Skip to main content

Antimicrobial Modifications on Critical Care Implants

  • Chapter
  • First Online:
Antimicrobial Coatings and Modifications on Medical Devices

Abstract

Healthcare-associated infections (HAIs) are a leading cause of mortality and morbidity globally. Intensive care unit (ICU)-acquired infections represent the majority of HAIs and are most often associated with the use of invasive medical devices. These infections highly correlate with bacterial colonization and biofilm formation on the devices and can be complicated by other device-associated complications. In this chapter, advances in antimicrobial modifications on implantable medical devices, especially on typical critical care implants, are reviewed. The first part of the chapter introduces biofilm formation and its clinical linkage to HAIs. The second part reviews three infections classified by devices, i.e., catheter-related bloodstream infection (CRBSI), ventilator-associated pneumonia (VAP), and catheter-associated urinary tract infection (CAUTI), summarizing their causes, etiologic agents, and infection–complication relationship. The third part of the chapter investigates three typical critical care implants, i.e., vascular catheters, endotracheal tubes, and urinary catheters, focusing on substrate polymers and functional coatings to reduce device-associated complications especially those have been clinically evaluated. The last part overviews technologies have yet been clinically approved on medical implants but shown promising results to reduce bacterial colonization or biofilm formation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/Overview/ClassifyYourDevice/ucm051512.htm. Is The Product A Medical Device? 2014

  2. J.D. Bryers, Medical biofilms. Biotechnol. Bioeng. 100(1), 1–18 (2008)

    Article  Google Scholar 

  3. J.W. Costerton et al., Bacterial biofilms in nature and disease. Annu. Rev. Microbiol. 41, 435–464 (1987)

    Article  Google Scholar 

  4. R.M. Donlan, Biofilms: microbial life on surfaces. Emerg. Infect. Dis. 8(9), 881–890 (2002)

    Article  Google Scholar 

  5. K. Sauer et al., Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184(4), 1140–1154 (2002)

    Article  Google Scholar 

  6. D.G. Davies et al., The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280(5361), 295–298 (1998)

    Article  Google Scholar 

  7. M.R. Parsek, E.P. Greenberg, Sociomicrobiology: the connections between quorum sensing and biofilms. Trends Microbiol. 13(1), 27–33 (2005)

    Article  Google Scholar 

  8. T.J. Marrie, J.W. Costerton, Morphology of bacterial attachment to cardiac pacemaker leads and power packs. J. Clin. Microbiol. 19(6), 911–914 (1984)

    Google Scholar 

  9. M. Jacques, T.J. Marrie, J.W. Costerton, Review: microbial colonization of prosthetic devices. Microb. Ecol. 13(3), 173–191 (1987)

    Article  Google Scholar 

  10. T.R. Franson et al., Scanning electron microscopy of bacteria adherent to intravascular catheters. J. Clin. Microbiol. 20(3), 500–505 (1984)

    Google Scholar 

  11. T.J. Marrie, J.Y. Sung, J.W. Costerton, Bacterial biofilm formation on nasogastric tubes. J. Gastroenterol. Hepatol. 5(5), 503–506 (1990)

    Article  Google Scholar 

  12. R.M. Donlan, J.W. Costerton, Biofilms: survival mechanisms of clinically relevant microorganisms. Clin. Microbiol. Rev. 15(2), 167–193 (2002)

    Article  Google Scholar 

  13. L. Hall-Stoodley, P. Stoodley, Evolving concepts in biofilm infections. Cell. Microbiol. 11(7), 1034–1043 (2009)

    Article  Google Scholar 

  14. J.P. Burke, Infection control — a problem for patient safety. N. Engl. J. Med. 348(7), 651–656 (2003)

    Article  Google Scholar 

  15. M.C. Barsanti, K.F. Woeltje, Infection prevention in the intensive care unit. Infect. Dis. Clin. 23(3), 703–725 (2009)

    Article  Google Scholar 

  16. R. Gahlot et al., Catheter-related bloodstream infections. Int. J. Crit. Illn. Inj. Sci. 4(2), 162–167 (2014)

    Article  Google Scholar 

  17. H. Shah et al., Intravascular catheter-related bloodstream infection. Neurohospitalist 3(3), 144–151 (2013)

    Article  Google Scholar 

  18. D. Frasca, C. Dahyot-Fizelier, O. Mimoz, Prevention of central venous catheter-related infection in the intensive care unit. Crit. Care 14(2), 212–212 (2010)

    Article  Google Scholar 

  19. L.A. Mermel, Prevention of intravascular catheter-related infections. Ann. Intern. Med. 132(5), 391–402 (2000)

    Article  Google Scholar 

  20. S.I. Blot et al., Clinical and economic outcomes in critically ill patients with nosocomial catheter-related bloodstream infections. Clin. Infect. Dis. 41(11), 1591–1598 (2005)

    Article  Google Scholar 

  21. J. Liñares, Diagnosis of catheter-related bloodstream infection: conservative techniques. Clin. Infect. Dis. 44(6), 827–829 (2007)

    Article  Google Scholar 

  22. N.P. O’Grady et al., Summary of recommendations: guidelines for the prevention of intravascular catheter-related infections. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am 52(9), 1087–1099 (2011)

    Article  Google Scholar 

  23. L.A. Mermel, What is the predominant source of intravascular catheter infections? Clin. Infect. Dis. 52(2), 211–212 (2011)

    Article  Google Scholar 

  24. I. Raad et al., Ultrastructural analysis of indwelling vascular catheters: a quantitative relationship between luminal colonization and duration of placement. J. Infect. Dis. 168(2), 400–407 (1993)

    Article  Google Scholar 

  25. S.F. Fitzgerald et al., A 12-year review of Staphylococcus aureus bloodstream infections in haemodialysis patients: more work to be done. J. Hosp. Infect. 79(3), 218–221 (2011)

    Article  Google Scholar 

  26. I. Raad et al., Sources and outcome of bloodstream infections in cancer patients: the role of central venous catheters. Eur. J. Clin. Microbiol. Infect. Dis. 26(8), 549–556 (2007)

    Article  Google Scholar 

  27. A. Sitges-Serra et al., Hub colonization as the initial step in an outbreak of catheter-related sepsis due to coagulase negative staphylococci during parenteral nutrition. JPEN J. Parenter. Enteral Nutr. 8(6), 668–672 (1984)

    Article  Google Scholar 

  28. A.R. Marra et al., Epidemiology of bloodstream infections in patients receiving long-term total parenteral nutrition. J. Clin. Gastroenterol. 41(1), 19–28 (2007)

    Article  Google Scholar 

  29. L. Lorente et al., Microorganisms responsible for intravascular catheter-related bloodstream infection according to the catheter site. Crit. Care Med. 35(10), 2424–2427 (2007)

    Article  Google Scholar 

  30. K. Cheong et al., High rate of complications associated with peripherally inserted central venous catheters in patients with solid tumours. Intern. Med. J. 34(5), 234–238 (2004)

    Article  Google Scholar 

  31. B. Ong et al., Peripherally inserted central catheters and upper extremity deep vein thrombosis. Australas. Radiol. 50(5), 451–454 (2006)

    Article  Google Scholar 

  32. B.L. Lobo et al., Risk of venous thromboembolism in hospitalized patients with peripherally inserted central catheters. J. Hosp. Med. 4(7), 417–422 (2009)

    Article  Google Scholar 

  33. P. Sriskandarajah et al., Retrospective cohort analysis comparing the incidence of deep vein thromboses between peripherally-inserted and long-term skin tunneled venous catheters in hemato-oncology patients. Thromb. J. 13(21), 015–0052 (2015)

    Google Scholar 

  34. J.D. Paauw et al., The incidence of PICC line-associated thrombosis with and without the use of prophylactic anticoagulants. JPEN J. Parenter. Enteral Nutr. 32(4), 443–447 (2008)

    Article  Google Scholar 

  35. T. Marnejon et al., Risk factors for upper extremity venous thrombosis associated with peripherally inserted central venous catheters. J. Vasc. Access 13(2), 231–238 (2012)

    Article  Google Scholar 

  36. R.S. Boersma et al., Thrombotic and infectious complications of central venous catheters in patients with hematological malignancies. Ann. Oncol. 19(3), 433–442 (2008)

    Article  Google Scholar 

  37. M. Herrmann et al., Fibronectin, fibrinogen, and laminin act as mediators of adherence of clinical staphylococcal isolates to foreign material. J. Infect. Dis. 158(4), 693–701 (1988)

    Article  Google Scholar 

  38. J.R. Mehall et al., Fibrin sheath enhances central venous catheter infection. Crit. Care Med. 30(4), 908–912 (2002)

    Article  Google Scholar 

  39. I.I. Raad et al., The relationship between the thrombotic and infectious complications of central venous catheters. JAMA 271(13), 1014–1016 (1994)

    Article  Google Scholar 

  40. J.F. Timsit et al., Central vein catheter-related thrombosis in intensive care patients: incidence, risks factors, and relationship with catheter-related sepsis. Chest 114(1), 207–213 (1998)

    Article  Google Scholar 

  41. C.J. van Rooden et al., Infectious complications of central venous catheters increase the risk of catheter-related thrombosis in hematology patients: a prospective study. J. Clin. Oncol. 23(12), 2655–2660 (2005)

    Article  Google Scholar 

  42. S.M. Koenig, J.D. Truwit, Ventilator-associated pneumonia: diagnosis, treatment, and prevention. Clin. Microbiol. Rev. 19(4), 637–657 (2006)

    Article  Google Scholar 

  43. I.A. Pneumatikos, C.K. Dragoumanis, D.E. Bouros, Ventilator-associated pneumonia or endotracheal tube-associated pneumonia? An approach to the pathogenesis and preventive strategies emphasizing the importance of endotracheal tube. Anesthesiology 110(3), 673–680 (2009)

    Article  Google Scholar 

  44. J. Chastre, J. Fagon, Ventilator-associated pneumonia. Am. J. Respir. Crit. Care Med. 165(7), 867–903 (2002)

    Article  Google Scholar 

  45. M.D.M.C. Villafane et al., Gradual reduction of endotracheal tube diameter during mechanical ventilation via different humidification devices. Anesthesiology 85(6), 1341–1349 (1996)

    Article  Google Scholar 

  46. M.C. Boque et al., Endotracheal tube intraluminal diameter narrowing after mechanical ventilation: use of acoustic reflectometry. Intensive Care Med. 30(12), 2204–2209 (2004)

    Article  Google Scholar 

  47. C. Shah, M.H. Kollef, Endotracheal tube intraluminal volume loss among mechanically ventilated patients. Crit. Care Med. 32(1), 120–125 (2004)

    Article  Google Scholar 

  48. P.-E. Danin et al., Description and microbiology of endotracheal tube biofilm in mechanically ventilated subjects. Respir. Care 60(1), 21–29 (2015)

    Article  Google Scholar 

  49. I.L. Cohen et al., Endotracheal tube occlusion associated with the use of heat and moisture exchangers in the intensive care unit. Crit. Care Med. 16(3), 277–279 (1988)

    Article  Google Scholar 

  50. R. Donlan, Biofilms and device-associated infections. Emerg. Infect. Dis. 7(2), 277–281 (2001)

    Article  Google Scholar 

  51. S.M. Jacobsen et al., Complicated catheter-associated urinary tract infections due to Escherichia coli and Proteus mirabilis. Clin. Microbiol. Rev. 21(1), 26–59 (2008)

    Article  Google Scholar 

  52. G.A. O’May et al., Complicated urinary tract infections due to catheters. Role Biofilms Dev. Relat. Infect. 3, 123–165 (2009)

    Article  Google Scholar 

  53. D. Stickler et al., Why are Foley catheters so vulnerable to encrustation and blockage by crystalline bacterial biofilm? Urol. Res. 31(5), 306–311 (2003)

    Article  Google Scholar 

  54. J.W. Warren et al., A prospective microbiologic study of bacteriuria in patients with chronic indwelling urethral catheters. J. Infect. Dis. 146(6), 719–723 (1982)

    Article  Google Scholar 

  55. D.J. Stickler, Clinical complications of urinary catheters caused by crystalline biofilms: something needs to be done. J. Intern. Med. 276(2), 120–129 (2014)

    Article  Google Scholar 

  56. A.J. Cox, D.W. Hukins, Morphology of mineral deposits on encrusted urinary catheters investigated by scanning electron microscopy. J. Urol. 142(5), 1347–1350 (1989)

    Google Scholar 

  57. D. Stickler et al., Proteus mirabilis biofilms and the encrustation of urethral catheters. Urol. Res. 21(6), 407–411 (1993)

    Article  Google Scholar 

  58. H.L. Mobley, J.W. Warren, Urease-positive bacteriuria and obstruction of long-term urinary catheters. J. Clin. Microbiol. 25(11), 2216–2217 (1987)

    Google Scholar 

  59. B.D. Jones, H.L. Mobley, Genetic and biochemical diversity of ureases of Proteus, Providencia, and Morganella species isolated from urinary tract infection. Infect. Immun. 55(9), 2198–2203 (1987)

    Google Scholar 

  60. N.S. Morris, D.J. Stickler, R.J. McLean, The development of bacterial biofilms on indwelling urethral catheters. World J. Urol. 17(6), 345–350 (1999)

    Article  Google Scholar 

  61. M. Santin et al., Effect of the urine conditioning film on ureteral stent encrustation and characterization of its protein composition. Biomaterials 20(13), 1245–1251 (1999)

    Article  Google Scholar 

  62. B.K. Canales et al., Presence of five conditioning film proteins are highly associated with early stent encrustation. J. Endourol. 23(9), 1437–1442 (2009)

    Article  Google Scholar 

  63. R.J. Sherertz et al., Contribution of vascular catheter material to the pathogenesis of infection: the enhanced risk of silicone in vivo. J. Biomed. Mater. Res. 29(5), 635–645 (1995)

    Article  Google Scholar 

  64. A.B. Cohen et al., Silicone and polyurethane tunneled infusion catheters: a comparison of durability and breakage rates. J. Vasc. Interv. Radiol. 22(5), 638–641 (2011)

    Article  Google Scholar 

  65. S. Galloway, A. Bodenham, Long-term central venous access. Br. J. Anaesth. 92(5), 722–734 (2004)

    Article  Google Scholar 

  66. M. Wildgruber et al., Polyurethane versus silicone catheters for central venous port devices implanted at the forearm. Eur. J. Cancer 59, 113–124 (2016)

    Article  Google Scholar 

  67. A.J. Coury et al., Factors and interactions affecting the performance of polyurethane elastomers in medical devices. J. Biomater. Appl. 3(2), 130–179 (1988)

    Article  Google Scholar 

  68. M.G. Tal, N. Ni, Selecting optimal hemodialysis catheters: material, design, advanced features, and preferences. Tech. Vascular. Interv. Radiol. 11(3), 186–191 (2008)

    Article  Google Scholar 

  69. M.-G. Knuttinen et al., A review of evolving dialysis catheter technologies. Semin. Interv. Radiol. 26(2), 106–114 (2009)

    Article  Google Scholar 

  70. A. Dwyer, Surface-treated catheters – a review. Semin. Dial. 21(6), 542–546 (2008)

    Article  Google Scholar 

  71. N.M. Lai et al., Catheter impregnation, coating or bonding for reducing central venous catheter-related infections in adults. Cochrane Database Syst. Rev. 16(3), CD007878 (2016)

    Google Scholar 

  72. K. Blom, M. Werthen, A laboratory study of the synergistic effect of chlorhexidine and silver. Am. J. Infect. Control 43(6), S22 (2015)

    Article  Google Scholar 

  73. D.L. Veenstra et al., Efficacy of antiseptic-impregnated central venous catheters in preventing catheter-related bloodstream infection: a meta-analysis. JAMA 281(3), 261–267 (1999)

    Article  Google Scholar 

  74. A. Bach, Clinical studies on the use of antibiotic- and antiseptic-bonded catheters to prevent catheter-related infection. Zentralblatt für Bakteriologie 283(2), 208–214 (1995)

    Article  Google Scholar 

  75. D.L. Miller, N.P. O’Grady, Guidelines for the prevention of intravascular catheter-related infections: recommendations relevant to interventional radiology for venous catheter placement and maintenance. J. Vasc. Interv. Radiol. 23(8), 997–1007 (2012)

    Article  Google Scholar 

  76. D.G. Maki et al., Prevention of central venous catheter-related bloodstream infection by use of an antiseptic-impregnated catheter: a randomized, controlled trial. Ann. Intern. Med. 127(4), 257–266 (1997)

    Article  Google Scholar 

  77. Q.L. Feng et al., A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. J. Biomed. Mater. Res. 52(4), 662–668 (2000)

    Article  Google Scholar 

  78. S.K. Kakkos et al., Effectiveness of a new tunneled catheter in preventing catheter malfunction: a comparative study. J. Vascular Interv. Radiol. 19(7), 1018–1026 (2008)

    Article  Google Scholar 

  79. C. Ye et al., A retrospective study of palindrome symmetrical-tip catheters for chronic hemodialysis access in China. Ren. Fail. 37(6), 941–946 (2015)

    Article  Google Scholar 

  80. J.-P. Guggenbichler et al., A new technology of microdispersed silver in polyurethane induces antimicrobial activity in central venous catheters. Infection 27(1), S16–S23 (1999)

    Article  Google Scholar 

  81. L. Corral et al., A prospective, randomized study in critically ill patients using the Oligon Vantex catheter. J. Hosp. Infect. 55(3), 212–219 (2003)

    Article  Google Scholar 

  82. P. Kalfon et al., Comparison of silver-impregnated with standard multi-lumen central venous catheters in critically ill patients. Crit. Care Med. 35(4), 1032–1039 (2007)

    Article  Google Scholar 

  83. H. Wang et al., Effectiveness of different central venous catheters for catheter-related infections: a network meta-analysis. J. Hosp. Infect. 76(1), 1–11 (2010)

    Article  Google Scholar 

  84. R. Bambauer et al., Long-term catheters for apheresis and dialysis with surface treatment with infection resistance and low thrombogenicity. Ther. Apher. Dial. 7(2), 225–231 (2003)

    Article  Google Scholar 

  85. R. Bambauer et al., Surface-treated versus untreated large-bore catheters as vascular access in hemodialysis and apheresis treatments. Int. J. Nephrol. 2012, 956136 (2012)

    Article  Google Scholar 

  86. S.E. Tebbs, T.S.J. Elliott, A novel antimicrobial central venous catheter impregnated with benzalkonium chloride. J. Antimicrob. Chemother. 31(2), 261–271 (1993)

    Article  Google Scholar 

  87. H.A. Moss et al., A central venous catheter coated with benzalkonium chloride for the prevention of catheter-related microbial colonization. Eur. J. Anaesthesiol. 17(11), 680–687 (2000)

    Article  Google Scholar 

  88. K. Jaeger et al., Efficacy of a benzalkonium chloride-impregnated central venous catheter to prevent catheter-associated infection in cancer patients. Chemotherapy 47(1), 50–55 (2001)

    Article  Google Scholar 

  89. I. Chopra, M. Roberts, Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 65(2), 232–260 (2001)

    Article  Google Scholar 

  90. G.N. Forrest, K. Tamura, Rifampin combination therapy for nonmycobacterial infections. Clin. Microbiol. Rev. 23(1), 14–34 (2010)

    Article  Google Scholar 

  91. J. Segreti, L.C. Gvazdinskas, G.M. Trenholme, In vitro activity of minocycline and rifampin against staphylococci. Diagn. Microbiol. Infect. Dis. 12(3), 253–255 (1989)

    Article  Google Scholar 

  92. I. Raad et al., Central venous catheters coated with minocycline and rifampin for the prevention of catheter-related colonization and bloodstream infections: a randomized, double-blind trial. Ann. Intern. Med. 127(4), 267–274 (1997)

    Article  Google Scholar 

  93. H. Hanna et al., Long-term silicone central venous catheters impregnated with minocycline and rifampin decrease rates of catheter-related bloodstream infection in cancer patients: a prospective randomized clinical trial. J. Clin. Oncol. 22(15), 3163–3171 (2004)

    Article  Google Scholar 

  94. M.E. Falagas et al., Rifampicin-impregnated central venous catheters: a meta-analysis of randomized controlled trials. J. Antimicrob. Chemother. 59(3), 359–369 (2007)

    Article  Google Scholar 

  95. S. Bonne et al., Effectiveness of minocycline and rifampin vs chlorhexidine and silver sulfadiazine-impregnated central venous catheters in preventing central line-associated bloodstream infection in a high-volume academic intensive care unit: a before and after trial. J. Am. Coll. Surg. 221(3), 739–747 (2015)

    Article  Google Scholar 

  96. R.W. Allan et al., Embolization of hydrophilic catheter coating to the lungs. Rep. Case. Mimick. Granulomatous Vasculitis 132(5), 794–797 (2009)

    Google Scholar 

  97. I. Raad et al., Improved antibiotic-impregnated catheters with extended-spectrum activity against resistant bacteria and fungi. Antimicrob. Agents Chemother. 56(2), 935–941 (2012)

    Article  Google Scholar 

  98. A. Barasch, A.V. Griffin, Miconazole revisited: new evidence of antifungal efficacy from laboratory and clinical trials. Future Microbiol 3(3), 265–269 (2008)

    Article  Google Scholar 

  99. N. Yücel et al., Reduced colonization and infection with miconazole–rifampicin modified central venous catheters: a randomized controlled clinical trial. J. Antimicrob. Chemother. 54(6), 1109–1115 (2004)

    Article  Google Scholar 

  100. J.M. Schierholz et al., Antimicrobial central venous catheters in oncology: efficacy of a rifampicin–miconazole-releasing catheter. Anticancer Res. 30(4), 1353–1358 (2010)

    Google Scholar 

  101. L. Lorente et al., The use of rifampicin-miconazole—impregnated catheters reduces the incidence of femoral and jugular catheter-related bacteremia. Clin. Infect. Dis. 47(9), 1171–1175 (2008)

    Article  Google Scholar 

  102. G.D. Kamal et al., Reduced intravascular catheter infection by antibiotic bonding: a prospective, randomized, controlled trial. JAMA 265(18), 2364–2368 (1991)

    Article  Google Scholar 

  103. J.H. Gieringer et al., Effect of 5-fluorouracil, mitoxantrone, methotrexate, and vincristine on the antibacterial activity of ceftriaxone, ceftazidime, cefotiam, piperacillin, and netilmicin. Chemotherapy 32(5), 418–424 (1986)

    Article  Google Scholar 

  104. C. Kesavan, A.G. Joyee, 5-fluorouracil altered morphology and inhibited growth of Candida albicans. J. Clin. Microbiol. 43(12), 6215–6216 (2005)

    Article  Google Scholar 

  105. R. Avelar, A. Jonker, 5 – Catheter-based drug–device combination products: the anti-infective 5-fluorouracil-coated central venous catheter A2 – Lewis, Andrew, in Drug-Device Combination Products, (Woodhead Publishing, Oxford, 2010), pp. 93–116

    Chapter  Google Scholar 

  106. J.M. Walz et al., Anti-infective external coating of central venous catheters: a randomized, noninferiority trial comparing 5-fluorouracil with chlorhexidine/silver sulfadiazine in preventing catheter colonization. Crit. Care Med. 38(11), 2095–2102 (2010)

    Article  Google Scholar 

  107. S.K. Schmitt et al., Impact of chlorhexidine-silver sulfadiazine-impregnated central venous catheters on in vitro quantitation of catheter-associated bacteria. J. Clin. Microbiol. 34(3), 508–511 (1996)

    Google Scholar 

  108. J.I. Greenfeld et al., Decreased bacterial adherence and biofilm formation on chlorhexidine and silver sulfadiazine-impregnated central venous catheters implanted in swine. Crit. Care Med. 23(5), 894–900 (1995)

    Article  Google Scholar 

  109. L.A. Sampath et al., Infection resistance of surface modified catheters with either short-lived or prolonged activity. J. Hosp. Infect. 30(3), 201–210 (1995)

    Article  Google Scholar 

  110. M.N. Carrasco et al., Evaluation of a triple-lumen central venous heparin-coated catheter versus a catheter coated with chlorhexidine and silver sulfadiazine in critically ill patients. Intensive Care Med. 30(4), 633–638 (2004)

    Article  Google Scholar 

  111. M.E. Rupp et al., Effect of a second-generation venous catheter impregnated with chlorhexidine and silver sulfadiazine on central catheter–related infections: A randomized, controlled trial. Ann. Intern. Med. 143(8), 570–580 (2005)

    Article  Google Scholar 

  112. C. Brun-Buisson et al., Prevention of intravascular catheter-related infection with newer chlorhexidine-silver sulfadiazine-coated catheters: a randomized controlled trial. Intensive Care Med. 30(5), 837–843 (2004)

    Article  Google Scholar 

  113. K. Yorganci et al., Activity of antibacterial impregnated central venous catheters against Klebsiella pneumoniae. Intensive Care Med. 28(4), 438–442 (2002)

    Article  Google Scholar 

  114. S. Murugesan, J. Xie, R.J. Linhardt, Immobilization of heparin: approaches and applications. Curr. Top. Med. Chem. 8(2), 80–100 (2008)

    Article  Google Scholar 

  115. O. Larm, R. Larsson, P. Olsson, A new non-thrombogenic surface prepared by selective covalent binding of heparin via a modified reducing terminal residue. Biomater. Med. Devices Artif. Organs 11(2–3), 161–173 (1983)

    Article  Google Scholar 

  116. U.R. Nilsson et al., Modification of the complement binding properties of polystyrene: effects of end-point heparin attachment. Scand. J. Immunol. 37(3), 349–354 (1993)

    Article  Google Scholar 

  117. C. Arnander et al., Long-term stability in vivo of a thromboresistant heparinized surface. Biomaterials 8(6), 496–499 (1987)

    Article  Google Scholar 

  118. P.L. Foley, C.H. Barthel, H.R. Brausa, Effect of covalently bound heparin coating on patency and biocompatibility of long-term indwelling catheters in the rat jugular vein. Comp. Med. 52(3), 243–248 (2002)

    Google Scholar 

  119. P. Appelgren et al., Surface heparinization of central venous catheters reduces microbial colonization in vitro and in vivo: Results from a prospective, randomized trial. Crit. Care Med. 24(9), 1482–1489 (1996)

    Article  Google Scholar 

  120. P. Appelgren et al., Does surface heparinisation reduce bacterial colonisation of central venous catheters? Lancet 345(8942), 130 (1995)

    Article  Google Scholar 

  121. G. Jain et al., Does heparin coating improve patency or reduce infection of tunneled dialysis catheters? Clin. J. Am. Soc. Nephrol. CJASN 4(11), 1787–1790 (2009)

    Article  Google Scholar 

  122. H.T. Tevaearai et al., Trillium coating of cardiopulmonary bypass circuits improves biocompatibility. Int. J. Artif. Organs 22(9), 629–634 (1999)

    Google Scholar 

  123. Y.W. Tang et al., Synthesis of surface-modifying macromolecules for use in segmented polyurethanes. J. Appl. Polym. Sci. 62(8), 1133–1145 (1996)

    Article  Google Scholar 

  124. C.B. McCloskey, C.M. Yip, J.P. Santerre, Effect of fluorinated surface-modifying macromolecules on the molecular surface structure of a polyether poly(urethane urea). Macromolecules 35(3), 924–933 (2002)

    Article  Google Scholar 

  125. C.F. Haas et al., Endotracheal tubes: old and new. Respir. Care 59(6), 933–952 (2014)

    Article  Google Scholar 

  126. W.J. Morton et al., Investigation of phthalate release from tracheal tubes. Anaesthesia 68(4), 377–381 (2013)

    Article  Google Scholar 

  127. G. Latini et al., Di-(2-ethylhexyl)phthalate leakage and color changes in endotracheal tubes after application in high-risk newborns. Neonatology 95(4), 317–323 (2009)

    Article  Google Scholar 

  128. R. Ito et al., Determination of tris(2-ethylhexyl)trimellitate released from PVC tube by LC-MS/MS. Int. J. Pharm. 360(1–2), 91–95 (2008)

    Article  Google Scholar 

  129. F. Chiellini et al., Perspectives on alternatives to phthalate plasticized poly(vinyl chloride) in medical devices applications. Prog. Polym. Sci. 38(7), 1067–1088 (2013)

    Article  Google Scholar 

  130. M.E. Olson, B.G. Harmon, M.H. Kollef, Silver-coated endotracheal tubes associated with reduced bacterial burden in the lungs of mechanically ventilated dogs. Chest 121(3), 863–870 (2002)

    Article  Google Scholar 

  131. J. Rello et al., Reduced burden of bacterial airway colonization with a novel silver-coated endotracheal tube in a randomized multiple-center feasibility study*. Crit. Care Med. 34(11), 2766–2772 (2006)

    Article  Google Scholar 

  132. M.H. Kollef et al., Silver-coated endotracheal tubes and incidence of ventilator-associated pneumonia: The nascent randomized trial. JAMA 300(7), 805–813 (2008)

    Article  Google Scholar 

  133. M.D.L. Berra et al., Endotracheal tubes coated with antiseptics decrease bacterial colonization of the ventilator circuits, lungs, and endotracheal tube. Anesthesiology 100(6), 1446–1456 (2004)

    Article  Google Scholar 

  134. L. Berra et al., Antimicrobial-coated endotracheal tubes: an experimental study. Intensive Care Med. 34(6), 1020–1029 (2008)

    Article  Google Scholar 

  135. R.M. Epand, R.F. Epand, P.B. Savage, Ceragenins (cationic steroid compounds), a novel class of antimicrobial agents. Drug News Perspect. 21(6), 307–311 (2008)

    Article  Google Scholar 

  136. M. Moscoso et al., In vitro bactericidal and bacteriolytic activity of ceragenin CSA-13 against planktonic cultures and biofilms of Streptococcus pneumoniae and other pathogenic streptococci. PLoS One 9(7), e101037 (2014)

    Article  Google Scholar 

  137. D.L. Williams et al., In vivo efficacy of a silicone–cationic steroid antimicrobial coating to prevent implant-related infection. Biomaterials 33(33), 8641–8656 (2012)

    Article  Google Scholar 

  138. H. Hedelin et al., Relationship between urease-producing bacteria, urinary pH and encrustation on indwelling urinary catheters. Br. J. Urol. 67(5), 527–531 (1991)

    Article  Google Scholar 

  139. I. Pomfret, Urinary catheters: selection, management and prevention of infection. Br. J. Community Nurs. 5(1), 6–8 (2000)

    Article  Google Scholar 

  140. G.S. Robertson et al., Effect of catheter material on the incidence of urethral strictures. Br. J. Urol. 68(6), 612–617 (1991)

    Article  Google Scholar 

  141. T.M. Hamill et al., Strategies for the development of the urinary catheter. Expert Rev. Med. Devices 4(2), 215–225 (2007)

    Article  Google Scholar 

  142. M. Talja, A. Korpela, K. Jarvi, Comparison of urethral reaction to full silicone, hydrogen-coated and siliconised latex catheters. Br. J. Urol. 66(6), 652–657 (1990)

    Article  Google Scholar 

  143. H. Kumon et al., Catheter-associated urinary tract infections: impact of catheter materials on their management. Int. J. Antimicrobial Agents 17(4), 311–316 (2001)

    Article  Google Scholar 

  144. T.A. Gaonkar, L.A. Sampath, S.M. Modak, Evaluation of the antimicrobial efficacy of urinary catheters impregnated with antiseptics in an in vitro urinary tract model. Infect. Control Hosp. Epidemiol. 24(7), 506–513 (2003)

    Article  Google Scholar 

  145. D.K. Riley et al., A large randomized clinical trial of a silver-impregnated urinary catheter: lack of efficacy and staphylococcal superinfection. Am. J. Med. 98(4), 349–356 (1995)

    Article  Google Scholar 

  146. J.R. Johnson, B. Johnston, M.A. Kuskowski, In vitro comparison of nitrofurazone- and silver alloy-coated foley catheters for contact-dependent and diffusible inhibition of urinary tract infection-associated microorganisms. Antimicrob. Agents Chemother. 56(9), 4969–4972 (2012)

    Article  Google Scholar 

  147. S.J. Lee et al., A comparative multicentre study on the incidence of catheter-associated urinary tract infection between nitrofurazone-coated and silicone catheters. Int. J. Antimicrob. Agents 24(1), S65–S69 (2004)

    Article  Google Scholar 

  148. J. Stensballe et al., Infection risk with nitrofurazone-impregnated urinary catheters in trauma patients – a randomized trial. Ann. Intern. Med. 147(5), 285–293 (2007)

    Article  Google Scholar 

  149. T.B. Lam et al., Types of indwelling urethral catheters for short-term catheterisation in hospitalised adults. Cochrane Database Syst. Rev. 23(9), CD004013 (2014)

    Google Scholar 

  150. R.O. Darouiche et al., Efficacy of antimicrobial-impregnated bladder catheters in reducing catheter-associated bacteriuria: a prospective, randomized, multicenter clinical trial. Urology 54(6), 976–981 (1999)

    Article  Google Scholar 

  151. L. Cormio et al., Bacterial adhesion to urethral catheters: role of coating materials and immersion in antibiotic solution. Eur. Urol. 40(3), 354–358 (2001)

    Article  Google Scholar 

  152. M.M. Tunney, S.P. Gorman, Evaluation of a poly(vinyl pyrollidone)-coated biomaterial for urological use. Biomaterials 23(23), 4601–4608 (2002)

    Article  Google Scholar 

  153. E. Bull et al., Single-blind, randomised, parallel group study of the Bard Biocath catheter and a silicone elastomer coated catheter. Br. J. Urol. 68(4), 394–399 (1991)

    Article  Google Scholar 

  154. J.A. Roberts, M. Bernice Kaack, E.N. Fussell, Adherence to urethral catheters by bacteria causing nosocomial infections. Urology 41(4), 338–342 (1993)

    Article  Google Scholar 

  155. J.H. Park et al., Assessment of PEO/PTMO multiblock copolymer/segmented polyurethane blends as coating materials for urinary catheters: in vitro bacterial adhesion and encrustation behavior. Biomaterials 23(19), 3991–4000 (2002)

    Article  Google Scholar 

  156. L. Brisset et al., In vivo and in vitro analysis of the ability of urinary catheter to microbial colonization. Pathol. Biol. 44(5), 397–404 (1996)

    Google Scholar 

  157. N.S. Morris, D.J. Stickler, Encrustation of indwelling urethral catheters by “Proteus mirabilis” biofilms growing in human urine. J. Hosp. Infect. 39(3), 227–234 (1998)

    Article  Google Scholar 

  158. S.A.V. Holmes, C. Cheng, H.N. Whitfield, The development of synthetic polymers that resist encrustation on exposure to urine. Br. J. Urol. 69(6), 651–655 (1992)

    Article  Google Scholar 

  159. N. Venkatesan et al., Polymers as ureteral stents. J. Endourol. 24(2), 191–198 (2010)

    Article  Google Scholar 

  160. H. Liedberg, T. Lundeberg, P. Ekman, Refinements in the coating of urethral catheters reduces the incidence of catheter-associated bacteriuria. An experimental and clinical study. Eur. Urol. 17(3), 236–240 (1990)

    Google Scholar 

  161. P. Jahn, K. Beutner, G. Langer, Types of indwelling urinary catheters for long-term bladder drainage in adults. Cochrane Database Syst. Rev. 17(10), CD004997 (2012)

    Google Scholar 

  162. S.K. Wassil, C.M. Crill, S.J. Phelps, Antimicrobial impregnated catheters in the prevention of catheter-related bloodstream infection in hospitalized patients. J. Pediatr. Pharmacol. Ther. JPPT 12(2), 77–90 (2007)

    Google Scholar 

  163. M. Zilberman, J.J. Elsner, Antibiotic-eluting medical devices for various applications. J. Control. Release 130(3), 202–215 (2008)

    Article  Google Scholar 

  164. M. Zilberman et al., Drug-eluting medical implants, in Drug Delivery, ed. by M. Schäfer-Korting, (Springer, Berlin/Heidelberg, 2010), pp. 299–341

    Google Scholar 

  165. M. Ma et al., Local delivery of antimicrobial peptides using self-organized TiO2 nanotube arrays for peri-implant infections. J. Biomed. Mater. Res. A 100A(2), 278–285 (2012)

    Article  Google Scholar 

  166. M. Lucke et al., Gentamicin coating of metallic implants reduces implant-related osteomyelitis in rats. Bone 32(5), 521–531 (2003)

    Article  Google Scholar 

  167. T. Kälicke et al., Effect on infection resistance of a local antiseptic and antibiotic coating on osteosynthesis implants: An in vitro and in vivo study. J. Orthop. Res. 24(8), 1622–1640 (2006)

    Article  Google Scholar 

  168. R.G. Richards et al., Infection in fracture fixation. From basic research, to diagnosis, to evidence-based treatment Prophylaxis and treatment of implant-related infections by antibiotic-coated implants: a review. Injury 37(2), S105–S112 (2006)

    Article  Google Scholar 

  169. T. Fuchs et al., The use of gentamicin-coated nails in the tibia: preliminary results of a prospective study. Arch. Orthop. Trauma Surg. 131(10), 1419–1425 (2011)

    Article  Google Scholar 

  170. A. Shrivastav, H.-Y. Kim, Y.-R. Kim, Advances in the applications of polyhydroxyalkanoate nanoparticles for novel drug delivery system. Biomed. Res. Int. 2013, 12 (2013)

    Article  Google Scholar 

  171. İ. Gürsel et al., In vivo application of biodegradable controlled antibiotic release systems for the treatment of implant-related osteomyelitis. Biomaterials 22(1), 73–80 (2000)

    Article  Google Scholar 

  172. F. Turesin, I. Gursel, V. Hasirci, Biodegradable polyhydroxyalkanoate implants for osteomyelitis therapy: in vitro antibiotic release. J. Biomater. Sci. Polym. Ed. 12(2), 195–207 (2001)

    Article  Google Scholar 

  173. S. Rossi, A.O. Azghani, A. Omri, Antimicrobial efficacy of a new antibiotic-loaded poly(hydroxybutyric-co-hydroxyvaleric acid) controlled release system. J. Antimicrob. Chemother. 54(6), 1013–1018 (2004)

    Article  Google Scholar 

  174. R.N. Dave, H.M. Joshi, V.P. Venugopalan, Novel biocatalytic polymer-based antimicrobial coatings as potential ureteral biomaterial: preparation and in vitro performance evaluation. Antimicrob. Agents Chemother. 55(2), 845–853 (2011)

    Article  Google Scholar 

  175. M. Tanihara et al., A novel microbial infection-responsive drug release system. J. Pharm. Sci. 88(5), 510–514 (1999)

    Article  Google Scholar 

  176. N.J. Irwin et al., Infection-responsive drug delivery from urinary biomaterials controlled by a novel kinetic and thermodynamic approach. Pharm. Res. 30(3), 857–865 (2013)

    Article  Google Scholar 

  177. C.P. McCoy et al., An infection-responsive approach to reduce bacterial adhesion in urinary biomaterials. Mol. Pharm. 13(8), 2817–2822 (2016)

    Article  Google Scholar 

  178. V.V. Komnatnyy et al., Bacteria-triggered release of antimicrobial agents. Angew. Chem. Int. Ed. 53(2), 439–441 (2014)

    Article  Google Scholar 

  179. J.C. Tiller et al., Designing surfaces that kill bacteria on contact. Proc. Natl. Acad. Sci. U. S. A. 98(11), 5981–5985 (2001)

    Article  Google Scholar 

  180. S.B. Lee et al., Permanent, nonleaching antibacterial surfaces. 1. synthesis by atom transfer radical polymerization. Biomacromolecules 5(3), 877–882 (2004)

    Article  Google Scholar 

  181. N.M. Milovic et al., Immobilized N-alkylated polyethylenimine avidly kills bacteria by rupturing cell membranes with no resistance developed. Biotechnol. Bioeng. 90(6), 715–722 (2005)

    Article  Google Scholar 

  182. A. Popa et al., Study of quaternary ‘onium’ salts grafted on polymers: antibacterial activity of quaternary phosphonium salts grafted on ‘gel-type’ styrene–divinylbenzene copolymers. React. Funct. Polym. 55(2), 151–158 (2003)

    Article  Google Scholar 

  183. D.D. Iarikov et al., Antimicrobial surfaces using covalently bound polyallylamine. Biomacromolecules 15(1), 169–176 (2014)

    Article  Google Scholar 

  184. R. Wang et al., Inhibition of Escherichia coli and proteus mirabilis adhesion and biofilm formation on medical grade silicone surface. Biotechnol. Bioeng. 109(2), 336–345 (2012)

    Article  Google Scholar 

  185. A. Asadinezhad et al., An in vitro bacterial adhesion assessment of surface-modified medical-grade PVC. Colloids Surf. B: Biointerfaces 77(2), 246–256 (2010)

    Article  Google Scholar 

  186. L. Chen et al., Electrospun cellulose acetate fibers containing chlorhexidine as a bactericide. Polymer 49(5), 1266–1275 (2008)

    Article  Google Scholar 

  187. Y. Guan et al., Antimicrobial-modified sulfite pulps prepared by in situ copolymerization. Carbohydr. Polym. 69(4), 688–696 (2007)

    Article  Google Scholar 

  188. F. Costa et al., Covalent immobilization of antimicrobial peptides (AMPs) onto biomaterial surfaces. Acta Biomater. 7(4), 1431–1440 (2011)

    Article  Google Scholar 

  189. M. Zasloff, Antimicrobial peptides of multicellular organisms. Nature 415(6870), 389–395 (2002)

    Article  Google Scholar 

  190. B. Gottenbos et al., In vitro and in vivo antimicrobial activity of covalently coupled quaternary ammonium silane coatings on silicone rubber. Biomaterials 23(6), 1417–1423 (2002)

    Article  Google Scholar 

  191. N. Aumsuwan, S. Heinhorst, M.W. Urban, The effectiveness of antibiotic activity of penicillin attached to expanded poly(tetrafluoroethylene) (ePTFE) surfaces: a quantitative assessment. Biomacromolecules 8(11), 3525–3530 (2007)

    Article  Google Scholar 

  192. N. Aumsuwan et al., Attachment of ampicillin to expanded poly(tetrafluoroethylene): surface reactions leading to inhibition of microbial growth. Biomacromolecules 9(7), 1712–1718 (2008)

    Article  Google Scholar 

  193. N. Aumsuwan, M.S. McConnell, M.W. Urban, Tunable antimicrobial polypropylene surfaces: simultaneous attachment of penicillin (Gram +) and gentamicin (Gram −). Biomacromolecules 10(3), 623–629 (2009)

    Article  Google Scholar 

  194. J.-Y. Wach, S. Bonazzi, K. Gademann, Antimicrobial surfaces through natural product hybrids. Angew. Chem. Int. Ed. 47(37), 7123–7126 (2008)

    Article  Google Scholar 

  195. M. Schmidt et al., Conjugation of ciprofloxacin with poly(2-oxazoline)s and polyethylene glycol via end groups. Bioconjug. Chem. 26(9), 1950–1962 (2015)

    Article  Google Scholar 

  196. S. He et al., Antibiotic-decorated titanium with enhanced antibacterial activity through adhesive polydopamine for dental/bone implant. J. R. Soc. Interface 11(95), 6 (2014)

    Article  Google Scholar 

  197. M. Manefield et al., Evidence that halogenated furanones from Delisea pulchra inhibit acylated homoserine lactone (AHL)-mediated gene expression by displacing the AHL signal from its receptor protein. Microbiology 145(Pt 2), 283–291 (1999)

    Article  Google Scholar 

  198. E.B. Hume et al., The control of Staphylococcus epidermidis biofilm formation and in vivo infection rates by covalently bound furanones. Biomaterials 25(20), 5023–5030 (2004)

    Article  Google Scholar 

  199. K.K.K. Ho et al., Immobilization of antibacterial dihydropyrrol-2-ones on functional polymer supports to prevent bacterial infections in vivo. Antimicrob. Agents Chemother. 56(2), 1138–1141 (2012)

    Article  Google Scholar 

  200. S.M. Mathews et al., Prevention of bacterial colonization of contact lenses with covalently attached selenium and effects on the rabbit cornea. Cornea 25(7), 806–814 (2006)

    Article  Google Scholar 

  201. P.L. Tran et al., An organoselenium compound inhibits Staphylococcus aureus biofilms on hemodialysis catheters in vivo. Antimicrob. Agents Chemother. 56(2), 972–978 (2012)

    Article  Google Scholar 

  202. M. Bagheri, M. Beyermann, M. Dathe, Immobilization reduces the activity of surface-bound cationic antimicrobial peptides with no influence upon the activity spectrum. Antimicrob. Agents Chemother. 53(3), 1132–1141 (2009)

    Article  Google Scholar 

  203. R. Kuehl et al., Furanone at subinhibitory concentrations enhances staphylococcal biofilm formation by luxS repression. Antimicrob. Agents Chemother. 53(10), 4159–4166 (2009)

    Article  Google Scholar 

  204. L. Ferreira, A. Zumbuehl, Non-leaching surfaces capable of killing microorganisms on contact. J. Mater. Chem. 19(42), 7796–7806 (2009)

    Article  Google Scholar 

  205. S. Gon et al., How bacteria adhere to brushy peg surfaces: clinging to flaws and compressing the brush. Macromolecules 45(20), 8373–8381 (2012)

    Article  Google Scholar 

  206. D.E. Fullenkamp et al., Mussel-inspired silver-releasing antibacterial hydrogels. Biomaterials 33(15), 3783–3791 (2012)

    Article  Google Scholar 

  207. R. Hu et al., Silver–Zwitterion organic–inorganic nanocomposite with antimicrobial and antiadhesive capabilities. Langmuir 29(11), 3773–3779 (2013)

    Article  Google Scholar 

  208. Z. Wang et al., Anti-bacterial superhydrophobic silver on diverse substrates based on the mussel-inspired polydopamine. Surf. Coat. Technol. 280, 378–383 (2015)

    Article  Google Scholar 

  209. X. Ding et al., Antibacterial and antifouling catheter coatings using surface grafted PEG-b-cationic polycarbonate diblock copolymers. Biomaterials 33(28), 6593–6603 (2012)

    Article  Google Scholar 

  210. K. Yu et al., Toward infection-resistant surfaces: achieving high antimicrobial peptide potency by modulating the functionality of polymer brush and peptide. ACS Appl. Mater. Interfaces 7(51), 28591–28605 (2015)

    Article  Google Scholar 

  211. Z. Zhang, S. Chen, S. Jiang, Dual-functional biomimetic materials: nonfouling poly(carboxybetaine) with active functional groups for protein immobilization. Biomacromolecules 7(12), 3311–3315 (2006)

    Article  Google Scholar 

  212. Z. Zhang et al., The hydrolysis of cationic polycarboxybetaine esters to zwitterionic polycarboxybetaines with controlled properties. Biomaterials 29(36), 4719–4725 (2008)

    Article  Google Scholar 

  213. T. Dai et al., Ultraviolet C irradiation: an alternative antimicrobial approach to localized infections? Expert Rev. Anti-Infect. Ther. 10(2), 185–195 (2012)

    Article  Google Scholar 

  214. J. Bak, T. Begovic, A prototype catheter designed for ultraviolet C disinfection. J. Hosp. Infect. 84(2), 173–177 (2013)

    Article  Google Scholar 

  215. J.C. Victor, D.T. Rowe, Optical fiber based antimicrobial ultraviolet radiation therapy system. US Patent Application 20160038621, 2016

    Google Scholar 

  216. M.A. Biel et al., Reduction of endotracheal tube biofilms using antimicrobial photodynamic therapy. Lasers Surg. Med. 43(7), 586–590 (2011)

    Article  Google Scholar 

  217. T. Dahl, W.R. Midden, D.C. Neckers, Comparison of photodynamic action by Rose Bengal in gram-positive and gram-negative bacteria. Photochem. Photobiol. 48(5), 607–612 (1988)

    Article  Google Scholar 

  218. N. Dror et al., Advances in microbial biofilm prevention on indwelling medical devices with emphasis on usage of acoustic energy. Sensors 9(4), 2538 (2009)

    Article  Google Scholar 

  219. Z. Hazan et al., Effective prevention of microbial biofilm formation on medical devices by low-energy surface acoustic waves. Antimicrob. Agents Chemother. 50(12), 4144–4152 (2006)

    Article  Google Scholar 

  220. J.C. Carmen et al., Ultrasonic-enhanced gentamicin transport through colony biofilms of pseudomonas aeruginosa and Escherichia coli. J.Infect. Chemother. Off. J. Jpn. Soc. Chemother. 10(4), 193–199 (2004)

    Article  Google Scholar 

  221. F. Harris, S.R. Dennison, D.A. Phoenix, The antimicrobial effects of ultrasound, in Novel Antimicrobial Agents and Strategies, (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2014), pp. 331–356

    Google Scholar 

  222. X. Wang et al., Sonodynamic action of hypocrellin B on biofilm-producing Staphylococcus epidermidis in planktonic condition. J. Acoust. Soc. Am. 138(4), 2548–2553 (2015)

    Article  Google Scholar 

  223. V. Levering et al., Soft robotic concepts in catheter design: an on-demand fouling-release urinary catheter. Adv. Healthc. Mater. 3(10), 1588–1596 (2014)

    Article  Google Scholar 

  224. V. Levering et al., Urinary catheter capable of repeated on-demand removal of infectious biofilms via active deformation. Biomaterials 77, 77–86 (2016)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support from US Army Medical Research and Materiel Command (USAMRMC)’s Telemedicine & Advanced Technology Research Center (TATRC) under contract No. W81XWH-14-2-0015 and W81XWH-12-2-0084.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Zhang, Z., Wagner, V.E., Victor, J.C. (2017). Antimicrobial Modifications on Critical Care Implants. In: Zhang, Z., Wagner, V. (eds) Antimicrobial Coatings and Modifications on Medical Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-57494-3_1

Download citation

Publish with us

Policies and ethics