Skip to main content

Characteristics of Specific Radiopharmaceuticals

  • Chapter
  • First Online:
Book cover Fundamentals of Nuclear Pharmacy
  • 2698 Accesses

Abstract

This chapter contains detailed description of specific radiopharmaceuticals commonly used in nuclear medicine. All US FDA-approved iodinated, 99mTc-labeled products and 111In-labeled products are included with their methods of preparation, conditions of labeling, stability, and radiochemical yield. Separation of red blood cells, white blood cells, and platelets and their labeling with 99mTc and 111In are given in detail. The method of monoclonal antibody production and their labeling with iodine isotopes, 111In, 99mTc, and 90Y, are described. Labeled therapeutic radiopharmaceuticals are separately highlighted. All US FDA-approved PET radiopharmaceuticals and their production methods are presented. Also, a section is devoted to non-US FDA-approved PET radiopharmaceuticals with their production techniques and related conditions. A set of appropriate questions and references related to the subject matter of the chapter are included at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References and Suggested Reading

  • Abrams MJ, Davison A, Jones AG, et al. Synthesis and characterization of hexakis (alkyl isocyanide) and hexakis (aryl isocyanide) complexes of technetium (I). Inorg Chem. 1983;22:2798.

    Article  CAS  Google Scholar 

  • Breeman WA, de Jong M, de Blois E, et al. Radiolabeling DOTA- peptides with 68Ga. Eur J Nucl Med Mol Imaging. 2005;32:478.

    Article  CAS  PubMed  Google Scholar 

  • Callahan RJ, Froelich JW, McKusick KA, et al. A modified method for the in vivo labeling of red blood cells with Tc-99m: concise communication. J Nucl Med. 1982;23:315.

    CAS  PubMed  Google Scholar 

  • Dewanjee MK. The chemistry of 99mTc-labeled radiopharmaceuticals. Semin Nucl Med. 1990;20:5.

    Article  CAS  PubMed  Google Scholar 

  • Eckelman WC, Stiegman J, Paik CH. Radiopharmaceutical chemistry. In: Harpert J, Eckelman WC, Neumann RD, editors. Nuclear medicine: diagnosis and therapy. New York: Thieme Medical; 1996. p. 217.

    Google Scholar 

  • Edwards DS, Cheeseman EH, Watson MW, et al. Synthesis and characterization of technetium and rhenium complexes of N, N′-1, 2-diethylenediylbis-l-cysteine. Neurolites and its metabolites. In: Nicolini M, Bandoli G, Mazzi U, editors. Technetium and rhenium in chemistry and nuclear medicine. Verona: Cortina International; 1990. p. 433.

    Google Scholar 

  • Fritzberg AR, Kasina S, Eshima D, et al. Synthesis and biological evaluation of technetium-99m MAG3 as hippuran replacement. J Nucl Med. 1986;27:11.

    Google Scholar 

  • Hamacher K, Coenen HH, Stocklin G. Efficient stereospecific synthesis of NCA 2-[218F]-fluoro-2-deoxy-d-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med. 1986;27:235.

    Google Scholar 

  • Hara T, Noboru N, Shinoura N, Kondo T. PET imaging of brain tumor with [methyl- 11C]-choline. J Nucl Med. 1997;38:842.

    CAS  PubMed  Google Scholar 

  • Hnatowich DJ. Recent developments in the radiolabeling of antibodies with iodine, indium and technetium. Semin Nucl Med. 1990;20:80.

    Article  CAS  PubMed  Google Scholar 

  • International Atomic Energy Agency. Manual for reactor produced radioisotopes. IAEA-TECDOC-1340; 2003.

    Google Scholar 

  • Kelly JD, Forster AM, Higley B, et al. Technetium-99m-tetrofosmin as a new radiopharmaceutical for myocardial perfusion imaging. J Nucl Med. 1993;34:222.

    CAS  PubMed  Google Scholar 

  • Köhler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256:495.

    Article  PubMed  Google Scholar 

  • Leung K. 2-tert-Butyl-4-chloro-5-[4-(2-[18F]fluoroethoxymethyl)-benzyloxy]-2H–pyridazin-3-one. 2007 Dec 15 [Updated 2012 Jan 24]. In: Molecular Imaging and Contrast Agent Database (MICAD) [Internet]. Bethesda (MD): National Center for Biotechnology Information (US); 2004–2013. Available from: http://www.ncbi.nlm.nih.gov/books/NBK23517/

  • Loberg MD, Cooper M, Harvey E, et al. Development of new radiopharmaceuticals based on N-substitution of iminodiacetic acid. J Nucl Med. 1976;17:633.

    CAS  PubMed  Google Scholar 

  • Luxen A, Bida GT, Phelps ME, et al. Synthesis of enantiomerically pure d and l 6-[F-18] fluorodopa and in vivo metabolites via regioselective fluorodemercuration. J Nucl Med. 1987;28:624.

    Google Scholar 

  • Machulla HJ, Blocher A, Kuntzsch M, et al. Simplified labeling approach for synthesizing 3′-deoxy-3′-[18F] fluorothymidine ([18F] FLT). J Radioanal Nucl Chem. 2000;243:843.

    Article  CAS  Google Scholar 

  • Meyer GJ, Ostercholz A, Hundeshagen H. 15O-water constant infusion system for clinical routine application. J Label Compd Radiopharm. 1986;23:1209.

    Google Scholar 

  • Nelissen N, Van Laere K, Thurfjell L, et al. Phase I study of the Pittsburgh compound B derivative 18F-flutemetamol in healthy volunteers and patients with probable Alzheimer disease. J Nucl Med. 2009;50:1251.

    Article  CAS  PubMed  Google Scholar 

  • Peters AM, Danpure HJ, Osman S, et al. Clinical experience with 99mTc-hexamethyl propylene amine oxime for labeling leukocytes and imaging inflammation. Lancet. 1986;2:946.

    Article  CAS  PubMed  Google Scholar 

  • Pimlott SL, Sutherland A. Molecular tracers for the PET and SPECT imaging of disease. Chem Soc Rev. 2011;40:149.

    Article  CAS  PubMed  Google Scholar 

  • Sodd VJ, Allen DR, Hoagland DR, et al., editors. Radiopharmaceuticals II. New York: Society of Nuclear Medicine; 1979.

    Google Scholar 

  • Shoup TM, Olson J, Hoffman JM, et al. Syntheisis and evaluation of [18F]1-amino-3-fluorocyclobutane-1-carboxylic acid to image brain tumors. J Nucl Med. 1999;40:331.

    CAS  PubMed  Google Scholar 

  • Stöcklin G, Pike VW, editors. Radiopharmaceuticals for positron emission tomography. Dordrecht: Kluwer; 1993.

    Google Scholar 

  • ten Berge RJM, Natarajan AT, Hardenman MR, et al. Labeling with indium-111 has detrimental effects on human lymphocytes. J Nucl Med. 1983;24:615.

    PubMed  Google Scholar 

  • Thakur ML, Coleman RE, Welch MJ. Indium-111-labeled leukocytes for the localization of abscesses: preparation, analysis, tissue distribution and comparison with gallium-67 citrate in dogs. J Lab Clin Med. 1977;82:217.

    Google Scholar 

  • Troutner DR, Volkert WA, Hoffman TJ, et al. A neutral lipophilic complex of Tc-99m with a multidentate amine oxime. Int J Appl Radiat Isot. 1984;35:467.

    Article  CAS  PubMed  Google Scholar 

  • United States Pharmacopeial Convention. U.S. pharmacopeia 39 & National Formulary 34. United States Pharmacopeial Convention: Rockville; 2009.

    Google Scholar 

  • Velikyan I. 68Ga-based radiopharmaceuticals: production and application relationship. Molecules. 2015;20:12913.

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Guo X, Jiang S and Tang S. Automated synthesis of [18F] Florbetaben as Alzheimer’s disease imaging agent based on a synthesis module system. Appl Radiat Isot. 2013;71:41.

    Google Scholar 

  • Weiland D, Bida G, Pagett H, et al. In-target preparation of [13N] ammonia via proton irradiation of dilute aqueous ethanol and acetic acid mixtures. Appl Radiat Isot. 1991;42:1095.

    Article  Google Scholar 

  • Welch MJ, editor. Radiopharmaceuticals and other compounds labelled with short-lived radionuclides. New York: Pergamon Press; 1977.

    Google Scholar 

  • Welch MJ, Redvanly CS, editors. Handbook of radiopharmaceuticals. Radiochemistry and applications. Hoboken: Wiley; 2003.

    Google Scholar 

  • Yao CH, Lin KJ, Weng CC, et al. GMP-compliant automated synthesis of [18F]AV-45 (Florbetapir F-18) for imaging β-amyloid plaques in human brain. Appl Radiat Isot. 2010;68:2293.

    Article  CAS  PubMed  Google Scholar 

  • Zolle I, editor. Technetium-99m pharmaceuticals: preparation and quality control in nuclear medicine. New York: Springer; 2007.

    Google Scholar 

  • Zuckier LS, Rodriguez LD, Scharff MD. Immunologic and pharmacologic concepts of monoclonal antibodies. Semin Nucl Med. 1990;20:166.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Saha, G.B. (2018). Characteristics of Specific Radiopharmaceuticals. In: Fundamentals of Nuclear Pharmacy. Springer, Cham. https://doi.org/10.1007/978-3-319-57580-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57580-3_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57579-7

  • Online ISBN: 978-3-319-57580-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics