Skip to main content

Molecular Approaches for Studying Medical Device-Associated Biofilms: Techniques, Challenges, and Future Prospects

  • Chapter
  • First Online:
Antimicrobial Coatings and Modifications on Medical Devices

Abstract

Bacteria dwelling within medical device-associated biofilms are remarkably difficult to treat with antibiotics or antimicrobials. To better engineer and develop strategies to control these medical device-based biofilms, considerable interest has been focused on developing new types of diagnostic methods to study the architecture of, and metabolism within, such biofilms. Traditional studies of biofilm formation on medical devices have been carried out using selective plating techniques with destructive samples. However, selective plating is based on cultivation methods that may underestimate the overall extent of the population and only provides cell population measures over the spatially averaged population instead of providing an insight on the local scale of the population. Molecular-based approaches, especially coupled with other tools such as microscopy, flow cytometry, etc., have revolutionized the ability to rapidly detect, identify, and evaluate microorganisms in medical device-associated biofilms. Compared with conventional culture methods, molecular techniques not only can provide species information for bacteria present in biofilms but also help to understand the function and activities of the medical device-associated biofilms.

Examples of such molecular analysis methods include 16S rRNA gene sequencing, denaturing gradient gel electrophoresis (DGGE), terminal restriction fragment length polymorphism (T-RFLP), denaturing high-performance liquid chromatography (DHPLC), and pyrosequencing. In addition, the application of DNA probes (checkerboard DNA-DNA hybridization) or 16S rRNA probes hybridization (FISH) coupled with microscopy allows the detection and enumeration of bacterial species with the additional function of multi-parametric analysis. Other innovative methods, including flow cytometry (FCM), fluorescence-activated cell sorting (FACS), and imaging flow cytometry (IFCM), have also paved the way for new possibilities in biofilm research through gaining a wide range of data on specific proteins related to biofilm function and biochemical measurement. Further, the combination of molecular-based techniques with immunological approaches creates new possibilities in medical device-associated biofilm research through understanding the function and activities of taxa present in the biofilms, rather than just recognizing microbes. However, these approaches are not perfect as they still possess some weaknesses, including high cost, time-consuming nature, lower specificity, potential for artificial results, and high requirements for user expertise in instrument operation and sample processing, etc. Despite many big challenges ahead, molecular-based techniques for the analysis of medical device-associated biofilms are likely to become more important in determining taxa present in biofilms as well as help to understand the function and pathogenicity of microbial populations within biofilms. The combined usage of molecular-based experimental approaches with other methods, such as immunological analysis and microscopy, will further broaden its applications in clinically relevant diagnosis and treatment of biofilm infections associated with medical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. J.D. Bryers, Biofilms-II (JWiley-Liss Publishers, New York, 2000)

    Google Scholar 

  2. S.S. Socransky, A.D. Haffajee, The bacterial etiology of destructive periodontal disease: current concepts. J. Periodontol. 63, 322–331 (1992)

    Article  Google Scholar 

  3. P.S. Stewart, Biofilm accumulation model that predicts antibiotic resistance of Pseudomonas aeruginosa biofilms. Antimicrob. Agents Chemother. 38, 1052–1058 (1994)

    Article  Google Scholar 

  4. H. Ma, K.N. Katzenmeyer, J.D. Bryers, Non-invasive in situ monitoring and quantification of TOL plasmid segregational loss within Pseudomonas putida biofilms. Biotechnol. Bioeng. 110, 2949–2958 (2013)

    Article  Google Scholar 

  5. C.T. Huang, S.W. Peretti, J.D. Bryers, Effects of medium carbon-to-nitrogen ratio on biofilm formation and plasmid stability. Biotechnol. Bioeng. 44, 329–336 (1994)

    Article  Google Scholar 

  6. D.L. Beaudoin, J.D. Bryers, A.B. Cunningham, S.W. Peretti, Mobilization of broad host range plasmid from Pseudomonas putida to established biofilm of Bacillus azotoformans. I. Experiments. Biotechnol. Bioeng. 57, 272–279 (1998)

    Article  Google Scholar 

  7. H. Ma, J.D. Bryers, Non-invasive determination of conjugative transfer of plasmids bearing antibiotic-resistance genes in biofilm-bound bacteria: effects of substrate loading and antibiotic selection. Appl. Microbiol. Biotechnol. 97, 317–328 (2013)

    Article  Google Scholar 

  8. C. Hennequin, C. Aumeran, F. Robin, O. Traore, C. Forestier, Antibiotic resistance and plasmid transfer capacity in biofilm formed with a CTX-M-15-producing Klebsiella pneumoniae isolate. J. Antimicrob. Chemother. 67, 2123–2130 (2012)

    Article  Google Scholar 

  9. S.M. Jacobsen, D.J. Stickler, H.L. Mobley, M.E. Shirtliff, Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin. Microbiol. Rev. 21, 26–59 (2008)

    Article  Google Scholar 

  10. J.D. Oliver, The viable but non-culturable state in the human pathogen Vibrio vulnificus. FEMS Microbiol. Lett. 133, 203–208 (1995)

    Article  Google Scholar 

  11. V. Torsvik, J. Goksoyr, F.L. Daae, High diversity in DNA of soil bacteria. Appl. Environ. Microbiol. 56, 782–787 (1990)

    Google Scholar 

  12. R.I. Amann, W. Ludwig, K.H. Schleifer, Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59, 143–169 (1995)

    Google Scholar 

  13. S. Musovic, G. Oregaard, N. Kroer, S.J. Sorensen, Cultivation-independent examination of horizontal transfer and host range of an IncP-1 plasmid among gram-positive and gram-negative bacteria indigenous to the barley rhizosphere. Appl. Environ. Microbiol. 72, 6687–6692 (2006)

    Article  Google Scholar 

  14. K. Ohlsen, T. Ternes, G. Werner, U. Wallner, D. Loffler, W. Ziebuhr, et al., Impact of antibiotics on conjugational resistance gene transfer in Staphylococcus aureus in sewage. Environ. Microbiol. 5, 711–716 (2003)

    Article  Google Scholar 

  15. M.K. Banks, J.D. Bryers, Bacterial species dominance within a binary culture biofilm. Appl. Environ. Microbiol. 57, 1974–1979 (1991)

    Google Scholar 

  16. W.G. Characklis, K.C. Marshall, Biofilms (J Wiley & Sons, New York, 1990)

    Google Scholar 

  17. J.D. Bryers, Medical biofilms. Biotechnol. Bioeng. 100, 1–18 (2008)

    Article  Google Scholar 

  18. H.J. Busscher, M. Rinastiti, W. Siswomihardjo, H.C. van der Mei, Biofilm formation on dental restorative and implant materials. J. Dent. Res. 89, 657–665 (2010)

    Article  Google Scholar 

  19. N. Raman, M.R. Lee, S.P. Palecek, D.M. Lynn, Polymer multilayers loaded with antifungal beta-peptides kill planktonic Candida albicans and reduce formation of fungal biofilms on the surfaces of flexible catheter tubes. J. Control. Release 191, 54–62 (2014)

    Article  Google Scholar 

  20. C.G. Roberts, The role of biofilms in reprocessing medical devices. Am. J. Infect. Control 41, S77–S80 (2013)

    Article  Google Scholar 

  21. R.M. Donlan, Biofilms and device-associated infections. Emerg. Infect. Dis. 7, 277–281 (2001)

    Article  Google Scholar 

  22. N. Jiricny, S. Molin, K. Foster, S.P. Diggle, P.D. Scanlan, M. Ghoul, et al., Loss of social behaviours in populations of Pseudomonas aeruginosa infecting lungs of patients with cystic fibrosis. PLoS One 9, e83124 (2014)

    Article  Google Scholar 

  23. J. Paredes, M. Alonso-Arce, C. Schmidt, D. Valderas, B. Sedano, J. Legarda, et al., Smart central venous port for early detection of bacterial biofilm related infections. Biomed. Microdevices 16, 365–374 (2014)

    Google Scholar 

  24. N. Hoiby, Recent advances in the treatment of Pseudomonas Aeruginosa infections in cystic fibrosis. BMC Med. 9, 32 (2011)

    Article  Google Scholar 

  25. C. Tam, J.J. Mun, D.J. Evans, S.M. Fleiszig, The impact of inoculation parameters on the pathogenesis of contact lens-related infectious keratitis. Invest. Ophthalmol. Vis. Sci. 51, 3100–3106 (2010)

    Article  Google Scholar 

  26. P. Castelli, R. Caronno, S. Ferrarese, V. Mantovani, G. Piffaretti, M. Tozzi, et al., New trends in prosthesis infection in cardiovascular surgery. Surg. Infect. 7(Suppl 2), S45–S47 (2006)

    Google Scholar 

  27. P.D. Marsh, Dental plaque as a biofilm and a microbial community – implications for health and disease. BMC Oral Health 6(Suppl 1), S14 (2006)

    Article  Google Scholar 

  28. A. Hasan, R.M. Palmer, A clinical guide to periodontology: pathology of periodontal disease. Br. Dent. J. 216, 457–461 (2014)

    Article  Google Scholar 

  29. D.W. Paquette, N. Brodala, R.C. Williams, Risk factors for endosseous dental implant failure. Dent. Clin. N. Am. 50, 361–374 (2006.) vi

    Article  Google Scholar 

  30. B.C. Webb, C.J. Thomas, M.D. Willcox, D.W. Harty, K.W. Knox, Candida-associated denture stomatitis. Aetiology and management: a review. Part 2. Oral diseases caused by Candida species. Aust. Dent. J. 43, 160–166 (1998)

    Article  Google Scholar 

  31. A. Resch, R. Rosenstein, C. Nerz, F. Gotz, Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions. Appl. Environ. Microbiol. 71, 2663–2676 (2005)

    Article  Google Scholar 

  32. Prevention Cfdca, Healthcare-associated infections (2005), http://www.cdcgov/ncidod/dhqp/healthDishtml

  33. K.A. Poelstra, N.A. Barekzi, A.M. Rediske, A.G. Felts, J.B. Slunt, D.W. Grainger, Prophylactic treatment of gram-positive and gram-negative abdominal implant infections using locally delivered polyclonal antibodies. J. Biomed. Mater. Res. 60, 206–215 (2002)

    Article  Google Scholar 

  34. R.M. Donlan, Biofilm formation: a clinically relevant microbiological process. Clin. Infect. Dis. 33, 1387–1392 (2001)

    Article  Google Scholar 

  35. P. Gilbert, D.G. Allison, A.J. McBain, Biofilms in vitro and in vivo: do singular mechanisms imply cross-resistance? J. Appl. Microbiol. 92(Suppl), 98S–110S (2002)

    Article  Google Scholar 

  36. K. Lewis, Riddle of biofilm resistance. Antimicrob. Agents Chemother. 45, 999–1007 (2001)

    Article  Google Scholar 

  37. P.S. Stewart, J.W. Costerton, Antibiotic resistance of bacteria in biofilms. Lancet 358, 135–138 (2001)

    Article  Google Scholar 

  38. N. Bagge, M. Schuster, M. Hentzer, O. Ciofu, M. Givskov, E.P. Greenberg, et al., Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. Antimicrob. Agents Chemother. 48, 1175–1187 (2004)

    Article  Google Scholar 

  39. M.T. McCann, B.F. Gilmore, S.P. Gorman, Staphylococcus epidermidis device-related infections: pathogenesis and clinical management. J. Pharm. Pharmacol. 60, 1551–1571 (2008)

    Article  Google Scholar 

  40. J. Hirschfeld, Dynamic interactions of neutrophils and biofilms. J. Oral Microbiol. 6, 26102 (2014)

    Article  Google Scholar 

  41. R.J. Fair, Y. Tor, Antibiotics and bacterial resistance in the 21st century. Perspect. Medicin. Chem. 6, 25–64 (2014)

    Google Scholar 

  42. I. Francolini, G. Donelli, Prevention and control of biofilm-based medical-device-related infections. FEMS Immunol. Med. Microbiol. 59, 227–238 (2010)

    Article  Google Scholar 

  43. M. Kazemzadeh-Narbat, B.F. Lai, C. Ding, J.N. Kizhakkedathu, R.E. Hancock, R. Wang, Multilayered coating on titanium for controlled release of antimicrobial peptides for the prevention of implant-associated infections. Biomaterials 34, 5969–5977 (2013)

    Article  Google Scholar 

  44. B.D. Ratner, S.J. Bryant, Biomaterials: where we have been and where we are going. Annu. Rev. Biomed. Eng. 6, 41–75 (2004)

    Article  Google Scholar 

  45. J.M. Yarwood, P.M. Schlievert, Quorum sensing in Staphylococcus infections. J. Clin. Invest. 112, 1620–1625 (2003)

    Article  Google Scholar 

  46. E.J. Bottone, Bacillus cereus, a volatile human pathogen. Clin. Microbiol. Rev. 23, 382–398 (2010)

    Article  Google Scholar 

  47. W.E. Moore, L.V. Holdeman, E.P. Cato, R.M. Smibert, J.A. Burmeister, R.R. Ranney, Bacteriology of moderate (chronic) periodontitis in mature adult humans. Infect. Immun. 42, 510–515 (1983)

    Google Scholar 

  48. R.J. Sherertz, I.I. Raad, A. Belani, L.C. Koo, K.H. Rand, D.L. Pickett, et al., Three-year experience with sonicated vascular catheter cultures in a clinical microbiology laboratory. J. Clin. Microbiol. 28, 76–82 (1990)

    Google Scholar 

  49. J. Dy Chua, A. Abdul-Karim, S. Mawhorter, G.W. Procop, P. Tchou, M. Niebauer, et al., The role of swab and tissue culture in the diagnosis of implantable cardiac device infection. Pacing Clin. Electrophysiol (PACE) 28, 1276–1281 (2005)

    Article  Google Scholar 

  50. D. Haubek, The highly leukotoxic JP2 clone of Aggregatibacter actinomycetemcomitans: evolutionary aspects, epidemiology and etiological role in aggressive periodontitis. APMIS Suppl.130, 1–53 (2010)

    Google Scholar 

  51. J.M. Vroom, K.J. De Grauw, H.C. Gerritsen, D.J. Bradshaw, P.D. Marsh, G.K. Watson, et al., Depth penetration and detection of pH gradients in biofilms by two-photon excitation microscopy. Appl. Environ. Microbiol. 65, 3502–3511 (1999)

    Google Scholar 

  52. L.M. Silverstone, N.W. Johnson, J.M. Hardie, R.A.D. Williams, The Formation, Structure and Microbial Composition of Dental Plaque (Macmillan Press, London, 1981)

    Book  Google Scholar 

  53. J.W. Costerton, Z. Lewandowski, D.E. Caldwell, D.R. Korber, H.M. Lappin-Scott, Microbial biofilms. Annu. Rev. Microbiol. 49, 711–745 (1995)

    Article  Google Scholar 

  54. J.R. Lawrence, D.R. Korber, B.D. Hoyle, J.W. Costerton, D.E. Caldwell, Optical sectioning of microbial biofilms. J. Bacteriol. 173, 6558–6567 (1991)

    Article  Google Scholar 

  55. G.S. Cook, J.W. Costerton, R.J. Lamont, Biofilm formation by Porphyromonas gingivalis and Streptococcus gordonii. J. Periodontal Res. 33, 323–327 (1998)

    Article  Google Scholar 

  56. D. Cummins, M.C. Moss, C.L. Jones, C.V. Howard, P.G. Cummins, Confocal microscopy of dental plaque development. Binary.4, 86–91 (1992)

    Google Scholar 

  57. M.K. Kasliwal, L.A. Tan, V.C. Traynelis, Infection with spinal instrumentation: Review of pathogenesis, diagnosis, prevention, and management. Surg. Neurol. Int. 4, S392–S403 (2013)

    Article  Google Scholar 

  58. G. Fatkenheuer, O. Cornely, H. Seifert, Clinical management of catheter-related infections. Clin. Microbiol. Infect. 8, 545–550 (2002)

    Article  Google Scholar 

  59. M. Gotthardt, C.P. Bleeker-Rovers, O.C. Boerman, W.J. Oyen, Imaging of inflammation by PET, conventional scintigraphy, and other imaging techniques. J. Nucl. Med. 51, 1937–1949 (2010)

    Google Scholar 

  60. J.M. Janda, S.L. Abbott, 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J. Clin. Microbiol. 45, 2761–2764 (2007)

    Article  Google Scholar 

  61. A.C. Tanner, J.M. Mathney, R.L. Kent, N.I. Chalmers, C.V. Hughes, C.Y. Loo, et al., Cultivable anaerobic microbiota of severe early childhood caries. J. Clin. Microbiol. 49, 1464–1474 (2011)

    Article  Google Scholar 

  62. A. de Lillo, V. Booth, L. Kyriacou, A.J. Weightman, W.G. Wade, Culture-independent identification of periodontitis-associated Porphyromonas and Tannerella populations by targeted molecular analysis. J. Clin. Microbiol. 42, 5523–5527 (2004)

    Article  Google Scholar 

  63. B.J. Paster, S.K. Boches, J.L. Galvin, R.E. Ericson, C.N. Lau, V.A. Levanos, et al., Bacterial diversity in human subgingival plaque. J. Bacteriol. 183, 3770–3783 (2001)

    Article  Google Scholar 

  64. W.P. Hanage, C. Fraser, B.G. Spratt, Fuzzy species among recombinogenic bacteria. BMC Biol. 3, 6 (2005)

    Article  Google Scholar 

  65. S.G. Fischer, L.S. Lerman, DNA fragments differing by single base-pair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proc. Natl. Acad. Sci. U. S. A. 80, 1579–1583 (1983)

    Article  Google Scholar 

  66. K. Duan, C. Dammel, J. Stein, H. Rabin, M.G. Surette, Modulation of Pseudomonas Aeruginosa gene expression by host microflora through interspecies communication. Mol. Microbiol. 50, 1477–1491 (2003)

    Article  Google Scholar 

  67. R. McNab, S.K. Ford, A. El-Sabaeny, B. Barbieri, G.S. Cook, R.J. Lamont, LuxS-based signaling in Streptococcus gordonii: autoinducer 2 controls carbohydrate metabolism and biofilm formation with Porphyromonas gingivalis. J. Bacteriol. 185, 274–284 (2003)

    Article  Google Scholar 

  68. L.C. Simoes, M. Simoes, M.J. Vieira, Intergeneric coaggregation among drinking water bacteria: evidence of a role for Acinetobacter calcoaceticus as a bridging bacterium. Appl. Environ. Microbiol. 74, 1259–1263 (2008)

    Article  Google Scholar 

  69. R.G. Ledder, A.S. Timperley, M.K. Friswell, S. Macfarlane, A.J. McBain, Coaggregation between and among human intestinal and oral bacteria. FEMS Microbiol. Ecol. 66, 630–636 (2008)

    Article  Google Scholar 

  70. J. Vornhagen, M. Stevens, D.W. McCormick, S.E. Dowd, J.N. Eisenberg, B.R. Boles, et al., Coaggregation occurs amongst bacteria within and between biofilms in domestic showerheads. Biofouling 29, 53–68 (2013)

    Article  Google Scholar 

  71. H.S. Choe, S.W. Son, H.A. Choi, H.J. Kim, S.G. Ahn, J.H. Bang, et al., Analysis of the distribution of bacteria within urinary catheter biofilms using four different molecular techniques. Am. J. Infect. Control 40, e249–e254 (2012)

    Article  Google Scholar 

  72. G.M. Hommez, R. Verhelst, G. Claeys, M. Vaneechoutte, R.J. De Moor, Investigation of the effect of the coronal restoration quality on the composition of the root canal microflora in teeth with apical periodontitis by means of T-RFLP analysis. Int. Endod. J. 37, 819–827 (2004)

    Article  Google Scholar 

  73. W.T. Liu, T.L. Marsh, H. Cheng, L.J. Forney, Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Appl. Environ. Microbiol. 63, 4516–4522 (1997)

    Google Scholar 

  74. H. Sakamoto, Y. Mezaki, H. Shikimi, K. Ukena, K. Tsutsui, Dendritic growth and spine formation in response to estrogen in the developing Purkinje cell. Endocrinol 144, 4466–4477 (2003)

    Article  Google Scholar 

  75. M. Sakamoto, Y. Huang, M. Ohnishi, M. Umeda, I. Ishikawa, Y. Benno, Changes in oral microbial profiles after periodontal treatment as determined by molecular analysis of 16S rRNA genes. J. Med. Microbiol. 53, 563–571 (2004)

    Article  Google Scholar 

  76. J. Dunbar, L.O. Ticknor, C.R. Kuske, Phylogenetic specificity and reproducibility and new method for analysis of terminal restriction fragment profiles of 16S rRNA genes from bacterial communities. Appl. Environ. Microbiol. 67, 190–197 (2001)

    Article  Google Scholar 

  77. E. Domann, G. Hong, C. Imirzalioglu, S. Turschner, J. Kuhle, C. Watzel, et al., Culture-independent identification of pathogenic bacteria and polymicrobial infections in the genitourinary tract of renal transplant recipients. J. Clin. Microbiol. 41, 5500–5510 (2003)

    Article  Google Scholar 

  78. O. Goldenberg, S. Herrmann, T. Adam, G. Marjoram, G. Hong, U.B. Gobel, et al., Use of denaturing high-performance liquid chromatography for rapid detection and identification of seven Candida species. J. Clin. Microbiol. 43, 5912–5915 (2005)

    Article  Google Scholar 

  79. R.C. Jacinto, B.P. Gomes, M. Desai, D. Rajendram, H.N. Shah, Bacterial examination of endodontic infections by clonal analysis in concert with denaturing high-performance liquid chromatography. Oral Microbiol. Immunol. 22, 403–410 (2007)

    Article  Google Scholar 

  80. A. von Bubnoff, Next-generation sequencing: the race is on. Cell 132, 721–723 (2008)

    Article  Google Scholar 

  81. M. Ronaghi, M. Uhlen, P. Nyren, A sequencing method based on real-time pyrophosphate. Sci 281, 363–365 (1998)

    Article  Google Scholar 

  82. J.F. Siqueira Jr., A.F. Fouad, I.N. Rocas, Pyrosequencing as a tool for better understanding of human microbiomes. J. Oral Microbiol. 4 (2012). doi:10.3402/jom.v4i0.10743

  83. J.R. Cole, Q. Wang, E. Cardenas, J. Fish, B. Chai, R.J. Farris, et al., The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res. 37, D141–D145 (2009)

    Article  Google Scholar 

  84. S.S. Socransky, C. Smith, L. Martin, B.J. Paster, F.E. Dewhirst, A.E. Levin, “Checkerboard” DNA-DNA hybridization. BioTechniques 17, 788–792 (1994)

    Google Scholar 

  85. S.S. Socransky, A.D. Haffajee, C. Smith, L. Martin, J.A. Haffajee, N.G. Uzel, et al., Use of checkerboard DNA-DNA hybridization to study complex microbial ecosystems. Oral Microbiol. Immunol. 19, 352–362 (2004)

    Article  Google Scholar 

  86. A.P. Vieira Colombo, C.B. Magalhaes, F.A. Hartenbach, R. Martins do Souto, C. Maciel da Silva-Boghossian, Periodontal-disease-associated biofilm: a reservoir for pathogens of medical importance. Microb. Pathog. 94, 27–34 (2016)

    Article  Google Scholar 

  87. S.J. Giovannoni, S. Turner, G.J. Olsen, S. Barns, D.J. Lane, N.R. Pace, Evolutionary relationships among cyanobacteria and green chloroplasts. J. Bacteriol. 170, 3584–3592 (1988)

    Article  Google Scholar 

  88. M. Wagner, S. Haider, New trends in fluorescence in situ hybridization for identification and functional analyses of microbes. Curr. Opin. Biotechnol. 23, 96–102 (2012)

    Article  Google Scholar 

  89. A. Pernthaler, J. Pernthaler, R. Amann, Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol. 68, 3094–3101 (2002)

    Article  Google Scholar 

  90. A.E. Dekas, R.S. Poretsky, V.J. Orphan, Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia. Science 326, 422–426 (2009)

    Article  Google Scholar 

  91. W.E. Huang, K. Stoecker, R. Griffiths, L. Newbold, H. Daims, A.S. Whiteley, et al., Raman-FISH: combining stable-isotope Raman spectroscopy and fluorescence in situ hybridization for the single cell analysis of identity and function. Environ. Microbiol. 9, 1878–1889 (2007)

    Article  Google Scholar 

  92. M. Wagner, P.H. Nielsen, A. Loy, J.L. Nielsen, H. Daims, Linking microbial community structure with function: fluorescence in situ hybridization-microautoradiography and isotope arrays. Curr. Opin. Biotechnol. 17, 83–91 (2006)

    Article  Google Scholar 

  93. R.L. Macintosh, J.L. Brittan, R. Bhattacharya, H.F. Jenkinson, J. Derrick, M. Upton, et al., The terminal a domain of the fibrillar accumulation-associated protein (Aap) of Staphylococcus epidermidis mediates adhesion to human corneocytes. J. Bacteriol. 191, 7007–7016 (2009)

    Article  Google Scholar 

  94. F. Oliveira, C.A. Lima, S. Bras, A. Franca, N. Cerca, Evidence for inter- and intraspecies biofilm formation variability among a small group of coagulase-negative staphylococci. FEMS Microbiol. Lett. 362, 1–7 (2015)

    Google Scholar 

  95. H. Hui, K. Fuller, W.N. Erber, M.D. Linden, Measurement of monocyte-platelet aggregates by imaging flow cytometry. Cytometry A 87, 273–278 (2015)

    Article  Google Scholar 

  96. D.A. Basiji, W.E. Ortyn, L. Liang, V. Venkatachalam, P. Morrissey, Cellular image analysis and imaging by flow cytometry. Clin. Lab. Med. 27, 653–670 (2007) viii

    Article  Google Scholar 

  97. U. Dapunt, T. Giese, S. Stegmaier, A. Moghaddam, G.M. Hansch, The osteoblast as an inflammatory cell: production of cytokines in response to bacteria and components of bacterial biofilms. BMC Musculoskelet. Disord. 17, 243 (2016)

    Article  Google Scholar 

  98. D. Cantero, C. Cooksley, C. Jardeleza, A. Bassiouni, D. Jones, P.J. Wormald, et al., A human nasal explant model to study Staphylococcus aureus biofilm in vitro. Int. Forum. Allergy Rhinol. 3, 556–562 (2013)

    Article  Google Scholar 

  99. J.V. Green, K.I. Orsborn, M. Zhang, Q.K. Tan, K.D. Greis, A. Porollo, et al., Heparin-binding motifs and biofilm formation by Candida albicans. J. Infect. Dis. 208, 1695–1704 (2013)

    Article  Google Scholar 

  100. I. Capila, R.J. Linhardt, Heparin-protein interactions. Angew. Chem. 41, 391–412 (2002)

    Article  Google Scholar 

  101. J. Sillanpaa, S.R. Nallapareddy, K.V. Singh, V.P. Prakash, T. Fothergill, H. Ton-That, et al., Characterization of the ebp (fm) pilus-encoding operon of enterococcus faecium and its role in biofilm formation and virulence in a murine model of urinary tract infection. Virulence 1, 236–246 (2010)

    Article  Google Scholar 

  102. C. Black, I. Allan, S.K. Ford, M. Wilson, R. McNab, Biofilm-specific surface properties and protein expression in oral Streptococcus sanguis. Arch. Oral Biol. 49, 295–304 (2004)

    Article  Google Scholar 

  103. S.M. Hamlet, Quantitative analysis of periodontal pathogens by ELISA and real-time polymerase chain reaction. Methods Mol. Biol. 666, 125–140 (2010)

    Article  Google Scholar 

  104. D.N. Frank, S.S. Wilson, A.L. St Amand, N.R. Pace, Culture-independent microbiological analysis of foley urinary catheter biofilms. PLoS One 4, e7811 (2009)

    Article  Google Scholar 

  105. M. Guilbaud, P. de Coppet, F. Bourion, C. Rachman, H. Prevost, X. Dousset, Quantitative detection of Listeria monocytogenes in biofilms by real-time PCR. Appl. Environ. Microbiol. 71, 2190–2194 (2005)

    Article  Google Scholar 

  106. S. Warwick, M. Wilks, E. Hennessy, J. Powell-Tuck, M. Small, J. Sharp, et al., Use of quantitative 16S ribosomal DNA detection for diagnosis of central vascular catheter-associated bacterial infection. J. Clin. Microbiol. 42, 1402–1408 (2004)

    Article  Google Scholar 

  107. G. Zandri, S. Pasquaroli, C. Vignaroli, S. Talevi, E. Manso, G. Donelli, et al., Detection of viable but non-culturable staphylococci in biofilms from central venous catheters negative on standard microbiological assays. Clin. Microbiol. Infect. 18, E259–E261 (2012)

    Article  Google Scholar 

  108. Human Oral Microbiome Database: Human oral microbiome database at the Forsyth Institute (USA) (2012), Available from: http://www.homd.org

  109. A.L. Griffen, C.J. Beall, N.D. Firestone, E.L. Gross, J.M. Difranco, J.H. Hardman, et al., CORE: a phylogenetically-curated 16S rDNA database of the core oral microbiome. PLoS One 6, e19051 (2011)

    Article  Google Scholar 

  110. G. Muyzer, K. Smalla, Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73, 127–141 (1998)

    Article  Google Scholar 

  111. G. Muyzer, E.C. de Waal, A.G. Uitterlinden, Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl. Environ. Microbiol. 59, 695–700 (1993)

    Google Scholar 

  112. L. Cocolin, L.F. Bisson, D.A. Mills, Direct profiling of the yeast dynamics in wine fermentations. FEMS Microbiol. Lett. 189, 81–87 (2000)

    Article  Google Scholar 

  113. J.R. Cole, B. Chai, R.J. Farris, Q. Wang, S.A. Kulam, D.M. McGarrell, et al., The ribosomal database project (RDP-II): sequences and tools for high-throughput rRNA analysis. Nucleic Acids Res. 33, D294–D296 (2005)

    Article  Google Scholar 

  114. T.M. Norden-Krichmar, A.E. Allen, T. Gaasterland, M. Hildebrand, Characterization of the small RNA transcriptome of the diatom, Thalassiosira pseudonana. PLoS One 6, e22870 (2011)

    Article  Google Scholar 

  115. V. Lazarevic, K. Whiteson, S. Huse, D. Hernandez, L. Farinelli, M. Osteras, et al., Metagenomic study of the oral microbiota by Illumina high-throughput sequencing. J. Microbiol. Methods 79, 266–271 (2009)

    Article  Google Scholar 

  116. M.L. Metzker, Sequencing technologies – the next generation. Nat. Rev. Genet. 11, 31–46 (2010)

    Article  Google Scholar 

  117. J. Shendure, H. Ji, Next-generation DNA sequencing. Nat. Biotechnol. 26, 1135–1145 (2008)

    Article  Google Scholar 

  118. E.R. Mardis, Next-generation DNA sequencing methods. Annu. Rev. Genomics Hum. Genet. 9, 387–402 (2008)

    Article  Google Scholar 

  119. K.V. Voelkerding, S.A. Dames, J.D. Durtschi, Next-generation sequencing: from basic research to diagnostics. Clin. Chem. 55, 641–658 (2009)

    Article  Google Scholar 

  120. B.J. Keijser, E. Zaura, S.M. Huse, J.M. van der Vossen, F.H. Schuren, R.C. Montijn, et al., Pyrosequencing analysis of the oral microflora of healthy adults. J. Dent. Res. 87, 1016–1020 (2008)

    Article  Google Scholar 

  121. S.E. Dowd, R.D. Wolcott, Y. Sun, T. McKeehan, E. Smith, D. Rhoads, Polymicrobial nature of chronic diabetic foot ulcer biofilm infections determined using bacterial tag encoded FLX amplicon pyrosequencing (bTEFAP). PLoS One 3, e3326 (2008)

    Article  Google Scholar 

  122. S.E. Dowd, Y. Sun, P.R. Secor, D.D. Rhoads, B.M. Wolcott, G.A. James, et al., Survey of bacterial diversity in chronic wounds using pyrosequencing, DGGE, and full ribosome shotgun sequencing. BMC Microbiol. 8, 43 (2008)

    Article  Google Scholar 

  123. C. Nascimento, M.S. Pita, S. Santos Ede, N. Monesi, V. Pedrazzi, R.F. Albuquerque Junior, et al., Microbiome of titanium and zirconia dental implants abutments. Dent. Mater. 32, 93–101 (2016)

    Article  Google Scholar 

  124. A.A. Tsigarida, S.M. Dabdoub, H.N. Nagaraja, P.S. Kumar, The influence of smoking on the Peri-implant Microbiome. J. Dent. Res. 94, 1202–1217 (2015)

    Article  Google Scholar 

  125. S. Schaumann, I. Staufenbiel, R. Scherer, M. Schilhabel, A. Winkel, S.N. Stumpp, et al., Pyrosequencing of supra- and subgingival biofilms from inflamed peri-implant and periodontal sites. BMC Oral Health 14, 157 (2014)

    Article  Google Scholar 

  126. P.J. Antonelli, C.P. Ojano-Dirain, Microbial flora of cochlear implants by gene pyrosequencing. Otol. Neurotol. 34, e65–e71 (2013)

    Article  Google Scholar 

  127. Y. Xu, C. Moser, W.A. Al-Soud, S. Sorensen, N. Hoiby, P.H. Nielsen, et al., Culture-dependent and -independent investigations of microbial diversity on urinary catheters. J. Clin. Microbiol. 50, 3901–3908 (2012)

    Article  Google Scholar 

  128. I. Vandecandelaere, N. Matthijs, F. Van Nieuwerburgh, D. Deforce, P. Vosters, L. De Bus, et al., Assessment of microbial diversity in biofilms recovered from endotracheal tubes using culture dependent and independent approaches. PLoS One 7, e38401 (2012)

    Article  Google Scholar 

  129. R.D. Wolcott, V. Gontcharova, Y. Sun, S.E. Dowd, Evaluation of the bacterial diversity among and within individual venous leg ulcers using bacterial tag-encoded FLX and titanium amplicon pyrosequencing and metagenomic approaches. BMC Microbiol. 9, 226 (2009)

    Article  Google Scholar 

  130. H. Hu, K. Johani, I.B. Gosbell, A.S. Jacombs, A. Almatroudi, G.S. Whiteley, et al., Intensive care unit environmental surfaces are contaminated by multidrug-resistant bacteria in biofilms: combined results of conventional culture, pyrosequencing, scanning electron microscopy, and confocal laser microscopy. J. Hosp. Infect. 91, 35–44 (2015)

    Article  Google Scholar 

  131. L.F. Roesch, R.R. Fulthorpe, A. Riva, G. Casella, A.K. Hadwin, A.D. Kent, et al., Pyrosequencing enumerates and contrasts soil microbial diversity. ISME J. 1, 283–290 (2007)

    Google Scholar 

  132. J.A. Huber, D.B. Mark Welch, H.G. Morrison, S.M. Huse, P.R. Neal, D.A. Butterfield, et al., Microbial population structures in the deep marine biosphere. Science 318, 97–100 (2007)

    Article  Google Scholar 

  133. A. Engelbrektson, V. Kunin, K.C. Wrighton, N. Zvenigorodsky, F. Chen, H. Ochman, et al., Experimental factors affecting PCR-based estimates of microbial species richness and evenness. ISME J. 4, 642–647 (2010)

    Article  Google Scholar 

  134. M.L. Sogin, H.G. Morrison, J.A. Huber, D. Mark Welch, S.M. Huse, P.R. Neal, et al., Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl. Acad. Sci. U. S. A. 103, 12115–12120 (2006)

    Article  Google Scholar 

  135. S.G. Tringe, P. Hugenholtz, A renaissance for the pioneering 16S rRNA gene. Curr. Opin. Microbiol. 11, 442–446 (2008)

    Article  Google Scholar 

  136. P. Parameswaran, R. Jalili, L. Tao, S. Shokralla, B. Gharizadeh, M. Ronaghi, et al., A pyrosequencing-tailored nucleotide barcode design unveils opportunities for large-scale sample multiplexing. Nucleic Acids Res. 35, e130 (2007)

    Article  Google Scholar 

  137. J.E. Clarridge 3rd, Impact of 16S rRNA gene sequence analysis for identification of bacteria on clinical microbiology and infectious diseases. Clin. Microbiol. Rev. 17, 840–862 (2004.) table of contents

    Article  Google Scholar 

  138. D. Violant, M. Galofre, J. Nart, R.P. Teles, In vitro evaluation of a multispecies oral biofilm on different implant surfaces. Biomed. Mater. 9, 035007 (2014)

    Article  Google Scholar 

  139. A.R. Ebadian, M. Kadkhodazadeh, P. Zarnegarnia, G. Dahlen, Bacterial analysis of peri-implantitis and chronic periodontitis in Iranian subjects. Acta Med. Iran. 50, 486–492 (2012)

    Google Scholar 

  140. M. Chalfie, Y. Tu, G. Euskirchen, W.W. Ward, D.C. Prasher, Green fluorescent protein as a marker for gene expression. Sci 263, 802–805 (1994)

    Article  Google Scholar 

  141. L. Eberl, R. Schulze, A. Ammendola, O. Geisenberger, R. Erhart, C. Sternberg, S. Molin, R. Amann, Use of green fluorescent protein as a marker for ecological studies of activated sludge communities. FEMS Microbiol. Lett. 149, 77–83 (1997)

    Article  Google Scholar 

  142. J.B. Andersen, C. Sternberg, L.K. Poulsen, S.P. Bjorn, M. Givskov, S. Molin, New unstable variants of green fluorescent protein for studies of transient gene expression in bacteria. Appl. Environ. Microbiol. 64, 2240–2246 (1998)

    Google Scholar 

  143. A. Crameri, E.A. Whitehorn, E. Tate, W.P. Stemmer, Improved green fluorescent protein by molecular evolution using DNA shuffling. Nat. Biotechnol. 14, 315–319 (1996)

    Article  Google Scholar 

  144. B.P. Cormack, R.H. Valdivia, S. Falkow, FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173, 33–38 (1996)

    Article  Google Scholar 

  145. P.J. Lewis, A.L. Marston, GFP vectors for controlled expression and dual labelling of protein fusions in Bacillus subtilis. Gene 227, 101–110 (1999)

    Article  Google Scholar 

  146. S.E. Cowan, E. Gilbert, A. Khlebnikov, J.D. Keasling, Dual labeling with green fluorescent proteins for confocal microscopy. Appl. Environ. Microbiol. 66, 413–418 (2000)

    Article  Google Scholar 

  147. P. Stoodley, S. Wilson, L. Hall-Stoodley, J.D. Boyle, H.M. Lappin-Scott, J.W. Costerton, Growth and detachment of cell clusters from mature mixed-species biofilms. Appl. Environ. Microbiol. 67, 5608–5613 (2001)

    Article  Google Scholar 

  148. A. Heydorn, B.K. Ersboll, M. Hentzer, M.R. Parsek, M. Givskov, S. Molin, Experimental reproducibility in flow-chamber biofilms. Microbiology 146(Pt 10), 2409–2415 (2000)

    Article  Google Scholar 

  149. J.D. Bryers, Two-photon excitation microscopy for analyses of biofilm processes. Methods Enzymol. 337, 259–269 (2001)

    Article  Google Scholar 

  150. H.C. Gerritsen, C.J. De Grauw, Imaging of optically thick specimen using two-photon excitation microscopy. Microsc. Res. Tech. 47, 206–209 (1999)

    Article  Google Scholar 

  151. E.F. DeLong, G.S. Wickham, N.R. Pace, Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243, 1360–1363 (1989)

    Article  Google Scholar 

  152. B. Klug, C. Rodler, M. Koller, G. Wimmer, H.H. Kessler, M. Grube, et al., Oral biofilm analysis of palatal expanders by fluorescence in-situ hybridization and confocal laser scanning microscopy. J. Vis. Exp. (JoVE) 56, 1–9 (2011)

    Google Scholar 

  153. A. Al-Ahmad, L. Karygianni, M. Schulze Wartenhorst, M. Bachle, E. Hellwig, M. Follo, et al., Bacterial adhesion and biofilm formation on yttria-stabilized, tetragonal zirconia and titanium oral implant materials with low surface roughness – an in situ study. J. Med. 65, 596–604 Microbiol. (2016)

    Google Scholar 

  154. S. Poppert, A. Essig, R. Marre, M. Wagner, M. Horn, Detection and differentiation of chlamydiae by fluorescence in situ hybridization. Appl. Environ. Microbiol. 68, 4081–4089 (2002)

    Article  Google Scholar 

  155. M. Shirtliff, J.G. Leid, The Role of Biofilms in Device-Related Infections (Springer, Berlin, Heidelberg, 2008)

    Google Scholar 

  156. T. Thurnheer, R. Gmur, B. Guggenheim, Multiplex FISH analysis of a six-species bacterial biofilm. J. Microbiol. Methods 56, 37–47 (2004)

    Article  Google Scholar 

  157. L. Nistico, A. Gieseke, P. Stoodley, L. Hall-Stoodley, J.E. Kerschner, G.D. Ehrlich, Fluorescence “in situ” hybridization for the detection of biofilm in the middle ear and upper respiratory tract mucosa. Methods Mol. Biol. 493, 191–213 (2009)

    Article  Google Scholar 

  158. P. Piqueres, Y. Moreno, J.L. Alonso, M.A. Ferrus, A combination of direct viable count and fluorescent in situ hybridization for estimating helicobacter pylori cell viability. Res. Microbiol. 157, 345–349 (2006)

    Article  Google Scholar 

  159. K.J. Griffitt, N.F. Noriea 3rd, C.N. Johnson, D.J. Grimes, Enumeration of Vibrio parahaemolyticus in the viable but nonculturable state using direct plate counts and recognition of individual gene fluorescence in situ hybridization. J. Microbiol. Methods 85, 114–118 (2011)

    Article  Google Scholar 

  160. R. Sekar, A. Pernthaler, J. Pernthaler, F. Warnecke, T. Posch, R. Amann, An improved protocol for quantification of freshwater Actinobacteria by fluorescence in situ hybridization. Appl. Environ. Microbiol. 69, 2928–2935 (2003)

    Article  Google Scholar 

  161. C. Almeida, N.F. Azevedo, S. Santos, C.W. Keevil, M.J. Vieira, Discriminating multi-species populations in biofilms with peptide nucleic acid fluorescence in situ hybridization (PNA FISH). PLoS One 6, e14786 (2011)

    Article  Google Scholar 

  162. A. Traven, A. Janicke, P. Harrison, A. Swaminathan, T. Seemann, T.H. Beilharz, Transcriptional profiling of a yeast colony provides new insight into the heterogeneity of multicellular fungal communities. PLoS One 7, e46243 (2012)

    Article  Google Scholar 

  163. L. Vachova, O. Chernyavskiy, D. Strachotova, P. Bianchini, Z. Burdikova, I. Fercikova, et al., Architecture of developing multicellular yeast colony: Spatio-temporal expression of Ato1p ammonium exporter. Environ. Microbiol. 11, 1866–1877 (2009)

    Article  Google Scholar 

  164. L.K.M. Mináriková, M. Ricicová, J. Forstová, Z. Palková, Differentiated gene expression in cells within yeast colonies. Exp. Cell Res. 271, 296–304 (2001)

    Article  Google Scholar 

  165. S.J. Sorensen, M. Bailey, L.H. Hansen, N. Kroer, S. Wuertz, Studying plasmid horizontal transfer in situ: a critical review. Nat. Rev. Microbiol. 3, 700–710 (2005)

    Article  Google Scholar 

  166. A. Simon-Soro, G. D'Auria, M.C. Collado, M. Dzunkova, S. Culshaw, A. Mira, Revealing microbial recognition by specific antibodies. BMC Microbiol. 15, 132 (2015)

    Article  Google Scholar 

  167. N.S. Barteneva, E. Fasler-Kan, I.A. Vorobjev, Imaging flow cytometry: coping with heterogeneity in biological systems. J. Histochem. Cytochem. 60, 723–733 (2012)

    Article  Google Scholar 

  168. R.M. Lequin, Enzyme immunoassay (EIA)/enzyme-linked immunosorbent assay (ELISA). Clin. Chem. 51, 2415–2418 (2005)

    Article  Google Scholar 

  169. K.J. Buijssen, B.F. van der Laan, H.C. van der Mei, J. Atema-Smit, P. van den Huijssen, H.J. Busscher, et al., Composition and architecture of biofilms on used voice prostheses. Head Neck 34, 863–871 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyan Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ma, H., Katzenmeyer-Pleuss, K.N. (2017). Molecular Approaches for Studying Medical Device-Associated Biofilms: Techniques, Challenges, and Future Prospects. In: Zhang, Z., Wagner, V. (eds) Antimicrobial Coatings and Modifications on Medical Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-57494-3_4

Download citation

Publish with us

Policies and ethics