Riley Armstrong. 1934: A convenient method for determining serum and bile phosphatase activity. Journal of the Canada Medical Association 31, 4, 376–81.Google Scholar
  337. [BUTT]
    Butterworth, Sidney. Structural Analysis by moment distribution, London: Longmans, 1948.Google Scholar
  338. [METR4]
    Quinn, T. J. 1989: Metrologia 26, 69.CrossRefGoogle Scholar
  339. [METR3]
    Braun, E., et al. 1990: Metrologia 27, 39.Google Scholar
  340. [IVCH]
    Ivchenko, I. N., S. K. Loyalka, and Robert Vaughn Tompson. Analytical methods for problems of molecular transport. Vol. 83 of Fluid mechanics and its applications. Springer, 2007.Google Scholar
  341. [KUNI]
    Kunitz, M. 1950: Crystalline desoxyribonuclease: I. Isolation and general properties spectrophotometric method fort he measurement of desoxyribonuclease activity. Journal of General Physiology 33, 349–62.CrossRefGoogle Scholar
  342. [KIRK2]
    Kirk, Paul L. 1933: Quantitative drop analysis (I). Mikrochemie 14, 1, 1–14.CrossRefGoogle Scholar
  343. [WALS]
    Walsh, J. W. T. Photometry, 2nd ed. London: Constable, 1953.Google Scholar
  344. [LÖWE]
    Löwenhaupt, Friedrich. Johann Heinrich Lambert: Leistung und Leben, etc. (Herausgegeben von: Friedrich Löwenhaupt). Braun & Co: Mülhausen (Els.), 1943.Google Scholar
  345. [NATUR3]
    Aldrich, Loyal B., I. F. Hand, Arnold Court, Harry Wexler, Sigmund Fritz and William P. Millen. 1947: Unit of Solar Radiation Work. Nature 160, 327.Google Scholar
  346. [LINK]
    Linke, Franz and Fritz Möller, Handbuch der Geophysik, Berlin-Nikolassee: Borntraeger, 1942.Google Scholar
  347. [ABBO]
    Abbot, Charles Greeley. Samuel Pierpont Langley. Smithsonian Institution Miscellaneous Collections 92. 1934.Google Scholar
  348. [TERR]
    Terrien, J. 1967: News from the International Bureau of Weights and Measures. Metrologia 3, 1, 23–5.CrossRefGoogle Scholar
  349. [FINL]
    Finlayson, Bruce Alan. The method of weighted residuals and variational principles: with application in fluid mechanics, heat and mass transfer. In Vol. 87 of Mathematics in science and engineering. 5th ed., 1972.Google Scholar
  350. [KLIN]
    Klinderberg, A. and H. M. Mooy, 1948: Chemical Engineering Progress 44, 17.Google Scholar
  351. [LEWI2]
    Lewis, G. W. 1939: Journal of the Royal Aeronautical Society 43, 771.Google Scholar
  352. [ZIRK]
    Zirkle, R. E., D. F. Marchbank and K. D. Kuck. 1952: Exponential and sigmoid survival curves resulting from alpha and x-irradiation of Aspergillus spores. Journal of Cellular and Comparative Physiology 39, Suppl. 1:75.Google Scholar
  353. [SHAN]
    Shani, Gad. Radiation dosimetry: instrumentation and methods. 2nd ed. CRC Press, 2001.Google Scholar
  354. [ALPE]
    Alper, Tikvah. Cellular radiobiology. Cambridge: CUP Archive, 1979.Google Scholar
  355. [KAPL]
    Kaplan, N. O. and F., J. Lipmann. 1948: The Journal of Biological Chemistry 174, 37.Google Scholar
  356. [GSTI]
    Gstirner, Fritz. Chemisch-physikalische Vitaminbestimmungsmethoden für das chemische, pharmazeutische, landwirtschaftliche, physiologische und klinische laboratorium. 5th ed. Stuttgart: Ferdinand Enke, 1965.Google Scholar
  357. [GUIL2]
    Guillame, Charles Éd. La Creation du Bureau International des Poids et Mesure et son Oeuvre. Paris: 1927. Google Scholar
  358. [NBSM]
    National Bureau of Standards Miscellaneous Publication 233, 1960. Footnote 1.Google Scholar
  359. [ANSI]
    American National Standard ANSI/IEEE Standard 268-1982 Metric Practice. Google Scholar
  360. [FRN90]
    Federal Register Notice of December 20, 1990. “Metric System of Measurement; Interpretation of the International System of Units for the United States.” (55 FR 522 42–522 45).Google Scholar
  361. [DELE]
    De Leeuw, H. Liquid Correction of Venturi Meter Readings in Wet Gas Flow, North Sea Flow Workshop, Norway. Oct. 1997.Google Scholar
  362. [MURD]
    Murdock, J.W. 1962: Two-Phase Flow Measurement with Orifices. Journal of Basic Engineering, 419–433.CrossRefGoogle Scholar
  363. [COAL]
    Zern, Edward Nathan. Coal Miners’ Pocketbook, 12th ed. New York: McGraw-Hill, 1928.Google Scholar
  364. [WOAN]
    Woan, Graham. The Cambridge handbook of physics formulas. Cambridge University Press, 2000.Google Scholar
  365. [FLET]
    Fletcher, H., and W. Munson. 1933: Loudness, its definition, measurement, and calculation, Journal of the Acoustical Society of America 5, 82–108.CrossRefGoogle Scholar
  366. [RMP]
    1940: Review of Modern Physics 12, 60.Google Scholar
  367. [JASA]
    1942: Journal of the Acoustical Society of America 14, 105.Google Scholar
  368. [HOGG]
    Hoggatt, V. E. Jr. The Fibonacci and Lucas Numbers. Boston, MA: Houghton Mifflin, 1969.Google Scholar
  369. [HILT]
    Hilton, P., D. Holton and J. Pedersen. “Fibonacci and Lucas Numbers.” In Mathematical Reflections in a Room with Many Mirrors. New York: Springer-Verlag, 1997.CrossRefGoogle Scholar
  370. [ARAF]
    American Railway Association & Freight Container Bureau. The Lug Box – Its Construction, Loading and Bracing. 1931.Google Scholar
  371. [CASS]
    Cassidy, Frederic Gomes and Joan Houston Hall. Dictionary of American Regional English: I-O. London: Belknap Press of Harvard University Press, 1985.Google Scholar
  372. [POIN]
    Poincaré, Raymond. 1919: General Electric Review 6, 313.Google Scholar
  373. [TIES]
    1925: Trans. Illum. Engng. Society. 20, 629.Google Scholar
  374. [JONE2]
    Jones, L. A., 1937: Journal of the Optical Society of America 27, 207.CrossRefGoogle Scholar
  375. [FORB]
    Forbes, Terry. Magnetic reconnection: MHD theory and applications. Cambridge University Press, 2000.Google Scholar
  376. [GOOS]
    Goossens, Marcel. An introduction to plasma astrophysics and magnetohydrodynamics. Springer, 2003.CrossRefGoogle Scholar
  377. [BLAU]
    Blau, P. J. ASM Handbook. American Society for Metals, 1991.Google Scholar
  378. [MONA]
    Monash, B. 1909: Electrical World 54, 1053.Google Scholar
  379. [DAVI]
    Davis, Phil. Beyond the Zone System. 4th ed. Focal Press, 1998.Google Scholar
  380. [ISO3112]
    International Standards Association ISO 31-12:1992 Quantities and Units: Characteristic Numbers. Google Scholar
  381. [ACAD]
    Academic American Encyclopedia. Danbury, Conn.: Grolier Inc, 1996.Google Scholar
  382. [NATUR6]
    Feinberg, R. 1945: Units for Degree of Vacuum. Nature 156, 85.CrossRefGoogle Scholar
  383. [TAYL3]
    Taylor, K. F. 1987: On Madelung’s constant. Journal of Computational Chemistry 8, 291.CrossRefGoogle Scholar
  384. [MADE]
    Madelung, E. 1919: Physikalische Zeitschrift 19, 524.Google Scholar
  385. [CRAN]
    Crandall, R. E., 1999: New representations for the Madelung constant, Experimental Mathematics 8, 367.CrossRefGoogle Scholar
  386. [GLAS2]
    Glasser, M. L. and I. J. Zucker, “Lattice sums.” In Theoretical Chemistry: Advances and Perspectives. ed. Henderson, D. 5th ed. New York: Academic Press, 1980.CrossRefGoogle Scholar
  387. [BUHL]
    Buhler, Jand S. Wagon. 1996: Secrets of the Madelung Constant. Mathematica in Education and Research 5, 49.Google Scholar
  388. [CRAN2]
    Crandall, R. E. and J. P. Buhler. 1987: Elementary Function Expansions for Madelung Constants. Journal of Physics A: Mathematical and General 20, 5497.CrossRefGoogle Scholar
  389. [HAXE]
    Haxel, O., J. H. D. Jensen and H. E. Suess, 1949: Physical Review 75, 1766.CrossRefGoogle Scholar
  390. [AIEE]
    American Institute of Electrical Engineers. Transactions of the American Institute of Electrical Engineers. New York: American Institute of Electrical Engineers, 1957.Google Scholar
  391. [HUAN]
    Huang, Kerson. Introduction to statistical physics. London: Taylor & Francis, 2001.Google Scholar
  392. [DWIV]
    Dwivedi, B. N., ed. Dynamic Sun. Cambridge: Cambridge University Press, 2003.Google Scholar
  393. [SHER]
    Shercliff, J[ohn] A[rthur]. The theory of electromagnetic flow-measurement. New York: Cambridge University Press, 1987.Google Scholar
  394. [ATFB]
    United States Bureau of Alcohol, Tobacco, and Firearms. Alcohol, Tobacco and Firearms Bulletin. Dept. of the Treasury, Bureau of Alcohol, Tobacco and Firearms, 1977.Google Scholar
  395. [ZUPK6]
    Zupko, Ronald E. Revolution in Measurement: Western European Weights and Measures Since the Age of Science. Philadelphia, PA: the American Philosophical Society, Memoirs #186, 1990.Google Scholar
  396. [FERG]
    Ferguson, Eugene S. Bibliography of the History of Technology. Society for the History of Technology, 1968.Google Scholar
  397. [HODG]
    Hodge, A. Trevor. Roman Aqueducts and Water Supply. London: Duckworth, 2002.Google Scholar
  398. [KUTZ2]
    Kutzbach, Gisela. The Thermal Theory of Cyclones. A History of Meteorological Thought in the Nineteenth Century. Historical Monograph Series, American Meteorological Society, 1979.CrossRefGoogle Scholar
  399. [BHUY]
    Bhuyan, Manabendra. Measurement and Control in Food Processing. CRC Press, 2006.Google Scholar
  400. [NATUR7]
    1900: Units at the International Electrical Congress. Nature 62, 414.Google Scholar
  401. [RICH3]
    Richards, T. W., and F. T. Glucker. 1925: Journal of the American Chemical Society 47, 1890.CrossRefGoogle Scholar
  402. [STEV2]
    Stevens, S. S., E. B. Newman and J. Volkman. 1937: Journal of Acoustical Society of America 8, 188.Google Scholar
  403. [HARK]
    Harkins, W. D. and L. E. Roberts. 1922: Journal of the American Chemical Society 44, 663–670.CrossRefGoogle Scholar
  404. [HERB]
    Herbert, T. E. and W. S. Procter. Telephony.- A detailed exposition of the telephone system of the British Post Office. 2nd ed. London: Sir Isaac Pitman and Sons Ltd, 1934. Vol. 1, p. 811.Google Scholar
  405. [GIAC]
    Giacovazzo, Carmelo. Fundamentals of crystallography. 2nd ed. Oxford : Oxford Univ. Press, 2002.Google Scholar
  406. [CROS3]
    Crossley, John N. The emergence of number. 2nd ed. World Scientific, 1987, p. 23.Google Scholar
  407. [PRIE2]
    Priest, Irwin G. 1933: A proposed scale for use in specifying the chromaticity of incandescent illuminants and various phases of daylight. Journal of the Optical Society of America 23, 41.CrossRefGoogle Scholar
  408. [BERA]
    Beranek, Leo Leroy. Acoustics, New York: McGraw-Hill, 1954, p. 52.Google Scholar
  409. [SCHÜ2]
    Schüller, Bernhard. Carl Friedrich Mohr. Festschrift zu der am 12. Oktober 1907 stattfindenden Feier der Einweihung des neuen Schulgebäudes und des 52jährigen Bestehens der Anstalt: Realgymnasium zu Coblenz mit Realschule i. Entw. Coblenz: Scheid, 1907.Google Scholar
  410. [LAIT]
    Laitinen, Herbert A. and Galen Wood Ewing. eds. A History of Analytical Chemistry. ACS, 1977.Google Scholar
  411. [PEAR]
    Pearson, W. K. J. 1964: Journal of the Institute of Metals 93, 171.Google Scholar
  412. [MOON2]
    Mooney, Melvin. 1934: A Shearing Disk Plastometer for Unvulcanized Rubber. Industrial & Engineering Chemistry Analytical Edition 6, 147–51.CrossRefGoogle Scholar
  413. [SIEG3]
    Siegbahn, Kai, ed. Beta and Gamma Ray Spectroscopy. Amsterdam: North Holland, 1955.Google Scholar
  414. [AIGN]
    Aigner, M. Motzkin. 1998: Numbers. European Journal of Combinatorics 19, 663–75.CrossRefGoogle Scholar
  415. [KUZN2]
    Kuznetsov, A., I. Pak and A. Postnikov.1996: Trees Associated with the Motzkin Numbers. Journal of Combinatorial Theory, Series A 76, 145–7.CrossRefGoogle Scholar
  416. [SEAR]
    Sears, Francis W. 1960:How Many Glugs in a Mug? American Journal of Physics 28, 167.CrossRefGoogle Scholar
  417. [SCHW5]
    Schwartzman, Steven. The words of mathematics: an etymological dictionary of mathematical terms used in english. Washington: The Mathematical Association of America, 1996.Google Scholar
  418. [POLL]
    Pollard, Ernest Charles and William Lee Davidson, Applied Nuclear Physics. New York: Wiley, 1945.Google Scholar
  419. [DIEH]
    Diehl, Walter S. Notes on the standard atmosphere. Washington D.C.: National Advisory Committee for Aeronautics, 1922. Series: TN-99.Google Scholar
  420. [NICH]
    Nicholson, Edward. Men and Measures – A History of Weigths and Measures Ancient and Modern. London: Smith, Elder & Co., 1912.Google Scholar
  421. [WHIT4]
    Whitehouse, David J. Handbook of Surface and Nanometrology. Bristol: Institute of Physics Publishing, 2003.CrossRefGoogle Scholar
  422. [HUNT8]
    Hunt, G.J., P. J. Kershaw, and D. J. Swift. Radionuclides in the Oceans (RADOC 96–97): Proceedings of Part 2 of an International Symposium, Norwich/Lowestoft, England, April 7–11 1997. Nuclear Technology Pub., 1998.Google Scholar
  423. [MARS3]
    Marsh, Horace Wilmer. Constructive Text-book of Practical Mathematics. New York: J. Wiley & Sons, 1913.Google Scholar
  424. [GIBS3]
    Gibson, George Alexander. An Elementary Treatise on Graphs. London, Macmillan and co., limited; New York, The Macmillan company, 1905.Google Scholar
  425. [BOUR]
    Bourgaux, Albert. Dictionnaire international des mesures, poids, monnaies. Brussels: A. Bieleveld, 1927.Google Scholar
  426. [HALM]
    Halmos, Paul R. Naive Set Theory. New York: Springer-Verlag, 1974.CrossRefGoogle Scholar
  427. [RIBE]
    Ribenboim, Paulo. 1996: Catalan’s Conjecture. The American mathematical monthly: the official journal of the Mathematical Association of America 103, 7, 529–38.CrossRefGoogle Scholar
  428. [STON2]
    Stoney, G. Johnstone. 1881: On the Physical Units of Nature. Philosophical Magazine Series 5 11, 69, 381–90.CrossRefGoogle Scholar
  429. [MART11]
    Martin, W. H., 1929: Transactions of the American Institute of Electrical Engineers 48, 223.Google Scholar
  430. [SYMO]
    Symons, James M., Lee C. Bradley, and Theodore C. Cleveland. The Drinking Water Dictionary. Denver, Col.: American Water Works Association, 2000.Google Scholar
  431. [FRAN]
    Frankel, Michael. Facility Piping Systems Handbook. New York: McGraw-Hill Professional, 2001.Google Scholar
  432. [GREE4]
    Greenberg, Arnold E., Andrew D. Eaton, and Leonore S. Clesceri. Standard methods of the examination of water and wastewater. 17th ed. Washington, D.C.: American Public Health Association, American Water Works Association, Water Environment Federation, 1989.Google Scholar
  433. [SWIN5]
    Swindells, B. 1971: Understanding units of force. Engineering February, 770.Google Scholar
  434. [ROGE3]
    Rogers., F. J. 1900: The M. K. S. Absolute System of Units. Physical Review 11, 115–6.CrossRefGoogle Scholar
  435. [ROBE6]
    Robertson, D. 1904: Electrician 24 Apr., 24.Google Scholar
  436. [HART3]
    Hartshorn, Leslie and Paul Vigoureux. 1935: Unit of Force in the M. K. S. System. Nature 136, 397.CrossRefGoogle Scholar
  437. [KENN5]
    Kennelly, A[rthur] E. 1938: Recent developments in electrical units. Electrical Engineering 58, 19.CrossRefGoogle Scholar
  438. [GRAN6]
    Grand, Joe, Ryan Russell, and Kevin D. Mitnick. Hardware Hacking: Have Fun While Voiding Your Warranty. Rockland, MA: Syngress Publishing, 2004.Google Scholar
  439. [LAU]
    Lau, Foo-Sun. A Dictionary of Nuclear Power and Waste Management: With Abbreviations and Acronyms. New York: Research Studies Press, 1987.Google Scholar
  440. [THEW]
    Thewlis, James. Concise Dictionary of Physics and Related Subjects. New York: Pergamon Press, 1979.Google Scholar
  441. [LEWI11]
    Lewins, Jeffery. Nuclear Reactor Kinetics and Control. New York: Pergamon Press, 1978.Google Scholar
  442. [MEYE6]
    Meyers, Michael. All-in-one CompTIA A+ Certification Exam Guide. 6th ed. New York: McGraw-Hill Osborne Media, 2006.Google Scholar
  443. [KRYT]
    Kryter, K. D. 1959: Scaling human reactions to the sound from aircraft. Journal of the Acoustical Society of America 31, 1415–29.CrossRefGoogle Scholar
  444. [GROB]
    Grober, Heinrich and Siegmund Erk. Die Grundgesetze der Wärmeübertragung. 2nd ed. Berlin: Springer, 1933.CrossRefGoogle Scholar
  445. [WHIT6]
    White, Frank M. Heat and Mass transfer. Reading, Ma.: Addison-Wesley, 1988.Google Scholar
  446. [EVER]
    Everett, Joseph David, Units and Physical Constants. London: MacMillan, 1879Google Scholar
  447. [BRIG]
    Bright, C. and L. Clark, Electrician, Nov. 1861.Google Scholar
  448. [WEBE3]
    Weber, C. 1931: Disintegration of liquid jets. Zeitschrift für Angewandte Mathematik und Mechanik 11, 2, 136–59.CrossRefGoogle Scholar
  449. [FINL2]
    Finlay, Warren H. The mechanics of inhaled pharmaceutical aerosols: an introduction. 6th ed. Academic Press, 2001.Google Scholar
  450. [SABI]
    Sabine, W. C. 1911: Amer. Architect., 68, 1900.Google Scholar
  451. [ZERN]
    Zern, E. N. ed. Coal Miners’ Pocketbook. 12th ed. New York: McGraw-Hill, 1928.Google Scholar
  452. [INGE]
    Ingersoll, Ernest. Report on the oyster-industry of the United States. 1881.Google Scholar
  453. [BOMH2]
    Bomhoff, Dirk. New Dictionary of the English and Dutch Language: To which is Added a Catalogue of the Most Usual Proper Names, and a List of the Irregular Verbs; Carefully Revised and Considerably Augmented. Vol. 2. Thieme, 1851.Google Scholar
  454. [CASS3]
    Cassidy, Frederic Gomes. Dictionary of American Regional English. Volym 2. Harvard University Press, 1991.Google Scholar
  455. [SPIK]
    Spike, J. Edward, 1940: On the Teaching of Newton’s Second Law of Motion. American Journal of Physics 8, 2, 123.CrossRefGoogle Scholar
  456. [HONJ]
    Honjo, Susumu. “Fluxes of Particles to the Interior of the Open Oceans.” In Particle Flux in the Ocean.V. Ittekkot, P. Schäfer, Susumu Honjo, and P. J. Depetris. eds. New York: John Wiley and Sons, 1996.Google Scholar
  457. [LOEF]
    Loeffel. Hans. Blaise Pascal, 1623–1662. Boston: Birkhäuser. 1987.Google Scholar
  458. [MCCL]
    McClurg and Shoemaker. The Building Estimator’s Reference Handbook. 17th ed. Chicago: Frank R. Walker Company, 1970, p. 1644.Google Scholar
  459. [BAYL2]
    Bayliss, N., 1951: Nature, 167, 367.CrossRefGoogle Scholar
  460. [ROSS6]
    Ross, F. E. The Physics of the Developed Image. New York: D. Van Nostrand, 1924.Google Scholar
  461. [BODE2]
    Bodea, Eugen. Giorgis rationales MKS-Maß-System mit Dimensionskohärenz : für Mechanik, Elektromagnetik, Thermik und Atomiskik fundiert auf Kalantaroffs [L T Q Ø]-System. 2nd ed. Basel: Birkhäuser, 1949.Google Scholar
  462. [DEEL]
    Deeley, R. Mountford and P. H. Parr., 1913: III. The viscosity of glacier ice. Philosophical Magazine 26, 151, 85–111.Google Scholar
  463. [CAIN2]
    Cain. Stanley A. 1939: Pollen analysis as a paleo-ecological research method. The Botanical Review 5, 636.CrossRefGoogle Scholar
  464. [BERT3]
    Bertrand, Joseph Louis François. Éloge historique de Jean-Victor Poncelet. Paris: Institut de France, 1875.Google Scholar
  465. [MORE4]
    Moreau de Saint-Méry. Description Topographique, Physique, Civile, Politique et Historique de la Partie Française de L’Isle Saint-Domingue. Vol. 1. New edition based on a comparison with the original manuscript by Blanche Maurel and Étienne Taillemite. Paris: Société de L’Histoire des Colonies Françaises, and Librairie Larose, 1958.Google Scholar
  466. [THOM7]
    Thomson Kelvin, William and Peter Guthrie Tait., Elements of Natural Philosophy, Pt. 1. Oxford: Clarendon Press, 1879.Google Scholar
  467. [FLEM]
    Flemming, John Ambrose, 1892: Journal of the Institution of Electrical Engineers 21, 606.Google Scholar
  468. [DIEB]
    Diebold, Steffen M. Hydrodynamik und Loesungsgeschwindigkeit – Untersuchungen zum Einfluss der Hydrodynamik auf die Loesungsgeschwindigkeit schwer wasserloeslicher Arzneistoffe (Hydrodynamics and Dissolution – Influence of Hydrodynamics on Dissolution Rate of Poorly Soluble Drugs). Aachen: Shaker Verlag, 2000.CrossRefGoogle Scholar
  469. [NUSS2]
    Nusselt, Wilhelm. 1910: Die Abhängigkeit der Wärmeübergangszahl von der Rohrlänge. Zeitschrift des Vereins Deutscher Ingenieure 54 , 1155.Google Scholar
  470. [PRAN]
    Prandtl, Ludwig. Essentials of Fluid Mechanics. London: Blackie; New York: Hafner, 1952.Google Scholar
  471. [PREE]
    Preece, William Henry. 1891: The Journal of the Institution of Electrical Engineers. 20, 609.CrossRefGoogle Scholar
  472. [BARA]
    Beranek, Leo L. ed. Noise and vibration control. New York: McGraw-Hill, 1971.Google Scholar
  473. [WITM]
    Witmer, Enos. 1947: Integral and Rational Numbers in the Nuclear Domain and Their Significance. Physical Review Series 2, 71, 126.CrossRefGoogle Scholar
  474. [BROC3]
    Brock, W.H. From protyle to proton. William Prout and the nature of matter, 1785–1985. Boston: A. Hilger, 1985.Google Scholar
  475. [LUND]
    Lunde, Ken. CJKV Information Processing. O’Reilly, 1999.Google Scholar
  476. [BIRD]
    Bird, John. Electrical Circuit Theory and Technology. 3rd ed. Newnes, 2007.Google Scholar
  477. [BAYL]
    Bayly, B. De F. 1931: Proc. Instn. Radio Engrs. 19, 873.Google Scholar
  478. [BEAT]
    Beatty, R. T. 1930: Experimental Wireless 7, 361.Google Scholar
  479. [KOWA]
    Kowalski, Karren and Patricia S. Yoder-Wise. Rapid Reference for Nurses. Jones & Bartlett Publishers, 2007.Google Scholar
  480. [BAAS3]
    British Association for the Advancement of Science. Report of the Fifty-ninth meeting of the British Association for the Advancement of Science held at Newcastle-upon-tyne in September 1889. London: John Murray, 1890.Google Scholar
  481. [COCK]
    Cockcroft, John. 1953: Proceeding of the Institute of Electrical Engineers 100, 89.Google Scholar
  482. [GIDD]
    Giddings, Philip. Audio Systems Design and Installation. Indianapolis: Sams, 1990.Google Scholar
  483. [ROYA]
    Royal Society. Quantities, Units and Symbols. A Report by the Symbols Committee of the Royal Society representing the Royal Society, the Chemical Society, the Faraday Society, the Institute of Physics. London: The Royal Society, 1971.Google Scholar
  484. [DARW]
    Darwin, Charles. 1949: Symbols and Nomenclature. Nature 164, 262–4.CrossRefGoogle Scholar
  485. [SIEB]
    Siebet et al In Rauen, H[ermann] M[atthias]. ed. Biochemisches Taschenbuch, 2nd ed., part 2. Berlin: Springer Verlag, 1964.Google Scholar
  486. [MCLA]
    McLachlan, N. W. 1934: Wireless Engineer 11, 489.Google Scholar
  487. [HUNT]
    Hunter, D. M., F.E. Roach and J.W. Chamberlaine. 1956: Journal of Atmospheric and Terrestrial Physics 8, 345.CrossRefGoogle Scholar
  488. [PARK]
    Parker, Herbert. 1950: Tentative Dose Units for Mixed Radiations. Radiology 54, 252–262.CrossRefGoogle Scholar
  489. [KATH]
    Kathren, Ronald L., Ray W. Baalman and William J. Bair. eds. Herbert M. Parker, Publications and Other Contributions to Radiological and Health Physics. Columbus: Battelle Press, 1986.Google Scholar
  490. [REYN2]
    Reynolds, Osborne. 1883: An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Philosophical Transactions of the Royal Society 174, 935–82.CrossRefGoogle Scholar
  491. [ROTT3]
    Rott, N. 1990: Note on the history of the Reynolds number. Annual Review of Fluid Mechanics 22, 1, 1–11.CrossRefGoogle Scholar
  492. [BING2]
    Bingham, Eugene C. and Theodore R. Thompson. 1928: The fluidity of mercury. Journal of the American Chemical Society 50, 11, 2879.CrossRefGoogle Scholar
  493. [VANN]
    Van Nostrand. VanNostrand’s scientific encyclopedia: Aeronautics, astronomy, botany, chemical engineering, chemistry, civil engineering, electrical engineering, electronics, geology, guided missiles, mathematics, mechanical engineering, medicine, metallurgy, meteorology, mineralogy, navigation, nuclear science and engineering, photography, physics, radio and television, statistics, zoology. 3rd ed. Princeton, N.J.: Van Nostrand, 1958.Google Scholar
  494. [BARK4]
    Barker, R. E. 1964: Suggested Units for Conductivity. Nature 203, 513.CrossRefGoogle Scholar
  495. [TERR2]
    Terrien, J. 1965: News from the Bureau International des Poids et Mesures. Metrologia 1, 3, 133–4.CrossRefGoogle Scholar
  496. [ROWL]
    Rowland, Henry A. 1887: On the relative wave-lengths of the lines of the solar spectrum. Philosophical Magazine Series 5 23, 142, 257–65.CrossRefGoogle Scholar
  497. [CURT2]
    Curtiss, L. F. and E. U. Condon. 1946: New units for the measurement of radioactivity. British Journal of Radiology 19, 368.CrossRefGoogle Scholar
  498. [CAND]
    Candler, C. 1951: A Unit of Wave-Number. Nature 167, 649.CrossRefGoogle Scholar
  499. [SABI2]
    Sabine, W. C. 1951: Acoustical terminology, American Standards Association Z 24.1.Google Scholar
  500. [STAN3]
    Stanton, G. T., F. C. Schmidt, and W. J. Brown. 1934: Journal of the Acoustical Society of America 6, 101.Google Scholar
  501. [FRED]
    Frederick, H. A., 1937: Journal of the Acoustical Society of America 9, 63.Google Scholar
  502. [CARD]
    Cardarelli, François. Encyclopaedia of scientific units, weights, and measures: their SI equivalences and origins. [English translation by M. J. Shields]. New York: Springer, 2003.Google Scholar
  503. [SAGA2]
    Sagan, Carl. Billions & Billions: Thoughts on Life and Death at the Brink of the Millennium. New York: Random House, 1997.Google Scholar
  504. [GIER]
    Gierlinger, J. 1938: Altonaer Münzen, Maße und Gewichte. Zeitschrift des Vereins für Hamburgische Geschichte 37, pp. 143–149.Google Scholar
  505. [AYRT]
    Ayrton, William Edward and John Perry. 1887: Journal of the Society of Telegraph Engineers and of Electricians 16, 320.Google Scholar
  506. [STEI7]
    Steinberg, J. C. 1925: Physical Review 26, 508.CrossRefGoogle Scholar
  507. [WILL11]
    Willeke, Klaus and Paul A. Barron, ed. Aerosol Measurment, Principles, Techniques, and Applications. Van Nostrand Reinhold, New York, 1993.Google Scholar
  508. [JANO]
    Jánossy, Lajos. Cosmic rays. Oxford, Clarendon Press, 1948.Google Scholar
  509. [SIEM]
    Siemens, Werner von. 1861: Proposal for a new reproducible standard measure of resistance to galvanic currents. Philosophical Magazine 23, 171–9. Translated from Annalen der Physik, Jan 1860.Google Scholar
  510. [GANO2]
    Ganot, Adolphe. Elementary treatise on physics experimental and applied. Ganot’s physics. 15th ed. London: Longmans, Green, 1898.Google Scholar
  511. [SIEM2]
    Siemens, Werner von. Inventor and Entrepreneur: Recollections of Werner von Siemens. London: Lund Humphries, 1966.Google Scholar
  512. [BAIL2]
    Baillie, R.; G. Cormack, and H. C. Williams. 1981: The Problem of Sierpinski Concerning k. 2n + 1. Math. Computing 37, 229–31.Google Scholar
  513. [EDDI2]
    Eddington, Arthur. S., Stellar movement and the Structure of the Universe. London: MacMillan, 1914., p. 14.Google Scholar
  514. [SKEW]
    Skewes. 1933: Journal of London Mathematic Society 8, 277–83.Google Scholar
  515. [HARD3]
    Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work. 3rd ed. New York: Chelsea, 1999., p. 17.Google Scholar
  516. [BUCK]
    Buckley, H., 1942: Rep. Progr. Phys., 8, 334.Google Scholar
  517. [PERR3]
    Perry, John. Calculus for Engineers. London: Edward Arnold, 1897., p. 26.Google Scholar
  518. [WORT]
    Worthington, Arthur Mason. Dynamics of rotation – an elementary introduction to rigid dynamics. 4th ed. London: Longmans, 1902.Google Scholar
  519. [STEV5]
    Stevens, Stanley Smith. 1936: A scale for the measurement of the psychological magnitude: loudness. Psychological Review 43, 5, 405–16.CrossRefGoogle Scholar
  520. [CALL]
    Callou, L., 1944: Comptes Rendus de l’Academie des Sciences 218, 66.Google Scholar
  521. [ALEX]
    Alexander, John Henry. Universal Dictionary of Weights and Measures, Ancient and Modern, reduced to the standards of the United States of America. Baltimore: Minifie & Co, 1850.Google Scholar
  522. [THUR2]
    Thurston, Robert Henry. Conversion Tables of Metric and British or United States Weights and Measures. New York, 1883, p. 23.Google Scholar
  523. [MCCO2]
    McConneell, Primrose. Note-Book of Agricultural Facts & Figures for Farmers and Farm students. London, 1883, p. 13.Google Scholar
  524. [STAU]
    Staudinger, Hermann. 1920: Berichte der Deutschen Chemischen Gesellschaft 53, 6, 1073–85.Google Scholar
  525. [STEV3]
    Stevens, Stanley Smith. 1946: On the theory of scales and measurement. Science 103, 677–80.CrossRefGoogle Scholar
  526. [STUE]
    Stuetz, Richard and Franz-Bernd Frechen. Odours in Wastewater Treatment: Measurement, Modelling and Control. London: IWA Publishing, 2001.Google Scholar
  527. [HAIG]
    Haig, Nigel D., and T. L. Williams. 1995: Psycometrically Appropriate Assessment of Afocal Optics by Measurement of the Strehl Intensity Ratio. Applied Optics 34, 10.CrossRefGoogle Scholar
  528. [LODG]
    Lodge, Oliver. 1892: The Electrician 29, 371.Google Scholar
  529. [ASIM3]
    Asimov, Isaac. Asimov’s biographical encyclopedia of science and technology : the lives and achievements of 1510 great scientists from ancient times to the present chronologically arranged. 2nd ed. Garden City, N.Y.: Doubleday, 1982.Google Scholar
  530. [KNUT]
    Knuth, Donald Ervin. Surreal numbers: how two ex-students turned on to pure mathematics and found total happiness: a mathematical novelette. Reading, Mass.: Addison-Wesley Pub. Co., 1974.Google Scholar
  531. [CONW2]
    Conway, John Horton. On numbers and games. London; New York: Academic Press, 1976.Google Scholar
  532. [GONS]
    Gonshor, Harry. An introduction to the theory of surreal numbers. Cambridge; New York: Cambridge University Press, 1986. Series: London Mathematical Society lecture note no. 110.Google Scholar
  533. [BRID]
    Bridgman, W. B. 1942: Journal of the American Chemical Society 64, 2353.CrossRefGoogle Scholar
  534. [SMIT4]
    Smith, J. J. 1955: Recommendations of IEC Technical Committee 24: Electric and Magnetic Magnitudes and Units. Electrical Engineering 74, 406–408.CrossRefGoogle Scholar
  535. [GILB]
    Gilbreth, Frank B. and L. M. Gilbreth. 1924: Classifying the elements of Work. Methods of Analyzing Work into Seventeen Subdivisions. Management and Administration 7, 8, 151–4.Google Scholar
  536. [CRES]
    Creswell, Harry Innes Thornton, J. Hiraoka and R. Namba. A Dictionary of Military Terms, English–Japanese, Japanese–English. Tokyo, 1937. Google Scholar
  537. [HUXL2]
    Huxley, L. G. H., R. W. Crompton, and M. T. Elford. 1966: Use of the parameter E/N. British Journal of Applied Physics 17, 1237–8.CrossRefGoogle Scholar
  538. [FLET2]
    Fletcher, H. and J. C. Steinberg. 1924: Physical Review 24, 307.CrossRefGoogle Scholar
  539. [MART12]
    Martin, W. H. 1924: The transmission unit and telephone transmission reference systems. Bell System Technical Journal July.CrossRefGoogle Scholar
  540. [CHAT2]
    Chatt, Joseph. 1979: Recommendations for the naming of elements of atomic numbers grater than 100. Pure and Applied Chemistry 51, 381–4.CrossRefGoogle Scholar
  541. [TROL2]
    Troland, Leonard T. 1916: Illumination Engineering 11, 947.Google Scholar
  542. [QUEE]
    Queensland Department of Mines. Queensland Mining Guide 1949 ed. Brisbane: A.H. Tucker, Government Printer, 1949.Google Scholar
  543. [SMIL]
    Smil, Vaclav. Transforming the twentieth century: technical innovations and their consequences. New York: Oxford University Press, 2006.Google Scholar
  544. [MISC]
    Mischel, Jim and Jeff Duntemann. The developer’s guide to WinHelp.Exe: harnessing the Windows help engine. New York: Wiley, 1994.Google Scholar
  545. [BOBEN]
    Bobenhausen, William. Simplified Design of HVAC Systems. New York: Wiley, 1994.Google Scholar
  546. [ASFF]
    Analog Science Fiction/science Fact. Davis Publications, 1973.Google Scholar
  547. [ASIM]
    Asimov, Isaac. The Robot Collection: The Robot Novels. New York: Doubleday and Co., 1983.Google Scholar
  548. [ANTH]
    Anthony, Piers. How Precious Was That While: an autobiography. New York: Tom Doherty Associates, 2002.Google Scholar
  549. [KIMO]
    Kimothi, Shri Krishna. The uncertainty of measurements: physical and chemical metrology: impact and analysis. American Society for Quality, 2001.Google Scholar
  550. [APPA]
    The Dictionary of Paper including pulp, paperboard, paper properties and related papermaking terms, 3rd ed., New York: American Pulp and Paper Association, 1965.Google Scholar
  551. [BOTH]
    Bothamley, C. H. The Ilford Manual of Photography. London: Brittania Works, 1891.Google Scholar
  552. [NATUR4]
    Florescu, N. A. 1960: Standard Unit of Pressure in Vacuum Physics. Nature 188, 303.CrossRefGoogle Scholar
  553. [BARN]
    Beranek, L. L., Acoustics, New York: McGraw-Hill, 1954.Google Scholar
  554. [BRPP]
    Report of the Joint Committee on the Construction of Submarine Telegraphs. British Parliamentary Papers, 2744 (1860), 62, §2900, London, 1861.Google Scholar
  555. [HUNT3]
    Hunt, Bruce J. 1994: Osiris 9, 48.CrossRefGoogle Scholar
  556. [LAND3]
    Landolt, H. and R. Börnstein. Zahlenwerte und Funktionen aus Physik-Chemie-Astronomie-Geophysik und Technik. I: Atom- und Molekularphysik. 6th ed. Five volumes Vol. I/1, p. 406.Google Scholar
  557. [VILL]
    Villard, Paul Ulrich. Les rayons cathodiques. Paris: Gauthier-Villars, 1908.Google Scholar
  558. [KRÖN]
    Krönig, Bernhard von and Walter Friedrich. Physicalische und biologische Grundlagen der Strahlentherapie. Berlin: Urban & Schwarzenberg, 1918.Google Scholar
  559. [BEHN]
    Behnken, H. Die Absolutbestimmung der Dosiseinheit “1 Röntgen” in der Physikalisch- Technischen Reichsanstalt. Strahlentherapie, 1927.Google Scholar
  560. [POGS]
    Pogson, Norman R. Royal Astronomical Society, M N, 17, 12.Google Scholar
  561. [CHIN]
    Chinn, H. A., D. K. Gannett and R. M. Morris. 1940: Proceedings of the Institute of Radio Engineers 28, 1.Google Scholar
  562. [STON]
    Stoney, G. J. and J. E. Reynolds. 1936: J. Inst. Elect. Engrs. 78, 238.Google Scholar
  563. [BAAS2]
    British Association for the Advancement of Science. Report of the Fifty-First meeting of the British Assocation for the Advancement of Science held at York in August and September 1881. London: John Murray, 1882, p. 425.Google Scholar
  564. [WARD]
    Ward, R. A. and W. A. Fowler. 1980: The Astrophysical Journal 238, 266.CrossRefGoogle Scholar
  565. [WEIS]
    Weisskopf, Victor F. 1951: Physical Review (US) 83, 1073.CrossRefGoogle Scholar
  566. [CURN]
    Curnow, H. J. and B. A. Wichman. 1976: A Synthetic Benchmark. Computer Journal 19, 1.CrossRefGoogle Scholar
  567. [MILT]
    Milton, Denny. “The Colonial Surveyor in Pennsylvania”. Surveyors Historical Society, 2013.Google Scholar
  568. [MCNI]
    McNish, A. G. 1957: Dimensions, Units and Standards. Physics Today 10, 12–25.CrossRefGoogle Scholar
  569. [HULM]
    Hulme, M., 1982: Journal of Meteorology 7, 13, 294.Google Scholar
  570. [WOME]
    Womersley, J. R. 1955: Method for the calculation of velocity, rate flow, and viscous drag in arteries when the pressure gradient is known. Journal of Physiology 127, 553–563.CrossRefGoogle Scholar
  571. [SIEG]
    Siegbahn, Manne. 1919: Röntgenspektroskopische Präzionsmessungen. (Erste Mitteilung). Annalen der Physik. 4th series, Leipzig: Verlag von Johann Ambrosius Barth. 59, 56.Google Scholar
  572. [SIEG2]
    Siegbahn, Manne. Spektroskopie der Röntgenstrahlen. Berlin: Springer-Verlag, 1931. CrossRefGoogle Scholar
  573. [COHE]
    Cohen, E. Richard and Barry N. Taylor. 1987: The 1986 CODATA recommended values of the fundamental physical constants. Journal of Research of the National Bureau of Standards 92, 2, 1, Table 3.CrossRefGoogle Scholar
  574. [YUKA]
    Yukawa, Hideki. Tabibito (The Traveler). Translated by L. Brown and R. Yoshida. Singapore: World Scientific, 1982.Google Scholar
  575. [FAIR]
    Fairhall, Davis. Russia looks to the sea: a study of the expansion of Faaniu, Sim maritime power. London: Gambit, 1971.Google Scholar
  576. [SCHI]
    Schierbeek, Abraham. Jan Swammerdam (12 February 1637–17 February 1680): his life and works. Amsterdam: Swets & Zeitlinger, 1968.Google Scholar
  577. [LÓPE4]
    López-Higuera, José Miguel. Optical sensors. Santander: Universidad de Cantabria, 1998.Google Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  • Jan Gyllenbok
    • 1
  1. 1.LommaSweden

Personalised recommendations