Skip to main content

Approximating Bounded Degree Deletion via Matroid Matching

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10236))

Abstract

The Bounded Degree Deletion problem with degree bound \(b: V\rightarrow \mathbb {Z}_+\) (denoted b -BDD), is that of computing a minimum cost vertex set in a graph \(G=(V, E)\) such that, when it is removed from G, the degree of any remaining vertex v is no larger than b(v). It will be shown that b-BDD can be approximated within \(\max \{2,\bar{b}/2+1\}\), improving the previous best bound for \(2\le \bar{b}\le 5\), where \(\bar{b}\) is the maximum degree bound, i.e., \(\bar{b}=\max \{b(v)\mid v\in V\}\). The new bound is attained by casting b-BDD as the vertex deletion problem for such a property inducing a 2-polymatroid on the edge set of a graph, and then reducing it to the submodular set cover problem.

T. Fujito— Supported in part by JSPS KAKENHI under Grant Number 26330010.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Balasundaram, B., Butenko, S., Hicks, I.V.: Clique relaxations in social network analysis: the maximum \(k\)-plex problem. Oper. Res. 59(1), 133–142 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Betzler, N., Bredereck, R., Niedermeier, R.: On bounded-degree vertex deletion parameterized by treewidth. Discret. Appl. Math. 160(1–2), 53–60 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brešar, B., Jakovac, M., Katrenič, J., Semanišin, G., Taranenko, A.: On the vertex \(k\)-path cover. Discret. Appl. Math. 161(13–14), 1943–1949 (2013)

    MathSciNet  MATH  Google Scholar 

  4. Brešar, B., Kardoš, F., Katrenič, J., Semanišin, G.: Minimum \(k\)-path vertex cover. Discret. Appl. Math. 159(12), 1189–1195 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brešar, B., Krivos-Bellus, R., Semanišin, G., Sparl, P.: On the weighted \(k\)-path vertex cover problem. Discret. Appl. Math. 177, 14–18 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  6. Camby, E., Cardinal, J., Chapelle, M., Fiorini, S., Joret, G.: A primal-dual 3-approximation algorithm for hitting 4-vertex paths. In 9th International Colloquium on Graph Theory and Combinatorics, ICGT 2014, p. 61 (2014)

    Google Scholar 

  7. Camerini, P.M., Galbiati, G., Maffioli, F.: Random pseudo-polynomial algorithms for exact matroid problems. J. Algorithms 13, 258–273 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chauve, C., Tannier, E.: A methodological framework for the reconstruction of contiguous regions of ancestral genomes and its application to mammalian genome. PLoS Comput. Biol. 4(11), e1000234 (2008)

    Article  MathSciNet  Google Scholar 

  9. Chen, Z.-Z., Fellows, M., Fu, B., Jiang, H., Liu, Y., Wang, L., Zhu, B.: A linear kernel for co-path/cycle packing. In: Chen, B. (ed.) AAIM 2010. LNCS, vol. 6124, pp. 90–102. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14355-7_10

    Chapter  Google Scholar 

  10. Devi, N.S., Mane, A.C., Mishra, S.: Computational complexity of minimum \(P_4\) vertex cover problem for regular and \(K_{1,4}\)-free graphs. Discret. Appl. Math. 184, 114–121 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover. Ann. Math. 162(1), 439–485 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fellows, M.R., Guo, J., Moser, H., Niedermeier, R.: A generalization of Nemhauser and Trotters local optimization theorem. J. Comput. Syst. Sci. 77(6), 1141–1158 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Feng, Q., Wang, J., Li, S., Chen, J.: Randomized parameterized algorithms for \(P_2\)-packing and co-path packing problems. J. Comb. Optim. 29(1), 125–140 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fujito, T.: A unified approximation algorithm for node-deletion problems. Discret. Appl. Math. 86(2–3), 213–231 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fujito, T.: Approximating node-deletion problems for matroidal properties. J. Algorithms 31(1), 211–227 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fujito, T.: On approximation of the submodular set cover problem. Oper. Res. Lett. 25(4), 169–174 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jakovac, M., Taranenko, A.: On the \(k\)-path vertex cover of some graph products. Discret. Math. 313(1), 94–100 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jenkyns, T.: The efficacy of the “greedy” algorithm. In: Proceedings of the 7th Southeastern Conference on Combinatorics, Graph Theory and Computing, pp. 341–350 (1976)

    Google Scholar 

  19. Karakostas, G.: A better approximation ratio for the vertex cover problem. ACM Trans. Algorithms 5(4), 41:1–41:8 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  20. Kardoš, F., Katrenič, J., Schiermeyer, I.: On computing the minimum 3-path vertex cover and dissociation number of graphs. Theoret. Comput. Sci. 412(50), 7009–7017 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Khot, S., Regev, O.: Vertex cover might be hard to approximate to within \(2-\epsilon \). J. Comput. Syst. Sci. 74(3), 335–349 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lawler, E.L.: Matroids with parity conditions: a new class of combinatorial optimization problems. Memo ERL-M334, Electronics Research Laboratory, College of Engineering, UC Berkeley, Berkeley, CA (1971)

    Google Scholar 

  23. Lee, J., Sviridenko, M., Vondrák, J.: Matroid matching: the power of local search. SIAM J. Comput. 42(1), 357–379 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties is NP-complete. J. Comput. Syst. Sci. 20, 219–230 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lovász, L.: Matroid matching and some applications. J. Combin. Theory Ser. B 28, 208–236 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  26. Moser, H., Niedermeier, R., Sorge, M.J.: Exact combinatorial algorithms and experiments for finding maximum \(k\)-plexes. J. Comb. Optim. 24(3), 347–373 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Narayanan, H., Saran, H., Vazirani, V.: Randomized parallel algorithms for matroid union and intersection, with applications to arboresences and edge-disjoint spanning trees. SIAM J. Comput. 23, 387–397 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  28. Newman, I., Sohler, C.: Every property of hyperfinite graphs is testable. SIAM J. Comput. 42(3), 1095–1112 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  29. Novotný, M.: Design and analysis of a generalized canvas protocol. In: Proceedings of the 4th IFIP WG 11.2 International Conference on Information Security Theory and Practices: Security and Privacy of Pervasive Systems and Smart Devices, pp. 106–121 (2010)

    Google Scholar 

  30. Okun, M., Barak, A.: A new approach for approximating node deletion problems. Inform. Process. Lett. 88(5), 231–236 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  31. Orlovich, Y., Dolgui, A., Finke, G., Gordon, V., Werner, F.: The complexity of dissociation set problems in graphs. Discret. Appl. Math. 159(13), 1352–1366 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  32. Seidman, S.B., Foster, B.L.: A graph-theoretic generalization of the clique concept. J. Math. Soc. 6(1), 139–154 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  33. Tu, J.: A fixed-parameter algorithm for the vertex cover \(P_3\) problem. Inform. Process. Lett. 115(2), 96–99 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Tu, J., Yang, F.: The vertex cover \(P_3\) problem in cubic graphs. Inform. Process. Lett. 113(13), 481–485 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  35. Tu, J., Zhou, W.: A factor 2 approximation algorithm for the vertex cover \(P_3\) problem. Inform. Process. Lett. 111(14), 683–686 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Tu, J., Zhou, W.: A primal-dual approximation algorithm for the vertex cover \(P_3\) problem. Theoret. Comput. Sci. 412(50), 7044–7048 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Wolsey, L.A.: An analysis of the greedy algorithm for the submodular set covering problem. Combinatorica 2(4), 385–393 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  38. Xiao, M.: On a generalization of Nemhauser and Trotter’s local optimization theorem. J. Comput. Syst. Sci. (2016). doi:10.1016/j.jcss.2016.08.003

  39. Yannakakis, M.: Node-deletion problems on bipartite graphs. SIAM J. Comput. 10(2), 310–327 (1981)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Fujito .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Fujito, T. (2017). Approximating Bounded Degree Deletion via Matroid Matching. In: Fotakis, D., Pagourtzis, A., Paschos, V. (eds) Algorithms and Complexity. CIAC 2017. Lecture Notes in Computer Science(), vol 10236. Springer, Cham. https://doi.org/10.1007/978-3-319-57586-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57586-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57585-8

  • Online ISBN: 978-3-319-57586-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics