Skip to main content

Exploring the Potential of Light to Prevent and Treat Microbial Biofilms in Medical and Food Applications

  • Chapter
  • First Online:
Antimicrobial Coatings and Modifications on Medical Devices

Abstract

Biofilms are complex communities of microbial cells covered in an exopolysaccharide matrix and adhered to a surface. Colonization of medical devices is a significant problem in healthcare-associated infections, especially those related to implanted medical devices such as intravascular catheters and urinary catheters. Recent advances in light technology highlight the potential for light inhibition of biofilm formation in medical devices. This chapter reviews the microbial responses to light, mechanisms of photoinactivation, and some recent research on the use of light to eliminate biofilms. Although light holds a tremendous opportunity to treat antibiotic-resistant infections, challenges in relation to patient safety need to be evaluated. We also discuss some of the research aimed at translating the knowledge into clinical treatment of biofilm-associated infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. P. J. Aphalo, A. Albert, L. O. Björn, A. McLeod, T. M. Robson, E. Rosenqvist (eds.), Beyond the Visible: A Handbook of Best Practice in Plant UV hotobiology (University of Helsinki, Division of Plant Biology, Helsinki, 2012)

    Google Scholar 

  2. H. Ashkenazi, Z. Malik, Y. Harth, Y. Nitzan, Eradication of Propionibacterium acnes by its endogenic porphyrins after illumination with high intensity blue light. FEMS Immunol. Med. Microbiol. 35, 17–24 (2003)

    Article  Google Scholar 

  3. J. Bak, T. Begovic, T. Bjarnsholt, A. Nielsen, A UVC device for intra-luminal disinfection of catheters: in vitro tests on soft polymer tubes contaminated with Pseudomonas aeruginosa, Staphylococcus aureus, Escherichia coli and Candida albicans. Photochem. Photobiol. 87, 1123–1128 (2011)

    Article  Google Scholar 

  4. J. Bak, S.D. Ladefoged, M. Tvede, T. Begovic, A. Gregersen, Disinfection of Pseudomonas aeruginosa biofilm contaminated tube lumens with ultraviolet C light emitting diodes. Biofouling 26, 31–38 (2009a)

    Article  Google Scholar 

  5. J. Bak, S.D. Ladefoged, M. Tvede, T. Begovic, A. Gregersen, Dose requirements for UVC disinfection of catheter biofilms. Biofouling 25, 289–296 (2009b)

    Article  Google Scholar 

  6. C.B. Beggs, C.J. Noakes, P.A. Sleigh, L.A. Fletcher, K.G. Kerr, Methodology for determining the susceptibility of airborne microorganisms to irradiation by an upper-room UVGI system. J. Aerosol Sci. 37, 885–902 (2006)

    Article  Google Scholar 

  7. K.L. Bialka, A. Demirci, Efficacy of pulsed UV-light for the decontamination of Escherichia coli O157:H7 and Salmonella spp. on raspberries and strawberries. J. Food Sci. 73, M201–M207 (2008)

    Article  Google Scholar 

  8. S.A. Brown, K.L. Palmer, M. Whiteley, Revisiting the host as a growth medium. Nat. Rev. Microbiol. 6, 657–666 (2008)

    Article  Google Scholar 

  9. I. Buchovec, E. Paskeviciute, Z. Luksiene, Photosensitization-based inactivation of food pathogen Listeria monocytogenes in vitro and on the surface of packaging material. J. Photochem. Photobiol. B 99, 9–14 (2010)

    Article  Google Scholar 

  10. J. Cadet, E. Sage, T. Douki, Ultraviolet radiation-mediated damage to cellular DNA. Mutat. Res. Fund. Mol. M 571, 3–17 (2005)

    Article  Google Scholar 

  11. J.W. Costerton, P.S. Stewart, E.P. Greenberg, Bacterial biofilms: a common cause of persistent infections. Science 284, 1318–11322 (1999)

    Article  Google Scholar 

  12. T. Dai, A. Gupta, C.K. Murray, M.S. Vrahas, G.P. Tegos, M.R. Hamblin, Blue light for infectious diseases: Propionibacterium acnes, Helicobacter pylori, and beyond? Drug Resist. Updat. 15, 223–236 (2012)

    Article  Google Scholar 

  13. W.H. DePas, D.A. Hufnagel, J.S. Lee, L.P. Blanco, H.C. Bernstein, S.T. Fisher, G.A. James, P.S. Stewart, M.R. Chapman, Iron induces bimodal population development by Escherichia coli. Proc. Natl. Acad. Sci. U. S. A. 110, 2629–2634 (2013)

    Article  Google Scholar 

  14. R.M. Donlan, Role of biofilms in antimicrobial resistance. ASAIO J. 46, S47–S52 (2000)

    Article  Google Scholar 

  15. R.M. Donlan, Biofilms and device-associated infections. Emerg. Infect. Dis. 7, 277 (2001)

    Article  Google Scholar 

  16. R.M. Donlan, Biofilms: microbial life on surfaces. Emerg. Infect. Dis. 8, 881–890 (2002)

    Article  Google Scholar 

  17. O. Dörtbudak, R. Haas, T. Bernhart, G. Mailath-Pokorny, Lethal photosensitization for decontamination of implant surfaces in the treatment of peri-implantitis. Clin. Oral Implants Res. 12, 104–108 (2001)

    Article  Google Scholar 

  18. S. Eick, G. Markauskaite, S. Nietzsche, O. Laugisch, G.E. Salvi, A. Sculean, Effect of photoactivated disinfection with a light-emitting diode on bacterial species and biofilms associated with periodontitis and peri-implantitis. Photodiagn. Photodyn. Ther. 10, 156–167 (2013)

    Article  Google Scholar 

  19. O. Feuerstein, N. Persman, E.I. Weiss, Phototoxic effect of visible light on Porphyromonas gingivalis and Fusobacterium nucleatum: an in vitro study. Photochem. Photobiol. 80, 412–415 (2004)

    Article  Google Scholar 

  20. M.B. Fisher, K.L. Nelson, Inactivation of Escherichia coli by polychromatic simulated sunlight: evidence for and implications of a fenton mechanism involving iron, hydrogen peroxide, and superoxide. Appl. Environ. Microbiol. 80, 935–942 (2014)

    Article  Google Scholar 

  21. C. Fontana, X. Song, A. Polymeri, J. M. Goodson, X. Wang, N. Soukos, The effect of blue light on periodontal biofilm growth in vitro. Lasers Med. Sci. 30, 2077–2080 (2015)

    Google Scholar 

  22. C.R. Fontana, A.D. Abernethy, S. Som, K. Ruggiero, S. Doucette, R.C. Marcantonio, C.I. Boussios, R. Kent, J.M. Goodson, A.C. Tanner, N.S. Soukos, The antibacterial effect of photodynamic therapy in dental plaque-derived biofilms. J. Periodontal Res. 44, 751–759 (2009)

    Article  Google Scholar 

  23. F. Gad, T. Zahra, T. Hasan, M.R. Hamblin, Effects of growth phase and extracellular slime on photodynamic inactivation of Gram-positive pathogenic bacteria. Antimicrob. Agents Chemother. 48, 2173–2178 (2004)

    Article  Google Scholar 

  24. I. García, S. Ballesta, Y. Gilaberte, A. Rezusta, Á. Pascual, Antimicrobial photodynamic activity of hypericin against methicillin-susceptible and resistant Staphylococcus aureus biofilms. Future Microbiol. 10, 347–356 (2015)

    Article  Google Scholar 

  25. V. Ghate, A.L. Leong, A. Kumar, W.S. Bang, W. Zhou, H.-G. Yuk, Enhancing the antibacterial effect of 461 and 521 nm light emitting diodes on selected foodborne pathogens in trypticase soy broth by acidic and alkaline pH conditions. Food Microbiol. 48, 49–57 (2015)

    Article  Google Scholar 

  26. B.F. Godley, F.A. Shamsi, F.-Q. Liang, S.G. Jarrett, S. Davies, M. Boulton, Blue light induces mitochondrial DNA damage and free radical production in epithelial cells. J. Bacteriol. Chem. 280, 21061–21066 (2005)

    Google Scholar 

  27. A. Golic, M. Vaneechoutte, A. Nemec, A.M. Viale, L.A. Actis, M.A. Mussi, Staring at the cold sun: blue light regulation is distributed within the genus Acinetobacter. PLoS One 8, e55059 (2013)

    Article  Google Scholar 

  28. M. Gomelsky, G. Klug, BLUF: a novel FAD-binding domain involved in sensory transduction in microorganisms. Trends Biochem. Sci. 27, 497–500 (2002)

    Article  Google Scholar 

  29. M. Gomelsky, W.D. Hoff, Light helps bacteria make important lifestyle decisions. Trends Microbiol. 19, 441–448 (2011)

    Article  Google Scholar 

  30. M.A. Griffiths, B.W. Wren, M. Wilson, Killing of methicillin-resistant Staphylococcus aureus in vitro using aluminium disulphonated phthalocyanine, a light-activated antimicrobial agent. J. Antimicrob. Chemother. 40, 873–876 (1997)

    Article  Google Scholar 

  31. M. Habash, G. Reid, Microbial biofilms: their development and signifiance for medical device-related infections. J. Clin. Pharmacol. 39, 887–898 (1999)

    Article  Google Scholar 

  32. M.R. Hamblin, T. Hasan, Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem. Photobiol. Sci. 3, 436–450 (2004)

    Article  Google Scholar 

  33. M.R. Hamblin, D.A. O'Donnell, N. Murthy, C.H. Contag, T. Hasan, Rapid control of wound infections by targeted photodynamic therapy monitored by in vivo bioluminescence imaging. Photochem. Photobiol. 75, 51–57 (2002)

    Article  Google Scholar 

  34. R.R.A. Hayek, N.S. Araújo, M.A. Gioso, J. Ferreira, C.A. Baptista-Sobrinho, A.M. Yamada, M.S. Ribeiro, Comparative study between the effects of photodynamic therapy and conventional therapy on microbial reduction in ligature-induced peri-implantitis in dogs. J. Periodontol. 76, 1275–1281 (2005)

    Article  Google Scholar 

  35. Health Protection Agency, English National Point Prevalence Survey on Healthcare-associated Infections and Antimicrobial Use, 2011: Preliminary Data (Health Protection Agency, London, 2012)

    Google Scholar 

  36. J. Herrou, S. Crosson, Function, structure and mechanism of bacterial photosensory LOV proteins. Nat. Rev. Microbiol. 9, 713–723 (2011)

    Article  Google Scholar 

  37. P.E. Hockberger, T.A. Skimina, V.E. Centonze, C. Lavin, S. Chu, S. Dadras, J.K. Reddy, J.G. White, Activation of flavin-containing oxidases underlies light-induced production of H2O2 in mammalian cells. Proc. Natl. Acad. Sci. U. S. A. 96, 6255–6260 (1999)

    Article  Google Scholar 

  38. T.M. Hooton, S.F. Bradley, D.D. Cardenas, R. Colgan, S.E. Geerlings, J.C. Rice, S. Saint, A.J. Schaeffer, P.A. Tambayh, P. Tenke, L.E. Nicolle, Infectious Diseases Society of America, Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 International Clinical Practice Guidelines from the Infectious Diseases Society of America. Clin. Infect. Dis. 50, 625–663 (2010)

    Article  Google Scholar 

  39. C. Jacqueline, J. Caillon, Impact of bacterial biofilm on the treatment of prosthetic joint infections. J. Antimicrob. Chemother. 69, i37–i40 (2014)

    Article  Google Scholar 

  40. C.A. Jones, E. Huberman, M.L. Cunningham, M.J. Peak, Mutagenesis and cytotoxicity in human epithelial cells by far- and near-ultravioelt radiations: action spectra. Radiat. Res. 110, 224–254 (1987)

    Article  Google Scholar 

  41. G. Jori, C. Fabris, M. Soncin, S. Ferro, O. Coppellotti, D. Dei, L. Fantetti, G. Chiti, G. Roncucci, Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications. Lasers Surg. Med. 38, 468–481 (2006)

    Article  Google Scholar 

  42. E.S. Ke, S. Nazzal, Y.H. Tseng, C.P. Chen, T. Tsai, Erythrosine-mediated photodynamic inactivation of bacteria and yeast using green light-emitting diode light. J. Food Drug Anal. 20, 951–956 (2012)

    Google Scholar 

  43. D.B. Kell, A.S. Kaprelyants, D.H. Weichart, C.R. Harwood, M.R. Barer, Viability and activity in readily culturable bacteria: a review and discussion of the practical issues. Antonie Van Leeuwenhoek 73, 169–187 (1998)

    Article  Google Scholar 

  44. M.M. Kleinpenning, T. Smits, M.H.A. Frunt, P.E.J. Van Erp, P.C.M. Van De Kerkhof, R.M.J.P. Gerritsen, Clinical and histological effects of blue light on normal skin. Photodermatol. Photoimmunol. Photomed. 26, 16–21 (2010)

    Article  Google Scholar 

  45. N. Kömerik, M. Wilson, Factors influencing the susceptibility of Gram-negative bacteria to toluidine blue O-mediated lethal photosensitization. J. Appl. Microbiol. 92, 618–623 (2002)

    Article  Google Scholar 

  46. N. Kömerik, H. Nakanishi, A.J. MacRobert, B. Henderson, P. Speight, M. Wilson, In vivo killing of Porphyromonas gingivalis by toluidine blue-mediated photosensitization in an animal model. Antimicrob. Agents Chemother. 47, 932–940 (2003)

    Article  Google Scholar 

  47. K. Krishnamurthy, A. Demirci, J.M. Irudayaraj, Inactivation of Staphylococcus aureus in milk using flow-through pulsed UV-light treatment system. J. Food Sci. 72, M233–M239 (2007)

    Article  Google Scholar 

  48. J. Li, K. Hirota, H. Yumoto, T. Matsuo, Y. Miyake, T. Ichikawa, Enhanced germicidal effects of pulsed UV-LED irradiation on biofilms. J. Appl. Microbiol. 109, 2183–2190 (2010)

    Article  Google Scholar 

  49. J. Liebmann, M. Born, V. Kolb-Bachofen, Blue-light irradiation regulates proliferation and differentiation in human skin cells. J. Invest. Dermatol. 130, 259–269 (2009)

    Article  Google Scholar 

  50. L. López-Jiménez, E. Fusté, B. Martínez-Garriga, J. Arnabat-Domínguez, T. Vinuesa, M. Viñas, Effects of photodynamic therapy on Enterococcus faecalis biofilms. Lasers Med. Sci. 30, 1519–1526 (2015)

    Article  Google Scholar 

  51. A. Losi, W. Gartner, Bacterial bilin- and flavin-binding photoreceptors. Photochem. Photobiol. Sci. 7, 1168–1178 (2008)

    Article  Google Scholar 

  52. R. Lubart, A. Lipovski, Y. Nitzan, H. Friedmann, A possible mechanism for the bactericidal effect of visible light. Laser Ther. 20, 17–22 (2011)

    Article  Google Scholar 

  53. Z. Luksiene, I. Buchovec, E. Paskeviciute, Inactivation of food pathogen Bacillus cereus by photosensitization in vitro and on the surface of packaging material. J. Appl. Microbiol. 107, 2037–2046 (2009)

    Article  Google Scholar 

  54. M. Maclean, S.J. MacGregor, J.G. Anderson, G. Woolsey, High-intensity narrow-spectrum light inactivation and wavelength sensitivity of Staphylococcus aureus. FEMS Microbiol. Lett. 285, 227–232 (2008a)

    Article  Google Scholar 

  55. M. Maclean, S.J. MacGregor, J.G. Anderson, G. Woolsey, The role of oxygen in the visible-light inactivation of Staphylococcus aureus. J. Photochem. Photobiol. B 92, 180–184 (2008b)

    Article  Google Scholar 

  56. M. Maclean, S.J. MacGregor, J.G. Anderson, G. Woolsey, Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light-emitting diode array. Appl. Environ. Microbiol. 75, 1932–1937 (2009)

    Article  Google Scholar 

  57. T.S. Mang, D.P. Tayal, R. Baier, Photodynamic therapy as an alternative treatment for disinfection of bacteria in oral biofilms. Lasers Surg. Med. 44, 588–596 (2012)

    Article  Google Scholar 

  58. K. McKenzie, M. Maclean, I.V. Timoshkin, E. Endarko, S.J. MacGregor, J.G. Anderson, Photoinactivation of bacteria attached to glass and acrylic surfaces by 405 nm light: potential application for biofilm decontamination. Photochem. Photobiol. 89, 927–935 (2013)

    Article  Google Scholar 

  59. E.G. Mima, A.C. Pavarina, L.N. Dovigo, C.E. Vergani, C.A. Costa, C. Kurachi, V.S. Bagnato, Susceptibility of Candida albicans to photodynamic therapy in a murine model of oral candidosis. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 109, 392–401 (2010)

    Article  Google Scholar 

  60. L.E. Murdoch, M. Maclean, E. Endarko, S.J. MacGregor, J.G. Anderson, Bactericidal effects of 405nm light exposure demonstrated by inactivation of Escherichia, Salmonella, Shigella, Listeria, and Mycobacterium species in liquid suspensions and on exposed surfaces. Sci. World J. 2012, 8 (2012)

    Article  Google Scholar 

  61. C. Murphy, C. Carroll, K.N. Jordan, Environmental survival mechanisms of the foodborne pathogen Campylobacter jejuni. J. Appl. Microbiol. 100, 623–632 (2006)

    Article  Google Scholar 

  62. M.A. Mussi, J.A. Gaddy, M. Cabruja, B.A. Arivett, A.M. Viale, R. Rasia, L.A. Actis, The opportunistic human pathogen Acinetobacter baumannii senses and responds to light. J. Bacteriol. 192, 6336–6345 (2010)

    Article  Google Scholar 

  63. C.D. Nadell, J.B. Xavier, S.A. Levin, K.R. Foster, The evolution of quorum sensing in bacterial biofilms. PLoS Biol. 6, e14 (2008)

    Article  Google Scholar 

  64. L.E. Nicolle, Catheter associated urinary tract infections. Antimicrob. Resist. Infect. Control 3, 23 (2014). doi:10.1186/2047-2994-1183-1123

    Article  Google Scholar 

  65. Y. Nitzan, M. Salmon-Divon, E. Shporen, Z. Malik, ALA induced photodynamic effects on Gram positive and negative bacteria. Photochem. Photobiol. Sci. 3, 430–435 (2004)

    Article  Google Scholar 

  66. I. Olsen, Biofilm-specific antibiotic tolerance and resistance. Eur. J. Clin. Microbiol. Infect. Dis. 34, 877–886 (2015)

    Article  Google Scholar 

  67. N. Ondrusch, J. Kreft, Blue and red light modulates SigB-dependent gene transcription, swimming motility and invasiveness in Listeria monocytogenes. PLoS One 6, e16151 (2011)

    Article  Google Scholar 

  68. A. Ouhtit, H.K. Muller, D.W. Davis, S.E. Ullrich, D. McConkey, H.N. Ananthaswamy, Temporal events in skin injury and the early adaptive responses in ultraviolet-irradiated mouse skin. Am. J. Pathol. 156, 201–207 (2000)

    Article  Google Scholar 

  69. O.E. Petrova, K. Sauer, PAS domain residues and prosthetic group involved in BdlA-dependent dispersion response by Pseudomonas aeruginosa biofilms. J. Bacteriol. 194, 5817–5828 (2012)

    Article  Google Scholar 

  70. E.B. Purcell, D. Siegal-Gaskins, D.C. Rawling, A. Fiebig, S. Crosson, A photosensory two-component system regulates bacterial cell attachment. Proc. Natl. Acad. Sci. U. S. A. 104, 18241–18246 (2007)

    Article  Google Scholar 

  71. R.W. Redmond, J.N. Gamlin, A compilation of singlet oxygen yields from biologically relevant molecules. Photochem. Photobiol. 70, 391–475 (1999)

    Article  Google Scholar 

  72. L.G. Ricatto, L.A. Conrado, C.P. Turssi, F.M.G. França, R.T. Basting, F.L.B. Amaral, Comparative evaluation of photodynamic therapy using LASER or light emitting diode on cariogenic bacteria: An in vitro study. Eur. J. Dent. 8, 509–514 (2014)

    Article  Google Scholar 

  73. S.K. Sharma, T. Dai, G.B. Kharkwal, Y.-Y. Huang, L. Huang, V.J. Bil De Arce, G.P. Tegos, M.R. Hamblin, Drug discovery of antimicrobial photosensitizers using animal models. Curr. Pharm. Des. 17, 1303–1319 (2011)

    Article  Google Scholar 

  74. F. Sisti, D.-G. Ha, G.A. O'Toole, D. Hozbor, J. Fernández, Cyclic-di-GMP signalling regulates motility and biofilm formation in Bordetella bronchiseptica. Microbiology 159, 869–879 (2013)

    Article  Google Scholar 

  75. N.S. Soukos, S. Som, A.D. Abernethy, K. Ruggiero, J. Dunham, C. Lee, A.G. Doukas, J.M. Goodson, Phototargeting oral black-pigmented bacteria. Antimicrob. Agents Chemother. 49, 1391–1396 (2005)

    Article  Google Scholar 

  76. P.S. Stewart, M.J. Franklin, Physiological heterogeneity in biofilms. Nat. Rev. Microbiol. 6, 199–210 (2008)

    Article  Google Scholar 

  77. P. Stoodley, K. Sauer, D.G. Davies, J.W. Costerton, Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56, 187–209 (2002)

    Article  Google Scholar 

  78. F. Suzuki, A. Han, G.R. Lankas, H. Utsumi, M.M. Elkind, Spectral dependencies of killing, mutation, and transformation in mammalian cells and their relevance to hazards caused by solar ultraviolet radiation. Cancer Res. 41, 4916–4924 (1981)

    Google Scholar 

  79. R. Tal, H.C. Wong, R. Calhoon, D. Gelfand, A.L. Fear, G. Volman, R. Mayer, P. Ross, D. Amikam, H. Weinhouse, A. Cohen, S. Sapir, P. Ohana, M. Benziman, Three cdg operons control cellular turnover of cyclic di-GMP in Acetobacter xylinum: genetic organization and occurrence of conserved domains in isoenzymes. J. Bacteriol. 180, 4416–4425 (1998)

    Google Scholar 

  80. A. Tavares, C.M. Carvalho, M.A. Faustino, M.G. Neves, J.P. Tomé, A.C. Tomé, J.A. Cavaleiro, Â. Cunha, N.C. Gomes, E. Alves, A. Almeida, Antimicrobial photodynamic therapy: study of bacterial recovery viability and potential development of resistance after treatment. Mar. Drugs 8, 91–105 (2010)

    Article  Google Scholar 

  81. A.H. Teixeira, E.S. Pereira, L.K.A. Rodrigues, D. Saxena, S. Duarte, I.C.J. Zanin, Effect of photodynamic antimicrobial chemotherapy on in vitro and in situ biofilms. Caries Res. 46, 549–554 (2012)

    Article  Google Scholar 

  82. P. Tenke, B. Kovacs, M. Jäckel, E. Nagy, The role of biofilm infection in urology. World J. Urol. 24, 13–20 (2006)

    Article  Google Scholar 

  83. T.P. Thai, P.E. Houghton, D.H. Keast, K.E. Campbell, M.G. Woodbury, Ultraviolet light C in the treatment of chronic wounds with MRSA: a case study. Ostomy Wound Manage. 48, 52–60 (2002)

    Google Scholar 

  84. T. Tiensuu, C. Anderson, R. Rydén, J. Johansson, Cycles of light and dark co-ordinate reversible colony differentiation in Listeria monocytogenes. Mol. Microbiol. 87, 909–924 (2013)

    Article  Google Scholar 

  85. N. Tschowri, S. Lindenberg, R. Hengge, Molecular function and potential evolution of the biofilm-modulating blue light-signalling pathway of Escherichia coli. Mol. Microbiol. 85, 893–906 (2012)

    Article  Google Scholar 

  86. E.M. Tuite, J.M. Kelly, New trends in photobiology: Photochemical interactions of methylene blue and analogues with DNA and other biological substrates. J. Photochem. Photobiol. B 21, 103–124 (1993)

    Article  Google Scholar 

  87. M.H. Upadya, A. Kishen, Influence of bacterial growth modes on the susceptibility to light-activated disinfection. Int. Endod. J. 43, 978–987 (2010)

    Article  Google Scholar 

  88. M.A. van der Horst, P. Stalcup, S. Kaledhonkar, M. Kumauchi, M. Hara, A. Xie, K.J. Hellingwerf, W.D. Hoff, Locked chromophore analogs reveal that photoactive yellow protein regulates biofilm formation in the deep sea bacterium Idiomarina loihiensis. J. Am. Chem. Soc. 131, 17443–17451 (2009)

    Article  Google Scholar 

  89. C. Vassena, S. Fenu, F. Giuliani, L. Fantetti, G. Roncucci, G. Simonutti, C.L. Romanò, R. De Francesco, L. Drago, Photodynamic antibacterial and antibiofilm activity of RLP068/Cl against Staphylococcus aureus and Pseudomonas aeruginosa forming biofilms on prosthetic material. Int. J. Antimicrob. Agents 44, 47–55 (2014)

    Article  Google Scholar 

  90. F. Vatansever, W.C.M.A. de Melo, P. Avci, D. Vecchio, M. Sadasivam, A. Gupta, R. Chandran, M. Karimi, N.A. Parizotto, R. Yin, G.P. Tegos, M.R. Hamblin, Antimicrobial strategies centered around reactive oxygen species – bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol. Rev. 37, 955–989 (2013)

    Article  Google Scholar 

  91. J.W. Verhoeven, Glossary of terms used in photochemistry. Pure Appl. Chem. 68, 2223–2286 (1996)

    Article  Google Scholar 

  92. T. Wang, S.J. MacGregor, J.G. Anderson, G.A. Woolsey, Pulsed ultra-violet inactivation spectrum of Escherichia coli. Water Res. 39, 2921–2925 (2005)

    Article  Google Scholar 

  93. M. Wilson, J. Pratten, Lethal photosensitisation of Staphylococcus aureus in vitro: effect of growth phase, serum, and pre-irradiation time. Lasers Surg. Med. 16, 272–276 (1995)

    Article  Google Scholar 

  94. H. Yang, H. Inokuchi, J. Adler, Phototaxis away from blue light by an Escherichia coli mutant accumulating protoporphyrin IX. Proc. Natl. Acad. Sci. U. S. A. 92, 7332–7336 (1995)

    Article  Google Scholar 

  95. F.H. Yildiz, G.K. Schoolnik, Vibrio cholerae O1 El Tor: Identification of a gene cluster required for the rugose colony type, exopolysaccharide production, chlorine resistance, and biofilm formation. Proc. Natl. Acad. Sci. U. S. A. 96, 4028–4033 (1999)

    Article  Google Scholar 

  96. I.C.J. Zanin, R.B. Gonçalves, A.B. Junior, C.K. Hope, J. Pratten, Susceptibility of Streptococcus mutans biofilms to photodynamic therapy: an in vitro study. J. Antimicrob. Chemother. 56, 324–330 (2005)

    Article  Google Scholar 

  97. I.C.J. Zanin, M.M. Lobo, L.K.A. Rodrigues, L.A.F. Pimenta, J.F. Höfling, R.B. Gonçalves, Photosensitization of in vitro biofilms by toluidine blue O combined with a light-emitting diode. Eur. J. Oral Sci. 114, 64–69 (2006)

    Article  Google Scholar 

  98. Y. Zhang, Y. Zhu, A. Gupta, Y. Huang, C.K. Murray, M.S. Vrahas, M.E. Sherwood, D.G. Baer, M.R. Hamblin, T. Dai, Antimicrobial blue light therapy for multidrug-resistant Acinetobacter baumannii infection in a mouse burn model: implications for prophylaxis and treatment of combat-related wound infections. J. Infect. Dis. 209, 1963–1971 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Conor P. O’Byrne .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Vollmerhausen, T.L., Conneely, A.J., O’Byrne, C.P. (2017). Exploring the Potential of Light to Prevent and Treat Microbial Biofilms in Medical and Food Applications. In: Zhang, Z., Wagner, V. (eds) Antimicrobial Coatings and Modifications on Medical Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-57494-3_9

Download citation

Publish with us

Policies and ethics