Skip to main content

Weak Coverage of a Rectangular Barrier

  • Conference paper
  • First Online:
Algorithms and Complexity (CIAC 2017)

Abstract

Assume n wireless mobile sensors are initially dispersed in an ad hoc manner in a rectangular region. They are required to move to final locations so that they can detect any intruder crossing the region in a direction parallel to the sides of the rectangle, and thus provide weak barrier coverage of the region. We study three optimization problems related to the movement of sensors to achieve weak barrier coverage: minimizing the number of sensors moved (MinNum), minimizing the average distance moved by the sensors (MinSum), and minimizing the maximum distance moved by the sensors (MinMax). We give an \(O(n^{3/2})\) time algorithm for the MinNum problem for sensors of diameter 1 that are initially placed at integer positions; in contrast we show that the problem is NP-hard even for sensors of diameter 2 that are initially placed at integer positions. We show that the MinSum problem is solvable in \(O(n \log n)\) time for homogeneous range sensors in arbitrary initial positions for the Manhattan metric, while it is NP-hard for heterogeneous sensor ranges for both Manhattan and Euclidean metrics. Finally, we prove that even very restricted homogeneous versions of the MinMax problem are NP-hard.

Research supported by NSERC, Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andrews, A.M., Wang, H.: Minimizing the aggregate movements for interval coverage. Algorithmica 78(1), 47–85 (2017). doi:10.1007/s00453-016-0153-8

    Article  MathSciNet  MATH  Google Scholar 

  2. Balister, P., Bollobas, B., Sarkar, A., Kumar, S.: Reliable density estimates for coverage and connectivity in thin strips of finite length. In: ACM International Conference on Mobile Computing and Networking, pp. 75–86 (2007)

    Google Scholar 

  3. Ban, D., Jiang, J., Yang, W., Dou, W., Yi, H.: Strong \(k\)-barrier coverage with mobile sensors. In: Proceedings of International Wireless Communications and Mobile Computing Conference, pp. 68–72 (2010)

    Google Scholar 

  4. Berman, P., Karpinski, M.: On some tighter inapproximability results (extended abstract). In: Wiedermann, J., Emde Boas, P., Nielsen, M. (eds.) ICALP 1999. LNCS, vol. 1644, pp. 200–209. Springer, Heidelberg (1999). doi:10.1007/3-540-48523-6_17

    Chapter  Google Scholar 

  5. Bhattacharya, B., Burmester, M., Hu, Y., Kranakis, E., Shi, Q., Wiese, A.: Optimal movement of mobile sensors for barrier coverage of a planar region. TCS 410(52), 5515–5528 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chen, D.Z., Gu, Y., Li, J., Wang, H.: Algorithms on minimizing the maximum sensor movement for barrier coverage of a linear domain. In: Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 177–188. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31155-0_16

    Chapter  Google Scholar 

  7. Czyzowicz, J., et al.: On minimizing the maximum sensor movement for barrier coverage of a line segment. In: Ruiz, P.M., Garcia-Luna-Aceves, J.J. (eds.) ADHOC-NOW 2009. LNCS, vol. 5793, pp. 194–212. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04383-3_15

    Chapter  Google Scholar 

  8. Czyzowicz, J., et al.: On minimizing the sum of sensor movements for barrier coverage of a line segment. In: Nikolaidis, I., Wu, K. (eds.) ADHOC-NOW 2010. LNCS, vol. 6288, pp. 29–42. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14785-2_3

    Chapter  Google Scholar 

  9. Dobrev, S., Durocher, S., Eftekhari, M., Georgiou, K., Kranakis, E., Krizanc, D., Narayanan, L., Opatrny, J., Shende, S., Urrutia, J.: Complexity of barrier coverage with relocatable sensors in the plane. Theoret. Comput. Sci. 579, 64–73 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  10. Eftekhari, M., Flocchini, P., Narayanan, L., Opatrny, J., Santoro, N.: Distributed barrier coverage with relocatable sensors. In: Halldórsson, M.M. (ed.) SIROCCO 2014. LNCS, vol. 8576, pp. 235–249. Springer, Cham (2014). doi:10.1007/978-3-319-09620-9_19

    Google Scholar 

  11. Eftekhari, M., Kranakis, E., Krizanc, D., Morales-Ponce, O., Narayanan, L., Opatrny, J., Shende, S.: Distributed algorithms for barrier coverage using relocatable sensors. Distrib. Comput. 29(5), 361–376 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  12. Eftekhari, M., Narayanan, L., Opatrny, J.: On multi-round sensor deployment for barrier coverage. In: Proceedings of 10th IEEE International Conference on Mobile Ad-hoc and Sensor Systems (IEEE MASS), pp. 310–318 (2013)

    Google Scholar 

  13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  14. Habib, M.: Stochastic barrier coverage in wireless sensor networks based on distributed learning automata. Comput. Commun. 55, 51–61 (2015)

    Article  Google Scholar 

  15. Kranakis, E., Krizanc, D., Luccio, F.L., Smith, B.: Maintaining intruder detection capability in a rectangular domain with sensors. In: Bose, P., Gąsieniec, L.A., Römer, K., Wattenhofer, R. (eds.) ALGOSENSORS 2015. LNCS, vol. 9536, pp. 27–40. Springer, Cham (2015). doi:10.1007/978-3-319-28472-9_3

    Chapter  Google Scholar 

  16. Kumar, S., Lai, T.H., Arora, A.: Barrier coverage with wireless sensors. In: Proceedings of the 11th Annual International Conference on Mobile Computing and Networking, pp. 284–298 (2005)

    Google Scholar 

  17. Li, L., Zhang, B., Shen, X., Zheng, J., Yao, Z.: A study on the weak barrier coverage problem in wireless sensor networks. Comput. Netw. 55, 711–721 (2011)

    Article  MATH  Google Scholar 

  18. Mehrandish, M., Narayanan, L., Opatrny, J.: Minimizing the number of sensors moved on line barriers. In: Proceedings of IEEE WCNC, pp. 653–658 (2011)

    Google Scholar 

  19. Yan, G., Qiao, D.: Multi-round sensor deployment for guaranteed barrier coverage. In: Proceedings of IEEE INFOCOM 2010, pp. 2462–2470 (2010)

    Google Scholar 

  20. Dobrev, S., Kranakis, E., Krizanc, D., Lafond, M., Manuch, J., Narayanan, L., Opatrny, J., Stacho, L.: Weak coverage of a rectangular barrier. arXiv 1701.07294 (2017)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lata Narayanan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Dobrev, S. et al. (2017). Weak Coverage of a Rectangular Barrier. In: Fotakis, D., Pagourtzis, A., Paschos, V. (eds) Algorithms and Complexity. CIAC 2017. Lecture Notes in Computer Science(), vol 10236. Springer, Cham. https://doi.org/10.1007/978-3-319-57586-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57586-5_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57585-8

  • Online ISBN: 978-3-319-57586-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics