Skip to main content

Light-Triggered Anti-Infective Surfaces

  • Chapter
  • First Online:
Antimicrobial Coatings and Modifications on Medical Devices

Abstract

Light can be used in conjunction with a number of light-sensitive compounds to confer anti-infective properties to medical device surfaces. These properties can be tailored according to requirements due to the ease with which light can be controlled in terms of wavelength and dose. Three main groups of compounds are currently used or being studied for applications in the field of medical devices: photosensitizers, photocatalysts, and photocleavables. Whilst many compounds within each group have previously found use in various aspects of medical or antimicrobial treatment, their exploitation in the field of anti-infective medical device surfaces is more recent. This chapter describes each group including the differing mechanism of action of each, highlighting relevant research, and focusing particularly on their use within medical device materials and recent clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Honigsmann, History of phototherapy in dermatology. Photochem. Photobiol. Sci. 12, 16–21 (2013)

    Article  Google Scholar 

  2. T.G. St Denis, M.R. Hamblin, History and fundamentals of photodynamic therapy, in Handbook of Photomedicine, ed. by M. R. Hamblin, Y. Huang, (Taylor & Francis, Florida, 2013), pp. 35–42

    Google Scholar 

  3. A. Downes, T.P. Blunt, Researches on the effect of light upon bacteria and other organisms. Proc. Roy. Soc. Lond. A 26, 488–500 (1877)

    Article  Google Scholar 

  4. O. Raab, Uber die Wirkung fluoreszierender Stoffe auf Infusorien. Z. Biol. 39, 524–546 (1900)

    Google Scholar 

  5. A. Jesionek, H. von Tappenier, Therapertische Versuche mit fluoreszierenden Stoffen. Muench. Med. Wochneshr. 47, 2042–2044 (1903)

    Google Scholar 

  6. H. von Tappeiner, A. Jodlbauer, Uber Wirkung der photodynamischen (fluorieszierenden) Stoffe auf Protozoan und Enzyme. Dtsch. Arch. Klin. Med. 80, 427–487 (1904)

    Google Scholar 

  7. A. Jablonski, Uber den mechanismus der Photolumineszenz von Farbstoffphosphoren. Z. Phys. 94, 38–46 (1935)

    Article  Google Scholar 

  8. H. Kautsky, H. Die De Bruijn, Die Aufklärung der Photoluminescenztilgung fluorescierender System durch Sauerstoff: Die Bildung aktiver, diffusionsfähiger Sauerstoffmoleküle durch Sensibilisierung. Naturwissenschaften 19, 1043 (1931)

    Article  Google Scholar 

  9. G.N. Lewis, M. Kasha, Phosphorescence and the triplet state. J. Am. Chem. Soc. 66, 2100–2116 (1944)

    Article  Google Scholar 

  10. A.B. Ormond, H.S. Freeman, Dye sensitizers for photodynamic therapy. Materials. 6(3), 817–840 (2013)

    Article  Google Scholar 

  11. T. Maisch, J. Baier, B. Franz, M. Maier, M. Landthaler, R. Szeimies, The role of singlet oxygen and oxygen concentration in photodynamic inactivation of bacteria. Proc. Natl. Acad. Sci. U. S. A. 104(17), 7223–7228 (2007)

    Article  Google Scholar 

  12. A. Harriman, Photosensitization in photodynamic therapy, in CRC Handbook of Organic Photochemistry and Photobiology, ed. by W. M. Horspool, P. Soong, (CRC Press, London, 1995), pp. 1374–1379

    Google Scholar 

  13. C. Brady, S.E.J. Bell, C. Parsons, S.P. Gorman, D.S. Jones, C.P. McCoy, Novel porphyrin-incorporated hydrogels for photoactive intraocular lens biomaterials. J. Phys. Chem. B 111(3), 527–534 (2007)

    Article  Google Scholar 

  14. M. Ochsner, Photophysical and photobiological processes in the photodynamic therapy of tumours. J. Photochem. Photobiol. B 39(1), 1–18 (1997)

    Article  Google Scholar 

  15. R.A. Craig, C.P. McCoy, S.P. Gorman, D.S. Jones, Photosensitisers-the progression from photodynamic therapy to anti-infective surfaces. Expert Opin. Drug Deliv. 12(1), 85–101 (2015)

    Article  Google Scholar 

  16. F. Vatansever, W.C.M.A. de Melo, P. Avci, D. Vecchio, M. Sadasivam, A. Gupta, et al., Antimicrobial strategies centered around reactive oxygen species – bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol. Rev. 37(6), 955–989 (2013)

    Article  Google Scholar 

  17. H. Junqueira, D. Severino, L. Dias, M. Gugliotti, M. Baptista, Modulation of methylene blue photochemical properties based on adsorption at aqueous micelle interfaces. Phys. Chem. Chem. Phys. 4(11), 2320–2328 (2002)

    Article  Google Scholar 

  18. A.P. Castano, T.N. Demidova, M.R. Hamblin, Mechanisms in photodynamic therapy: Part one—Photosensitizers, photochemistry and cellular localization. Photodiagn. Photodyn. Ther. 1(4), 279–293 (2004)

    Article  Google Scholar 

  19. W.C.M.A. de Melo, P. Avci, M.N. de Oliveira, A. Gupta, D. Vecchio, M. Sadasivam, et al., Photodynamic inactivation of biofilm: taking a lightly colored approach to stubborn infection. Expert Rev. Anti-Infect. Ther. 11(7), 669–693 (2013)

    Article  Google Scholar 

  20. W. Hausman, Die sensibilisierende wirkung des hematoporphyrins. Biochem. Z. 30, 276 (1911)

    Google Scholar 

  21. T. Dougherty, M. Cooper, T. Mang, Cutaneous phototoxic occurrences in patients receiving Photofrin. Lasers Surg. Med. 10(5), 485–488 (1990)

    Article  Google Scholar 

  22. B. Henderson, T. Dougherty, How does photodynamic therapy work? Photochem. Photobiol. 55(1), 145–157 (1992)

    Article  Google Scholar 

  23. R. Chowdhary, I. Sharif, N. Chansarkar, D. Dolphin, L. Ratkay, S. Delaney, et al., Correlation of photosensitizer delivery to lipoproteins and efficacy in tumor and arthritis mouse models; comparison of lipid-based and Pluronic P123 formulations. J. Pharm. Pharm. Sci. 6(2), 198–204 (2003)

    Google Scholar 

  24. W. Roberts, K. Smith, J. McCullough, M. Berns, Skin photosensitivity and Photodestruction of several potential photodynamic sensitizers. Photochem. Photobiol. 49(4), 431–438 (1989)

    Article  Google Scholar 

  25. P. Babilas, S. Schreml, M. Landthaler, R. Szeimies, Photodynamic therapy in dermatology: state-of-the-art. Photodermatol. Photoimmunol. Photomed. 26(3), 118–132 (2010)

    Article  Google Scholar 

  26. P. Babilas, E. Kohl, T. Maisch, H. Bäcker, B. Gross, A.L. Branzan, et al., In vitro and in vivo comparison of two different light sources for topical photodynamic therapy. Br. J. Dermatol. 154(4), 712–718 (2006)

    Google Scholar 

  27. D. Touma, M. Yaar, S. Whitehead, N. Konnikov, B.A. Gilchrest, A trial of short incubation, broad-area photodynamic therapy for facial actinic keratoses and diffuse photodamage. Arch. Dermatol. 140, 33–40 (2004)

    Article  Google Scholar 

  28. J.S. Dover, A.C. Bhatia, B. Stewart, K.A. Arndt, Topical 5-aminolevulinic acid combined with intense pulsed light in the treatment of photoaging. Arch. Dermatol. 141, 1247–1252 (2005)

    Article  Google Scholar 

  29. R.R. Allison, G.H. Downie, R. Cuenca, X. Hu, C.J. Childs, C.H. Sibata, Photosensitizers in clinical PDT. Photodiagn. Photodyn. Ther. 1(1), 27–42 (2004)

    Article  Google Scholar 

  30. J. Bhaumik, A.K. Mittal, A. Banerjee, Y. Chisti, U.C. Banerjee, Applications of phototheranostic nanoagents in photodynamic therapy. Nano Res. 8(5), 1373–1394 (2015)

    Article  Google Scholar 

  31. M. Myers, M. Oxman, J. Clark, K. Arndt, Failure of neutral-red photodynamic inactivation in recurrent herpes simplex virus infections. N. Engl. J. Med. 293(19), 945–949 (1975)

    Article  Google Scholar 

  32. T.W. Chang, N. Fiumara, L. Weinstein, Genital herpes: treatment with methylene blue and light exposure. Int. J. Dermatol. 14(1), 69–71 (1975)

    Article  Google Scholar 

  33. T.W. Chang, Viral photoinactivation and oncogenesis. Arch. Dermatol. 112(8), 1176 (1976)

    Article  Google Scholar 

  34. M. Wainwright, Photodynamic antimicrobial chemotherapy (PACT). J. Antimicrob. Chemother. 42(1), 13–28 (1998)

    Article  Google Scholar 

  35. T. St Denis, T. Dai, L. Izikson, C. Astrakas, R. Anderson, All you need is light antimicrobial photoinactivation as an evolving and emerging discovery strategy against infectious disease. Virulence 2(6), 509–520 (2011)

    Article  Google Scholar 

  36. M.A. Butt, L. De Sordi, G. Yahioglu, S. Battah, C.A. Mosse, I. Stamati, et al., Photodynamic antimicrobial chemotherapy (PACT) selectively kills Clostridium Difficile over colon cells and is effective against 5 hypervirulent strains of the pathogen. Gastroenterology 144(5), A215 (2013)

    Google Scholar 

  37. G.B. Kharkwal, S.K. Sharma, Y. Huang, T. Dai, M.R. Hamblin, Photodynamic therapy for infections: clinical applications. Lasers Surg. Med. 43(7), 755–767 (2011)

    Article  Google Scholar 

  38. P. Calzavara-Pinton, M.T. Rossi, R. Sala, M. Venturini, Photodynamic antifungal chemotherapy. Photochem. Photobiol. 88(3), 512–522 (2012)

    Article  Google Scholar 

  39. M.S. Baptista, M. Wainwright, Photodynamic antimicrobial chemotherapy (PACT) for the treatment of malaria, leishmaniasis and trypanosomiasis. Braz. J. Med. Biol. Res. 44(1), 1–10 (2011)

    Article  Google Scholar 

  40. X.J. Zhao, S. Lustigman, M.E. Kenney, E. BenHur, Structure-activity and mechanism studies on silicon phthalocyanines with plasmodium falciparum in the dark and under red light. Photochem. Photobiol. 66(2), 282–287 (1997)

    Article  Google Scholar 

  41. T. Demidova, M. Hamblin, Photodynamic inactivation of Bacillus spores, mediated by phenothiazinium dyes. Appl. Environ. Microbiol. 71(11), 6918–6925 (2005)

    Article  Google Scholar 

  42. A. Oliveira, A. Almeida, C. Carvalho, J. Tome, M. Faustino, M. Neves, Porphyrin derivatives as photosensitizers for the inactivation of Bacillus Cereus endospores. J. Appl. Microbiol. 106(6), 1986–1995 (2009)

    Article  Google Scholar 

  43. A. Oliveira, A. Almeida, C. Carvalho, J. Tome, M. Faustino, M. Neves. Assessment of the performance of porphyrin derivatives as photosensitizers for the inactivation of bacterial endospores, Current Research Topics in Applied Microbiology and Microbial Biotechnology, 166–169 (2009)

    Google Scholar 

  44. Z. Luksiene, I. Buchovec, E. Paskeviciute, Inactivation of Bacillus Cereus by Na-chlorophyllin-based photosensitization on the surface of packaging. J. Appl. Microbiol. 109(5), 1540–1548 (2010)

    Google Scholar 

  45. Z. Luksiene, I. Buchovec, E. Paskeviciute, Inactivation of food pathogen Bacillus Cereus by photosensitization in vitro and on the surface of packaging material. J. Appl. Microbiol. 107(6), 2037–2046 (2009)

    Article  Google Scholar 

  46. K. Zerdin, M.A. Horsham, R. Durham, P. Wormell, A.D. Scully, Photodynamic inactivation of bacterial spores on the surface of a photoreactive polymer. React. Funct. Polym. 69(11), 821–827 (2009)

    Article  Google Scholar 

  47. K. Page, M. Wilson, I.P. Parkin, Antimicrobial surfaces and their potential in reducing the role of the inanimate environment in the incidence of hospital-acquired infections. J. Mater. Chem. 19(23), 3819–3831 (2009)

    Article  Google Scholar 

  48. A. Tavares, C.M.B. Carvalho, M.A. Faustino, M.G.P.M.S. Neves, J.P.C. Tome, A.C. Tome, et al., Antimicrobial photodynamic therapy: Study of bacterial recovery viability and potential development of resistance after treatment. Mar. Drugs 8(1), 91–105 (2010)

    Article  Google Scholar 

  49. World Health Organisation, Antimicrobial Resistance: Global Report on Surveillance (World Health Organization, Geneva, 2014), pp. 1–257

    Google Scholar 

  50. T. Maisch, A new strategy to destroy antibiotic resistant microorganisms: antimicrobial photodynamic treatment. Mini Rev. Med. Chem. 9(8), 974–983 (2009)

    Article  Google Scholar 

  51. T. Maisch, S. Hackbarth, J. Regensburger, A. Felgentraeger, W. Baeumler, M. Landthaler, et al., Photodynamic inactivation of multi-resistant bacteria (PIB) – a new approach to treat superficial infections in the 21st century. J. Dtsch. Dermatol. Ges. 9(5), 360–366 (2011)

    Google Scholar 

  52. M. Wainwright, D. Phoenix, S. Laycock, D. Wareing, P. Wright, Photobactericidal activity of phenothiazinium dyes against methicillin-resistant strains of Staphylococcus aureus. FEMS Microbiol. Lett. 160(2), 177–181 (1998)

    Article  Google Scholar 

  53. M. Wainwright, D.A. Phoenix, M. Gaskell, B. Marshall, Photobactericidal activity of methylene blue derivatives against vancomycin-resistant enterococcus spp. J. Antimicrob. Chemother. 44(6), 823–825 (1999)

    Article  Google Scholar 

  54. M. Hamblin, T. Hasan, Photodynamic therapy: a new antimicrobial approach to infectious disease? Photochem. Photobiol. Sci. 3(5), 436–450 (2004)

    Article  Google Scholar 

  55. S.R. Wiegell, H.C. Wulf, Photodynamic therapy of acne vulgaris using methyl aminolaevulinate: a blinded, randomized, controlled trial. Br. J. Dermatol. 154(5), 969–976 (2006)

    Article  Google Scholar 

  56. J.E. Kim, J.I. Hwang, J.I. Lee, B.K. Cho, H.J. Park, Pilot study on photodynamic therapy for acne using chlorophyll: evaluator-blinded, split-face study. J. Dermatol. Treat. 23(1), 35–36 (2012)

    Article  Google Scholar 

  57. L.E. Bryld, G.B.E. Jemec, Photodynamic therapy in a series of rosacea patients. J. Eur. Acad. Dermatol. Venereol. 21(9), 1199–1202 (2007)

    Google Scholar 

  58. C.H. Wilder-Smith, P. Wilder-Smith, P. Grosjean, H. van den Bergh, A. Woodtli, P. Monnier, et al., Photoeradication of helicobacter pylori using 5-aminolevulinic acid: preliminary human studies. Lasers Surg. Med. 31(1), 18–22 (2002)

    Article  Google Scholar 

  59. A.J. Lembo, R.A. Ganz, S. Sheth, D. Cave, C. Kelly, P. Levin, et al., Treatment of helicobacter pylori infection with intra-gastric violet light phototherapy: a pilot plinical trial. Lasers Surg. Med. 41(5), 337–344 (2009)

    Article  Google Scholar 

  60. A. Ohtsuki, T. Hasegawa, Y. Hirasawa, H. Tsuchihashi, S. Ikeda, Photodynamic therapy using light-emitting diodes for the treatment of viral warts. J. Dermatol. 36(10), 525–528 (2009)

    Article  Google Scholar 

  61. C.A. Schroeter, J. Pleunis, C.V.T. Pannerden, T. Reineke, H.A.M. Neumann, Photodynamic therapy: new treatment for therapy-resistant plantar warts. Dermatol. Surg. 31(1), 71–75 (2005)

    Article  Google Scholar 

  62. M.A. Biel, L. Pedigo, A. Gibbs, N. Loebel, Photodynamic therapy of antibiotic-resistant biofilms in a maxillary sinus model. Int. Forum. Allergy. Rhinol. 3(6), 468–473 (2013)

    Article  Google Scholar 

  63. M. Wainwright, H. Mohr, W.H. Walker, Phenothiazinium derivatives for pathogen inactivation in blood products. J. Photochem. Photobiol. B 86(1), 45–58 (2007)

    Article  Google Scholar 

  64. M. Wainwright, D. Phoenix, T. Smillie, D. Wareing, Phenothiaziniums as putative photobactericidal agents for red blood cell concentrates. J. Chemother. 13(5), 503–509 (2001)

    Article  Google Scholar 

  65. M. Wainwright, Methylene blue derivatives — suitable photoantimicrobials for blood product disinfection? Int. J. Antimicrob. Agents 16(4), 381–394 (2000)

    Article  Google Scholar 

  66. A.K. Benabbou, C. Guillard, S. Pigeot-Remy, C. Cantau, T. Pigot, P. Lejeune, et al., Water disinfection using photosensitizers supported on silica. J. Photochem. Photobiol. A. 219(1), 101–108 (2011)

    Article  Google Scholar 

  67. R. Bonnett, M. Krysteva, I. Lalov, S. Artarsky, Water disinfection using photosensitizers immobilized on chitosan. Water Res. 40(6), 1269–1275 (2006)

    Article  Google Scholar 

  68. K. Lewis, Riddle of biofilm resistance. Antimicrob. Agents Chemother. 45(4), 999–1007 (2001)

    Article  Google Scholar 

  69. M. Sharma, L. Visai, F. Bragheri, I. Cristiani, P. Gupta, P. Speziale, Toluidine blue-mediated photodynamic effects on staphylococcal biofilms. Antimicrob. Agents Chemother. 52(1), 299–305 (2008)

    Article  Google Scholar 

  70. S. Beirao, S. Fernandes, J. Coelho, M.A.F. Faustino, J.P.C. Tome, M.G.P.M.S. Neves, et al., Photodynamic inactivation of bacterial and yeast biofilms with a cationic porphyrin. Photochem. Photobiol. 90(6), 1387–1396 (2014)

    Article  Google Scholar 

  71. I. Zanin, R. Goncalves, A. Brugnera, C. Hope, J. Pratten, Susceptibility of Streptococcus Mutans biofilms to photodynamic therapy: an in vitro study. J. Antimicrob. Chemother. 56(2), 324–330 (2005)

    Article  Google Scholar 

  72. V. Engelhardt, B. Krammer, K. Plaetzer, Antibacterial photodynamic therapy using water-soluble formulations of hypericin or mTHPC is effective in inactivation of Staphylococcus aureus. Photochem. Photobiol. Sci. 9(3), 365–369 (2010)

    Article  Google Scholar 

  73. J.L. Fimple, C.R. Fontana, F. Foschi, K. Ruggiero, X. Song, T.C. Pagonis, et al., Photodynamic treatment of endodontic polymicrobial infection in vitro. J. Endod. 34(6), 728–734 (2008)

    Article  Google Scholar 

  74. R.F. Donnelly, P.A. McCarron, M.M. Tunney, A.D. Woolfson, Potential of photodynamic therapy in treatment of fungal infections of the mouth. Design and characterisation of a mucoadhesive patch containing toluidine blue O. J. Photochem. Photobiol. B 86(1), 59–69 (2007)

    Article  Google Scholar 

  75. Denfotex Research Ltd. http://www.denfotexresearch.com (2015). Accessed 20 July 2015.

  76. HELBO: Antimicrobial Photodynamic Therapy (aPDT). http://www.helbo.de/en/dentist-information/the-therapy-system.html (2015). Accessed 20 July 2015.

  77. Ondine Biomedical Inc.; Periowave. http://www.ondinebio.com/products/periowave (2015). Accessed 20 July 2015

  78. A. Braun, C. Dehn, F. Krause, S. Jepsen, Short-term clinical effects of adjunctive antimicrobial photodynamic therapy in periodontal treatment: a randomized clinical trial. J. Clin. Periodontol. 35(10), 877–884 (2008)

    Article  Google Scholar 

  79. R.R. de Oliveira, H.O. Schwartz-Filho, A.B. Novaes Jr., M. Taba Jr., Antimicrobial photodynamic therapy in the non-surgical treatment of aggressive periodontits: a preliminary randomized controlled clinical study. J. Periodontol. 78(6), 965–973 (2007)

    Article  Google Scholar 

  80. T. Dahl, W. Midden, P. Hartman, Pure singlet oxygen cytotoxicity for bacteria. Photochem. Photobiol. 46(3), 345–352 (1987)

    Article  Google Scholar 

  81. T. Dahl, W. Midden, P. Hartman, Comparison of killing of Gram-negative and Gram-positive bacteria by pure singlet oxygen. J. Bacteriol. 171(4), 2188–2194 (1989)

    Article  Google Scholar 

  82. M. Elder, F. Stapleton, E. Evans, J. Dart, Biofilm-related infections in ophthalmology. Eye 9, 102–109 (1995)

    Article  Google Scholar 

  83. E. Alves, M.A.F. Faustino, M.G.P.M.S. Neves, A. Cunha, H. Nadais, A. Almeida, Potential applications of porphyrins in photodynamic inactivation beyond the medical scope. J. Photochem. Photobiol. C-Photochem. Rev. 22, 34–57 (2015)

    Article  Google Scholar 

  84. L. Brovko, H. Anany, M. Bayoumi, K. Giang, E. Kunkel, E. Lim, et al., Antimicrobial light-activated materials: towards application for food and environmental safety. J. Appl. Microbiol. 117(5), 1260–1266 (2014)

    Article  Google Scholar 

  85. C.P. McCoy, R.A. Craig, S.M. McGlinchey, L. Carson, D.S. Jones, S.P. Gorman, Surface localisation of photosensitisers on intraocular lens biomaterials for prevention of infectious endophthalmitis and retinal protection. Biomaterials 33(32), 7952–7958 (2012)

    Article  Google Scholar 

  86. C. Parsons, C.P. McCoy, S.P. Gorman, D.S. Jones, S.E.J. Bell, C. Brady, et al., Anti-infective photodynamic biomaterials for the prevention of intraocular lens-associated infectious endophthalmitis. Biomaterials 30(4), 597–602 (2009)

    Article  Google Scholar 

  87. S. Perni, P. Prokopovich, C. Piccirillo, J. Pratten, I.P. Parkin, M. Wilson, Toluidine blue-containing polymers exhibit potent bactericidal activity when irradiated wth red laser light. J. Mater. Chem. 19(18), 2715–2723 (2009)

    Article  Google Scholar 

  88. A.J.T. Naik, S. Ismail, C. Kay, M. Wilson, I.P. Parkin, Antimicrobial activity of polyurethane embedded with methylene blue, toluidene blue and gold nanoparticles against Staphylococcus aureus; illuminated with white light. Mater. Chem. Phys. 129(1–2), 446–450 (2011)

    Article  Google Scholar 

  89. S. Noimark, C.W. Dunnill, C.W.M. Kay, S. Perni, P. Prokopovich, S. Ismail, et al., Incorporation of methylene blue and nanogold into polyvinyl chloride catheters; a new approach for light-activated disinfection of surfaces. J. Mater. Chem. 22(30), 15388–15396 (2012)

    Article  Google Scholar 

  90. V. Decraene, A. Rampaul, I.P. Parkin, A. Petrie, M. Wilson, Enhancement by nanogold of the efficacy of a light-activated antimicrobial coating. Curr. Nanosci. 5(3), 257–261 (2009)

    Article  Google Scholar 

  91. S. Perni, J. Pratten, M. Wilson, C. Piccirillo, I.P. Parkin, P. Prokopovich, Antimicrobial properties of light-activated polyurethane containing indocyanine green. J. Biomater. Appl. 25(5), 387–400 (2011)

    Article  Google Scholar 

  92. S. Noimark, M. Bovis, A.J. MacRobert, A. Correia, E. Allan, M. Wilson, et al., Photobactericidal polymers; the incorporation of crystal violet and nanogold into medical grade silicone. RSC Adv. 3(40), 18383–18394 (2013)

    Article  Google Scholar 

  93. C.P. McCoy, E.J. O'Neil, J.F. Cowley, L. Carson, A.T. De Baroid, G.T. Gdowski, et al., Photodynamic antimicrobial polymers for infection control. PLoS One 9(9), e108500 (2014)

    Article  Google Scholar 

  94. S. Perni, P. Prokopovich, I.P. Parkin, M. Wilson, J. Pratten, Prevention of biofilm accumulation on a light-activated antimicrobial catheter material. J. Mater. Chem. 20(39), 8668–8673 (2010)

    Article  Google Scholar 

  95. M. Funes, D. Caminos, M. Alvarez, F. Fungo, L. Otero, E. Durantini, Photodynamic properties and photoantimicrobial action of electrochemically generated porphyrin polymeric films. Environ. Sci. Technol. 43(3), 902–908 (2009)

    Article  Google Scholar 

  96. R. Cahan, R. Schwartz, Y. Langzam, Y. Nitzan, Light-activated antibacterial surfaces comprise photosensitizers. Photochem. Photobiol. 87(6), 1379–1386 (2011)

    Article  Google Scholar 

  97. A. Felgentraeger, T. Maisch, A. Spaeth, J.A. Schroeder, W. Baeumler, Singlet oxygen generation in porphyrin-doped polymeric surface coating enables antimicrobial effects on Staphylococcus aureus. Phys. Chem. Chem. Phys. 16(38), 20598–20607 (2014)

    Article  Google Scholar 

  98. C. Piccirillo, S. Perni, J. Gil-Thomas, P. Prokopovich, M. Wilson, J. Pratten, et al., Antimicrobial activity of methylene blue and toluidine blue O covalently bound to a modified silicone polymer surface. J. Mater. Chem. 19(34), 6167–6171 (2009)

    Article  Google Scholar 

  99. M. Wilson, I. Parkin, S. Nair, J. Gil-Thomas, Antimicrobial conjugates. U.S. Patent 20080050448 A1, (2008)

    Google Scholar 

  100. W. Love, M. Cook, D. Russell, inventors, Porphyrin derivatives: their use in photodynamic therapy and the medical devices containing them. U.S. Patent US6630128 B1, (2000)

    Google Scholar 

  101. K. Rok, J. Hoon, W. Kyun, K. Hee, K. Jin Catheter and method for manufacturing same. China Patent CN103068432 A, (2010)

    Google Scholar 

  102. C.P. McCoy, S.P. Gorman, D.D. Jones, S.E.J. Bell Material and uses thereof. U.S. Patent US2009292357 A1, (2009)

    Google Scholar 

  103. K. Crossley Method and apparatus to prevent infections. U.S. Patent US2001047195 A1, (2001)

    Google Scholar 

  104. C.F. Goodeve, J.A. Kitchener, Photosensitisation by titanium dioxide. Trans. Faraday Soc. 34, 570–579 (1938)

    Article  Google Scholar 

  105. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, et al., Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114(19), 9919–9986 (2014)

    Article  Google Scholar 

  106. A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37–38 (1972)

    Article  Google Scholar 

  107. J.G. McEvoy, Z. Zhang, Antimicrobial and photocatalytic disinfection mechanisms in silver-modified photocatalysts under dark and light conditions. J. Photochem. Photobiol. C-Photochem. Rev. 19, 62–75 (2014)

    Article  Google Scholar 

  108. L. Visai, L. De Nardo, C. Punta, L. Melone, A. Cigada, M. Imbriani, et al., Titanium oxide antibacterial surfaces in biomedical devices. Int. J. Artif. Organs 34(9), 929–946 (2011)

    Article  Google Scholar 

  109. T. Miyagi, M. Kamei, T. Mitsuhashi, T. Ishigaki, A. Yamazaki, Charge separation at the rutile/anatase interface: a dominant factor of photocatalytic activity. Chem. Phys. Lett. 390(4–6), 399–402 (2004)

    Article  Google Scholar 

  110. Y. Ohko, Y. Utsumi, C. Niwa, T. Tatsuma, K. Kobayakawa, Y. Satoh, et al., Self-sterilizing and self-cleaning of silicone catheters coated with TiO2 photocatalyst thin films: a preclinical work. J. Biomed. Mater. Res. 58(1), 97–101 (2001)

    Article  Google Scholar 

  111. M. Pelaez, N.T. Nolan, S.C. Pillai, M.K. Seery, P. Falaras, A.G. Kontos, et al., A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl. Catal. B-Environ. 125(0), 331–349 (2012)

    Article  Google Scholar 

  112. M.I. Litter, J.A. Navío, Photocatalytic properties of iron-doped titania semiconductors. J Photochem. Photobiol. A. 98(3), 171–181 (1996)

    Article  Google Scholar 

  113. K. Wilke, H.D. Breuer, The influence of transition metal doping on the physical and photocatalytic properties of titania. J. Photochem. Photobiol. A. 121(1), 49–53 (1999)

    Article  Google Scholar 

  114. H. Sung-Suh, J. Choi, H. Hah, S. Koo, Y. Bae, Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation. J. Photochem. Photobiol. A. 163(1–2), 37–44 (2004)

    Article  Google Scholar 

  115. A. Xu, Y. Gao, H. Liu, The preparation, characterization, and their Photocatalytic activities of rare-earth-doped TiO2 nanoparticles. J. Catal. 207(2), 151–157 (2002)

    Article  Google Scholar 

  116. V. Houlding, M. Gratzel, Photochemical H-2 generation by visible-light – sensitization of TiO2 particles by surface complexation with 8-hydroxyquinoline. J. Am. Chem. Soc. 105(17), 5695–5696 (1983)

    Article  Google Scholar 

  117. Y. Cong, J. Zhang, F. Chen, M. Anpo, Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. J. Phys. Chem. C 111(19), 6976–6982 (2007)

    Article  Google Scholar 

  118. O. Carp, C.L. Huisman, A. Reller, Photoinduced reactivity of titanium dioxide. Prog. Solid State Chem. 32(1–2), 33–177 (2004)

    Article  Google Scholar 

  119. T. Matsunaga, R. Tomoda, T. Nakajima, H. Wake, Photoelectrochemical sterilization of microbial cells by semiconductor powders. FEMS Microbiol. Lett. 29(1–2), 211–214 (1985)

    Article  Google Scholar 

  120. J. Gamage, Z. Zhang, Applications of photocatalytic disinfection. Int. J. Photoenergy. 2010, 764870 (2010)

    Article  Google Scholar 

  121. K. Sunada, T. Watanabe, K. Hashimoto, Studies on photokilling of bacteria on TiO2 thin film. J. Photochem. Photobiol. A. 156(1–3), 227–233 (2003)

    Article  Google Scholar 

  122. S. Bonetta, S. Bonetta, F. Motta, A. Strini, E. Carraro, Photocatalytic bacterial inactivation by TiO2-coated surfaces. AMB Express 3(1), 59 (2013)

    Article  Google Scholar 

  123. Y. Tsuang, J. Sun, Y. Huang, C. Lu, W.H. Chang, C. Wang, Studies of photokilling of bacteria using titanium dioxide nanoparticles. Artif. Organs 32(2), 167–174 (2008)

    Article  Google Scholar 

  124. S.M. Zacarías, M.L. Satuf, M.C. Vaccari, O.M. Alfano, Photocatalytic inactivation of bacterial spores using TiO2 films with silver deposits. Chem. Eng. J. 266(0), 133–140 (2015)

    Article  Google Scholar 

  125. S. Lee, S. Pumprueg, B. Moudgil, W. Sigmund, Inactivation of bacterial endospores by photocatalytic nanocomposites. Colloids Surf. B Biointerfaces 40(2), 93–98 (2005)

    Article  Google Scholar 

  126. C. Maneerat, Y. Hayata, Antifungal activity of TiO2 photocatalysis against Penicillium expansum in vitro and in fruit tests. Int. J. Food Microbiol. 107(2), 99–103 (2006)

    Article  Google Scholar 

  127. S. Darbari, Y. Abdi, F. Haghighi, S. Mohajerzadeh, N. Haghighi, Investigating the antifungal activity of TiO2 nanoparticles deposited on branched carbon nanotube arrays. J. Phys. D-Appl. Phys. 44(24), 245401 (2011)

    Article  Google Scholar 

  128. M.V. Liga, S.J. Maguire-Boyle, H.R. Jafry, A.R. Barron, Q. Li, Silica decorated TiO2 for virus inactivation in drinking water – simple synthesis method and mechanisms of enhanced inactivation kinetics. Environ. Sci. Technol. 47(12), 6463–6470 (2013)

    Google Scholar 

  129. G.W. Park, M. Cho, E.L. Cates, D. Lee, B. Oh, J. Vinje, et al., Fluorinated TiO2 as an ambient light-activated virucidal surface coating material for the control of human norovirus. J. Photochem. Photobiol. B 140, 315–320 (2014)

    Article  Google Scholar 

  130. S. Navalon, M. Alvaro, H. Garcia, D. Escrig, V. Costa, Photocatalytic water disinfection of Cryptosporidium parvum and Giardia lamblia using a fibrous ceramic TiO2 photocatalyst. Water Sci. Technol. 59(4), 639–645 (2009)

    Article  Google Scholar 

  131. F. Mendez-Hermida, E. Ares-Mazas, K.G. McGuigan, M. Boyle, C. Sichel, P. Fernandez-Ibanez, Disinfection of drinking water contaminated with Cryptosporidium parvum oocysts under natural sunlight and using the photocatalyst TiO2. J. Photochem. Photobiol. B 88(2–3), 105–111 (2007)

    Article  Google Scholar 

  132. C. Linkous, G. Carter, D. Locuson, A. Ouellette, D. Slattery, L. Smitha, Photocatalytic inhibition of algae growth using TiO2, WO3, and cocatalyst modifications. Environ. Sci. Technol. 34(22), 4754–4758 (2000)

    Article  Google Scholar 

  133. C. Berberidou, K. Xanthopoulos, I. Paspaltsis, A. Lourbopoulos, E. Polyzoidou, T. Sklaviadis, et al., Homogenous photocatalytic decontamination of prion infected stainless steel and titanium surfaces. Prion 7(6), 488–495 (2013)

    Article  Google Scholar 

  134. I. Paspaltsis, K. Kotta, R. Lagoudaki, N. Grigoriadis, I. Poulios, T. Sklaviadis, Titanium dioxide photocatalytic inactivation of prions. J. Gen. Virol. 87, 3125–3130 (2006)

    Article  Google Scholar 

  135. M. Soekmen, S. Degerli, A. Aslan, Photocatalytic disinfection of Giardia Intestinalis and Acanthamoeba castellani cysts in water. Exp. Parasitol. 119(1), 44–48 (2008)

    Article  Google Scholar 

  136. D.J. Giannantonio, J.C. Kurth, K.E. Kurtis, P.A. Sobecky, Effects of concrete properties and nutrients on fungal colonization and fouling. Int. Biodeter. Biodegr. 63(3), 252–259 (2009)

    Article  Google Scholar 

  137. J.C. Tiller, Antimicrobial surfaces, in Bioactive Surfaces, ed. by H. G. Borner, J. Lutz, (Springer Berlin Heidelberg, Dordrecht, London, 2011), pp. 193–217

    Google Scholar 

  138. Y. Sekiguchi, Y. Yao, Y. Ohko, K. Tanaka, T. Ishido, A. Fujishima, et al., Self-sterilizing catheters with titanium dioxide photocatalyst thin films for clean intermittent catheterization: basis and study of clinical use. Int. J. Urol. 14(5), 426–430 (2007)

    Article  Google Scholar 

  139. Y. Yao, Y. Ohko, Y. Sekiguchi, A. Fujishima, Y. Kubota, Self-sterilization using silicone catheters coated with Ag and TiO2 nanocomposite thin film. J. Biomed. Mater. Res. B-Appl. Biomater. 85(2), 453–460 (2008)

    Article  Google Scholar 

  140. F. Haghighi, S.R. Mohammadi, P. Mohammadi, M. Eskandari, S. Hosseinkhani, The evaluation of Candida albicans biofilms formation on silicone catheter, PVC and glass coated with titanium dioxide nanoparticles by XTT method and ATPase assay. Bratisl. Lek. Listy 113(12), 707–711 (2012)

    Google Scholar 

  141. M. Lilja, J. Forsgren, K. Welch, M. Astrand, H. Engqvist, M. Stromme, Photocatalytic and antimicrobial properties of surgical implant coatings of titanium dioxide deposited though cathodic arc evaporation. Biotechnol. Lett. 34(12), 2299–2305 (2012)

    Article  Google Scholar 

  142. H. Hu, W. Zhang, Y. Qiao, X. Jiang, X. Liu, C. Ding, Antibacterial activity and increased bone marrow stem cell functions of Zn-incorporated TiO2 coatings on titanium. Acta Biomater. 8(2), 904–915 (2012)

    Article  Google Scholar 

  143. M. Chun, E. Shim, E. Kho, K. Park, J. Jung, J. Kim, et al., Surface modification of orthodontic wires with photocatalytic titanium oxide for its antiadherent and antibacterial properties. Angle Orthod. 77(3), 483–488 (2007)

    Article  Google Scholar 

  144. F. Ozyildiz, A. Uzel, A.S. Hazar, M. Guden, S. Olmez, I. Aras, et al., Photocatalytic antimicrobial effect of TiO2 anatase thin-film-coated orthodontic arch wires on 3 oral pathogens. Turkish. J. Biol. 38(2), 289–295 (2014)

    Article  Google Scholar 

  145. S. Cao, B. Liu, L. Fan, Z. Yue, B. Liu, B. Cao, Highly antibacterial activity of N-doped TiO2 thin films coated on stainless steel brackets under visible light irradiation. Appl. Surf. Sci. 309, 119–127 (2014)

    Article  Google Scholar 

  146. B. Cao, Y. Wang, N. Li, B. Liu, Y. Zhang, Preparation of an orthodontic bracket coated with an nitrogen-doped TiO2-xNy thin film and examination of its antimicrobial performance. Dent. Mater. J. 32(2), 311–316 (2013)

    Article  Google Scholar 

  147. G. Villatte, C. Massard, S. Descamps, Y. Sibaud, C. Forestier, K. Awitor, Photoactive TiO2 antibacterial coating on surgical external fixation pins for clinical application. Int. J. Nanomedicine 10, 3367–3375 (2015)

    Article  Google Scholar 

  148. S. Khan, M. Ul-Islam, W.A. Khattak, M.W. Ullah, J.K. Park, Bacterial cellulose-titanium dioxide nanocomposites: nanostructural characteristics, antibacterial mechanism, and biocompatibility. Cellulose 22(1), 565–579 (2015)

    Article  Google Scholar 

  149. N. Suketa, T. Sawase, H. Kitaura, M. Naito, K. Baba, K. Nakayama, et al., An antibacterial surface on dental implants, based on the photocatalytic bactericidal effect. Clin. Implant. Dent. Relat. Res. 7(2), 105–111 (2005)

    Article  Google Scholar 

  150. Y. Cai, M. Stromme, A. Melhus, H. Engqvist, K. Welch, Photocatalytic inactivation of biofilms on bioactive dental adhesives. J. Biomed. Mater. Res. Part B. 102(1), 62–67 (2014)

    Article  Google Scholar 

  151. H. Nakamura, M. Tanaka, S. Shinohara, M. Gotoh, I. Karube, Development of a self-sterilizing lancet coated with a titanium dioxide photocatalytic nano-layer for self-monitoring of blood glucose. Biosens. Bioelectron. 22(9–10), 1920–1925 (2007)

    Article  Google Scholar 

  152. C.P. McCoy, C. Rooney, C.R. Edwards, D.S. Jones, S.P. Gorman, Light-triggered molecule-scale drug dosing devices. J. Am. Chem. Soc. 129(31), 9572–9573 (2007)

    Article  Google Scholar 

  153. S. Dai, P. Ravi, K. Tam, Thermo- and photo-responsive polymeric systems. Soft Matter 5(13), 2513–2533 (2009)

    Google Scholar 

  154. N.D. Heindel, M.A. Pfau, A profitable partnership: Giacomo Ciamician and Paul Silber. J. Chem. Educ. 42(7), 383 (1965)

    Article  Google Scholar 

  155. R.S. Givens, P.G. Conrad II, A.L. Yousef, J. Lee, Photoremovable protecting groups, in CRC Handbook of Organic Photochemistry and Photobiology, ed. by W. M. Horspool, F. Lenci, 2nd edn., (CRC Press, London, 2003), pp. 69–71

    Google Scholar 

  156. A. Kloxin, A. Kasko, C. Salinas, K. Anseth, Photodegradable hydrogels for dynamic tuning of physical and chemical properties. Science 324(5923), 59–63 (2009)

    Article  Google Scholar 

  157. S. Agasti, A. Chompoosor, C. You, P. Ghosh, C. Kim, V. Rotello, Photoregulated release of caged anticancer drugs from gold nanoparticles. J. Am. Chem. Soc. 131(16), 5728–5729 (2009)

    Article  Google Scholar 

  158. J. Nakanishi, H. Nakayama, T. Shimizu, H. Ishida, Y. Kikuchi, K. Yamaguchi, et al., Light-regulated activation of cellular signaling by gold nanoparticles that capture and release amines. J. Am. Chem. Soc. 131(11), 3822–3823 (2009)

    Article  Google Scholar 

  159. G. Han, C. You, B. Kim, R. Turingan, N. Forbes, C. Martin, Light-regulated release of DNA and its delivery to nuclei by means of photolabile gold nanoparticles. Angew. Chem. Int. Ed. Engl. 45(19), 3165–3169 (2006)

    Article  Google Scholar 

  160. J. Vivero Escoto, I. Slowing, C. Wu, Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere. J. Am. Chem. Soc. 131(10), 3462–3463 (2009)

    Article  Google Scholar 

  161. S. Banerjee, D. Chen, A multifunctional magnetic nanocarrier bearing fluorescent dye for targeted drug delivery by enhanced two-photon triggered release. Nanotechnology 20(18), 185103 (2009)

    Article  Google Scholar 

  162. W. Lin, D. Peng, B. Wang, L. Long, C. Guo, J. Yuan, A model for light-triggered porphyrin anticancer prodrugs based on an o-nitrobenzyl photolabile group. Eur. J. Org. Chem. 2008(5), 793–796 (2008)

    Article  Google Scholar 

  163. M.D. Green, A.A. Foster, C.T. Greco, R. Roy, R.M. Lehr, T.H. Epps III, et al., Catch and release: photocleavable cationic diblock copolymers as a potential platform for nucleic acid delivery. Polym. Chem. 5(19), 5535–5541 (2014)

    Article  Google Scholar 

  164. Z. Jiang, H. Li, Y. You, X. Wu, S. Shao, Q. Gu, Controlled protein delivery from photosensitive nanoparticles. J. Biomed. Mater. Res. A 103(1), 65–70 (2015)

    Article  Google Scholar 

  165. W.A. Velema, J.P. van der Berg, W. Szymanski, A.J.M. Driessen, B.L. Feringa, Orthogonal control of antibacterial activity with light. ACS Chem. Biol. 9(9), 1969–1974 (2014)

    Article  Google Scholar 

  166. N. Hampp, W. Heitz, A. Greiner, L. Hesse. Opthalmologic Implant. U.S. Patent US6887269 B1, (2005)

    Google Scholar 

  167. D. Kehrloesser, P.J. Behrendt, N. Hampp, Two-photon absorption triggered drug delivery from a polymer for intraocular lenses in presence of an UV-absorber. J. Photochem. Photobiol. A. 248, 8–14 (2012)

    Article  Google Scholar 

  168. S. Haertner, H. Kim, N. Hampp, Phototriggered release of photolabile drugs via two-photon absorption-induced cleavage of polymer-bound dicoumarin. J. Polym. Sci. A Polym. Chem. 45(12), 2443–2452 (2007)

    Article  Google Scholar 

  169. J. Liese, N.A. Hampp, Synthesis and photocleavage of a new polymerizable [2+2] hetero dimer for phototriggered drug delivery. J. Photochem. Photobiol. A. 219(2–3), 228–234 (2011)

    Article  Google Scholar 

  170. J.C. Victor, D.T. Rowe, J. Vitullo. Novel enhanced device and composition for local drug delivery. U.S. Patent US20140276356 A1, (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin P. McCoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Craig, R.A., McCoy, C.P. (2017). Light-Triggered Anti-Infective Surfaces. In: Zhang, Z., Wagner, V. (eds) Antimicrobial Coatings and Modifications on Medical Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-57494-3_10

Download citation

Publish with us

Policies and ethics