Skip to main content

Role of Molecular Diagnostics in Prostate Cancer

  • Chapter
  • First Online:
Surgical Procedures for Core Urology Trainees

Abstract

Prostate Cancer (PCa) is recognized as one of the most commonly diagnosed malignancies in the male population, and its incidence has greatly risen over the past few decades. In 2017, it is estimated that 161,360 new cases of PCa will be diagnosed accounting for 20% of cancer diagnoses in males, and approximately 26,730 deaths will result from the disease [1]. This is a consequence of a higher awareness of PCa and increased frequency of screening, made possible with the advent of new diagnostic biomarkers and assays such as Prostate specific antigen (PSA) [2, 3]. This biomarker as well as other clinical, histological, and pathological screening and diagnostic tools have led to earlier PCa detection, an increased detection rate of low risk disease that can be managed effectively with treatment, and a decrease in the proportion of men who present with metastatic cancer [4, 5]. As a result, both the age-adjusted and overall mortality rate associated with PCa have decreased significantly over the past 30 years [6, 7]. Specifically, the death rate from PCa dropped 51% from 1993 to 2014 [1]. However, there are still concerns about the way in which PCa is diagnosed and managed at large.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30.

    Article  PubMed  Google Scholar 

  2. Hudson T, Denis LJ. Europa Uomo: the European prostate cancer coalition. Recent Results Cancer Res. 2007;175:267–71.

    Article  PubMed  Google Scholar 

  3. Marta GN, Hanna SA, da Silva JLF, Carvalho HA. Screening for prostate cancer: an updated review. Expert Rev Anticancer Ther. 2013;13:101–8.

    Article  CAS  PubMed  Google Scholar 

  4. Bangma CH, Roobol MJ, Steyerberg EW. Predictive models in diagnosing indolent cancer. Cancer. 2009;115(13 Suppl):3100–6.

    Article  PubMed  Google Scholar 

  5. Bryant RJ, Hamdy FC. Screening for prostate cancer: an update. Eur Urol. 2008;53:37–44.

    Article  PubMed  Google Scholar 

  6. Loeb S, Catalona WJ. Prostate-specific antigen in clinical practice. Cancer Lett. 2007;249:30–9.

    Article  CAS  PubMed  Google Scholar 

  7. Jones JS. Prostate cancer: are we over-diagnosing-or under-thinking? Eur Urol. 2008;53(1):10–2.

    Article  PubMed  Google Scholar 

  8. Graif T, Loeb S, Roehl KA, et al. Under diagnosis and over diagnosis of prostate cancer. J Urol. 2007;178:88–92.

    Article  PubMed  Google Scholar 

  9. Roehrborn CG, Black LK. The economic burden of prostate cancer. BJU Int. 2011;108(6):806–13.

    Article  PubMed  Google Scholar 

  10. Stamey TA, Yang N, Hay AR, McNeal JE, Freiha FS, Redwine E. Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N Engl J Med. 1987;317(15):909–16.

    Article  CAS  PubMed  Google Scholar 

  11. Brawer MK. The diagnosis of prostatic carcinoma. Cancer. 1993;71(3 Suppl):899–905.

    Article  CAS  PubMed  Google Scholar 

  12. Ellis WJ, Chetner MP, Preston SD, Brawer MK. Diagnosis of prostatic carcinoma: the yield of serum prostate specific antigen, digital rectal examination and transrectal ultrasonography. J Urol. 1994;152(5 Pt 1):1520–5.

    Article  CAS  PubMed  Google Scholar 

  13. Pinsky PF, Crawford ED, Kramer BS, et al. Repeat prostate biopsy in the prostate, lung, colorectal and ovarian cancer screening trial. BJU Int. 2007;99:775.

    Article  CAS  PubMed  Google Scholar 

  14. Adhyam M, Gupta AK. A review on the clinical utility of PSA in cancer prostate. Ind J Surg Oncol. 2012;3(2):120–9.

    Article  Google Scholar 

  15. Oesterling JE, Jacobsen SJ, Chute CG, Guess HA, Girman CJ, Panser LA, Lieber MM. Serum prostate-specific antigen in a community-based population of healthy men. Establishment of age-specific reference ranges. JAMA. 1993;270(7):860–4.

    Article  CAS  PubMed  Google Scholar 

  16. Ganpule AP, Desai MR, Manohar T, et al. Age specific prostate specific antigen and prostate specific antigen density values in a community based Indian population. Indian J Urol. 2007;23(2):122–5.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kawakami J, Siemens DR, Nickel JC. Prostatitis and prostate cancer: implications for prostate cancer screening. Urology. 2004;64:1075.

    Article  PubMed  Google Scholar 

  18. Yuan JJ, Coplen DE, Petros JA, et al. Effects of rectal examination, prostatic massage, ultrasonography and needle biopsy on serum prostate specific antigen levels. J Urol. 1992;147:810.

    Article  CAS  PubMed  Google Scholar 

  19. Tchetgen MB, Oesterling JE. The effect of prostatitis, urinary retention, ejaculation, and ambulation on the serum prostate-specific antigen concentration. Urol Clin North Am. 1997;24(2):283–91.

    Article  CAS  PubMed  Google Scholar 

  20. Simardi LH, Tobias-MacHado M, Kappaz GT, et al. Influence of asymptomatic histologic prostatitis on serum prostate-specific antigen: a prospective study. Urology. 2004;64:1098.

    Article  PubMed  Google Scholar 

  21. The Internal Medicine Clinic Research Consortium. Effect of digital rectal examination on serum prostate-specific antigen in a primary care setting. Arch Intern Med. 1995;155:389.

    Article  Google Scholar 

  22. Beebe-Dimmer JL, Faerber GJ, Morgenstern H, et al. Body composition and serum prostate-specific antigen: review and findings from Flint Men’s Health Study. Urology. 2008;71:554.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Wang LG, Liu XM, Kreis W, Budman DR. Down-regulation of prostate-specific antigen expression by finasteride through inhibition of complex formation between androgen receptor and steroid receptor-binding consensus in the promoter of the PSA gene in LNCaP cells. Cancer Res. 1997;57:714.

    CAS  PubMed  Google Scholar 

  24. Guess HA, Gormley GJ, Stoner E, Oesterling JE. The effect of finasteride on prostate specific antigen: review of available data. J Urol. 1996;155:3. https://doi.org/10.1016/S0022-5347(01)66524-8.

    Article  CAS  PubMed  Google Scholar 

  25. D'Amico AV, Roehrborn CG. Effect of 1 mg/day finasteride on concentrations of serum prostate-specific antigen in men with androgenic alopecia: a randomised controlled trial. Lancet Oncol. 2007;8:21.

    Article  PubMed  Google Scholar 

  26. Etzioni RD, Howlader N, Shaw PA, et al. Long-term effects of finasteride on prostate specific antigen levels: results from the prostate cancer prevention trial. J Urol. 2005;174:877.

    Article  CAS  PubMed  Google Scholar 

  27. Andriole GL, Bostwick D, Brawley OW, et al. The effect of dutasteride on the usefulness of prostate specific antigen for the diagnosis of high grade and clinically relevant prostate cancer in men with a previous negative biopsy: results from the REDUCE study. J Urol. 2011;185:126.

    Article  CAS  PubMed  Google Scholar 

  28. Chang SL, Harshman LC, Presti JC Jr. Impact of common medications on serum total prostate-specific antigen levels: analysis of the National Health and Nutrition Examination Survey. J Clin Oncol. 2010;28:3951.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hamilton RJ, Goldberg KC, Platz EA, Freedland SJ. The influence of statin medications on prostate-specific antigen levels. J Natl Cancer Inst. 2008;100:1511.

    Article  CAS  PubMed  Google Scholar 

  30. Satoh T, Ishiyama H, Matsumoto K, et al. Prostate-specific antigen ‘bounce’ after permanent 125I-implant brachytherapy in Japanese men: a multi-institutional pooled analysis. BJU Int. 2009;103:1064.

    Article  PubMed  Google Scholar 

  31. American Society for Therapeutic Radiology and Oncology Consensus Panel. Consensus statement: guidelines for PSA following radiation therapy. Int J Radiat Oncol Biol Phys. 1997;37:1035.

    Google Scholar 

  32. Crook JM, Choan E, Perry GA, et al. Serum prostate-specific antigen profile following radiotherapy for prostate cancer: implications for patterns of failure and definition of cure. Urology. 1998;51:566.

    Article  CAS  PubMed  Google Scholar 

  33. Roach M, Hanks G, Thames H, et al. Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int J Radiat Oncol Biol Phys. 2006;65(4):965.

    Article  PubMed  Google Scholar 

  34. Partin AW, Brawer MK, Subong EN, Kelley CA, Cox JL, Bruzek DJ, Pannek J, Meyer GE, Chan DW. Prospective evaluation of percent free-PSA and complexed-PSA for early detection of prostate cancer. Prostate Cancer Prostatic Dis. 1998;1(4):197–203.

    Article  CAS  PubMed  Google Scholar 

  35. Reissigl A, Klocker H, Pointner J, Fink K, Horninger W, Ennemoser O, Strasser H, Colleselli K, Höltl L, Bartsch G. Usefulness of the ratio free/total prostate-specific antigen in addition to total PSA levels in prostate cancer screening. Urology. 1996;48(6A Suppl):62–6.

    Article  CAS  PubMed  Google Scholar 

  36. Thompson IM, Ankerst DP, Chi C, Goodman PJ, Tangen CM, Lucia MS, Feng Z, Parnes HL, Coltman CA Jr. Assessing prostate cancer risk: results from the Prostate Cancer Prevention Trial. J Natl Cancer Inst. 2006;98(8):529–34.

    Article  PubMed  Google Scholar 

  37. Cooperberg MR, Broering JM, Carroll PR. Time trends and local variation in primary treatment of localized prostate cancer. J Clin Oncol. 2010;28:1117–23.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lin K, Lipsitz R, Miller T, Janakiraman S, Preventive Services Task Force US. Benefits and harms of prostate-specific antigen screening for prostate can- cer: an evidence update for the U.S. Preventive Services Task Force. Ann Intern Med. 2008;149:192–9.

    Article  PubMed  Google Scholar 

  39. Moyer VA, U.S. Preventive Services Task Force. Screening for prostate cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 2012;157(2):120–34.

    Article  PubMed  Google Scholar 

  40. Ankerst DP, Hoefler J, Bock S, et al. Prostate cancer prevention trial risk calculator 2.0 for the prediction of low-versus high-grade prostate cancer. Urology. 2014;83(6):1362–8. https://doi.org/10.1016/j.urology.2014.02.035.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Mikolajczyk SD, Rittenhouse HG. Pro PSA: a more cancer specific form of prostate specific antigen for the early detection of prostate cancer. Keio J Med. 2003;52(2):86–91.

    Article  PubMed  Google Scholar 

  42. Peyromaure M, Fulla Y, Debré B, Dinh-Xuan AT. Pro PSA: a “pro cancer” form of PSA? Med Hypotheses. 2005;64(1):92–5.

    Article  CAS  PubMed  Google Scholar 

  43. Loeb S, Sokoll LJ, Broyles DL, Bangma CH, van Schaik RH, Klee GG, Wei JT, Sanda MG, Partin AW, Slawin KM, Marks LS, Mizrahi IA, Shin SS, Cruz AB, Chan DW, Roberts WL, Catalona WJ. Prospective multicenter evaluation of the Beckman Coulter Prostate Health Index using WHO calibration. J Urol. 2013;189(5):1702–6.

    Article  PubMed  Google Scholar 

  44. Loeb S, Catalona WJ. The Prostate Health Index: a new test for the detection of prostate cancer. Ther Adv Urol. 2014;6(2):74–7.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Lazzeri M, Haese A, de la Taille A, Palou Redorta J, McNicholas T, Lughezzani G, Scattoni V, Bini V, Freschi M, Sussman A, Ghaleh B, Le Corvoisier P, Alberola Bou J, Esquena Fernández S, Graefen M, Guazzoni G. Serum isoform [-2]proPSA derivatives significantly improve prediction of prostate cancer at initial biopsy in a total PSA range of 2–10 ng/ml: a multicentric European study. Eur Urol. 2013;63(6):986–94.

    Article  CAS  PubMed  Google Scholar 

  46. Tosoian JJ, Loeb S, Feng Z, Isharwal S, Landis P, Elliot DJ, Veltri R, Epstein JI, Partin AW, Carter HB, Trock B, Sokoll LJ. Association of [-2]proPSA with biopsy reclassification during active surveillance for prostate cancer. J Urol. 2012;188(4):1131–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sottile A, Ortega C, Berruti A, Mangioni M, Saponaro S, Polo A, Prati V, Muto G, Aglietta M, Montemurro F. A pilot study evaluating serum pro-prostate-specific antigen in patients with rising PSA following radical prostatectomy. Oncol Lett. 2012;3(4):819–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Schalken JA, Hessels D, Verhaegh G. New targets for therapy in prostate cancer: differential display code 3 (DD3(PCA3)), a highly prostate cancer-specific gene. Urology. 2003;62(5 Suppl 1):34–43.

    Article  PubMed  Google Scholar 

  49. Bussemakers MJ, van Bokhoven A, Verhaegh GW, Smit FP, Karthaus HF, Schalken JA, Debruyne FM, Ru N, Isaacs WB. DD3: a new prostate-specific gene, highly overexpressed in prostate cancer. Cancer Res. 1999;59(23):5975–9.

    CAS  PubMed  Google Scholar 

  50. Deras IL, Aubin SM, Blase A, Day JR, Koo S, Partin AW, Ellis WJ, Marks LS, Fradet Y, Rittenhouse H, Groskopf J. PCA3: a molecular urine assay for predicting prostate biopsy outcome. J Urol. 2008;179(4):1587–92.

    Article  PubMed  Google Scholar 

  51. Hessels D, Klein Gunnewiek JM, van Oort I, Karthaus HF, van Leenders GJ, van Balken B, Kiemeney LA, Witjes JA, Schalken JA. DD3(PCA3)-based molecular urine analysis for the diagnosis of prostate cancer. Eur Urol. 2003;44(1):8–15.

    Article  CAS  PubMed  Google Scholar 

  52. Tinzl M, Marberger M, Horvath S, Chypre C. DD3PCA3 RNA analysis in urine—a new perspective for detecting prostate cancer. Eur Urol. 2004;46(2):182–6.

    Article  CAS  PubMed  Google Scholar 

  53. Nakanishi H, Groskopf J, Fritsche HA, et al. PCA3 molecular urine assay correlates with prostate cancer tumor volume: implication in selecting candidates for active surveillance. J Urol. 2008;179:1804–9.

    Article  PubMed  Google Scholar 

  54. Whitman EJ, Groskopf J, Ali A, Chen Y, Blase A, Furusato B, Petrovics G, Ibrahim M, Elsamanoudi S, Cullen J, Sesterhenn IA, Brassell S, Rittenhouse H, Srivastava S, McLeod DG. PCA3 score before radical prostatectomy predicts extracapsular extension and tumor volume. J Urol. 2008;180(5):1975–8. discussion 1978–9

    Article  PubMed  Google Scholar 

  55. Lin DW, Newcomb LF, Brown EC, Brooks JD, Carroll PR, Feng Z, Gleave ME, Lance RS, Sanda MG, Thompson IM, Wei JT, Nelson PS, Investigators CPASS. Urinary TMPRSS2:ERG and PCA3 in an active surveillance cohort: results from a baseline analysis in the Canary Prostate Active Surveillance Study. Clin Cancer Res. 2013;19(9):2442–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. De Luca S, Passera R, Cattaneo G, Manfredi M, Mele F, Fiori C, Bollito E, Cirillo S, Porpiglia F. High prostate cancer gene 3 (PCA3) scores are associated with elevated Prostate Imaging Reporting and Data System (PI-RADS) grade and biopsy Gleason score, at magnetic resonance imaging/ultrasonography fusion software-based targeted prostate biopsy after a previous negative standard biopsy. BJU Int. 2016;118:723–30.

    Article  PubMed  Google Scholar 

  57. Rittenhouse HG, Finlay JA, Mikolajczyk SD, Partin AW. Human kallikrein 2 (hK2) and prostate-specific antigen (PSA): two closely related, but distinct, kallikreins in the prostate. Crit Rev Clin Lab Sci. 1998;35(4):275–368.

    Article  CAS  PubMed  Google Scholar 

  58. Potter SR, Partin AW. Tumor markers: an update on human kallikrein 2. Rev Urol. 2000;2(4):221–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Vickers A, Cronin A, Roobol M, Savage C, Peltola M, Pettersson K, Scardino PT, Schröder F, Lilja H. Reducing unnecessary biopsy during prostate cancer screening using a four-kallikrein panel: an independent replication. J Clin Oncol. 2010;28(15):2493–8.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Stattin P, Vickers AJ, Sjoberg DD, Johansson R, Granfors T, Johansson M, Pettersson K, Scardino PT, Hallmans G, Lilja H. Improving the specificity of screening for lethal prostate cancer using prostate-specific antigen and a panel of kallikrein markers: a nested case-control study. Eur Urol. 2015;68(2):207–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Gupta A, Roobol MJ, Savage CJ, Peltola M, Pettersson K, Scardino PT, Vickers AJ, Schröder FH, Lilja H. A four-kallikrein panel for the prediction of repeat prostate biopsy: data from the European Randomized Study of Prostate Cancer screening in Rotterdam, Netherlands. Br J Cancer. 2010;103(5):708–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Carlsson S, Maschino A, Schröder F, Bangma C, Steyerberg EW, van der Kwast T, van Leenders G, Vickers A, Lilja H, Roobol MJ. Predictive value of four kallikrein markers for pathologically insignificant compared with aggressive prostate cancer in radical prostatectomy specimens: results from the European Randomized Study of Screening for Prostate Cancer section Rotterdam. Eur Urol. 2013;64(5):693–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Parekh DJ, Punnen S, Sjoberg DD, Asroff SW, Bailen JL, Cochran JS, Concepcion R, David RD, Deck KB, Dumbadze I, Gambla M, Grable MS, Henderson RJ, Karsh L, Krisch EB, Langford TD, Lin DW, McGee SM, Munoz JJ, Pieczonka CM, Rieger-Christ K, Saltzstein DR, Scott JW, Shore ND, Sieber PR, Waldmann TM, Wolk FN, Zappala SM. A multi-institutional prospective trial in the USA confirms that the 4Kscore accurately identifies men with high-grade prostate cancer. Eur Urol. 2015;68(3):464–70.

    Article  PubMed  Google Scholar 

  64. Liu L, Yoon JH, Dammann R, Pfeifer GP. Frequent hypermethylation of the RASSF1A gene in prostate cancer. Oncogene. 2002;21(44):6835–40.

    Article  CAS  PubMed  Google Scholar 

  65. Van Neste L, Partin AW, Stewart GD, Epstein JI, Harrison DJ, Van Criekinge W. Risk score predicts high-grade prostate cancer in DNA-methylation positive, histopathologically negative biopsies. Prostate. 2016;76(12):1078–87.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Trock BJ, Brotzman MJ, Mangold LA, et al. Evaluation of GSTP1 and APC methylation as indicators for repeat biopsy in a high-risk cohort of men with negative initial prostate biopsies. BJU Int. 2012;110(1):56–62. https://doi.org/10.1111/j.1464-410X.2011.10718.x.

    Article  CAS  PubMed  Google Scholar 

  67. Stewart GD, Van Neste L, Delvenne P, Delrée P, Delga A, McNeill SA, O'Donnell M, Clark J, Van Criekinge W, Bigley J, Harrison DJ. Clinical utility of an epigenetic assay to detect occult prostate cancer in histopathologically negative biopsies: results of the MATLOC study. J Urol. 2013;189(3):1110–6.

    Article  PubMed  Google Scholar 

  68. Partin AW, Van Neste L, Klein EA, et al. Clinical validation of an epigenetic assay to predict negative histopathological results in repeat prostate biopsies. J Urol. 2014;192(4):1081–7. https://doi.org/10.1016/j.juro.2014.04.013.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Wojno KJ, Costa FJ, Cornell RJ, Small JD, Pasin E, Van Criekinge W, Bigley JW, Van Neste L. Reduced rate of repeated prostate biopsies observed in ConfirmMDx clinical utility field study. Am Health Drug Benef. 2014;7(3):129–34.

    Google Scholar 

  70. Anderson BB, Oberlin DT, Razmaria AA, Choy B, Zagaja GP, Shalhav AL, Meeks JJ, Yang XJ, Paner GP, Eggener SE. Extraprostatic extension is extremely rare for contemporary gleason score 6 prostate cancer. Eur Urol. 2016;pii:S0302-2838(16)30880-6.

    Google Scholar 

  71. Freedland SJ, Humphreys EB, Mangold LA, Eisenberger M, Dorey FJ, Walsh PC, Partin AW. Risk of prostate cancer–specific mortality following biochemical recurrence after radical prostatectomy. JAMA. 2005;294(4):433–9.

    Article  CAS  PubMed  Google Scholar 

  72. Rajinikanth A, Manoharan M, Soloway CT, Civantos FJ, Soloway MS. Trends in Gleason Score: concordance between biopsy and prostatectomy over 15 years. Urology. 2008;72(1):177–82.

    Article  PubMed  Google Scholar 

  73. Cookson MS, Fleshner NE, Soloway SM, Fair WR. Correlation between Gleason Score of needle biopsy and radical prostatectomy specimen: accuracy and clinical implications. J Urol. 1997;157(2):559–62.

    Article  CAS  PubMed  Google Scholar 

  74. San Francisco IF, DeWolf WC, Rosen S, Upton M, Olumi AF. Extended prostate needle biopsy improves concordance of Gleason grading between prostate needle biopsy and radical prostatectomy. J Urol. 2003;169(1):136–40.

    Article  PubMed  Google Scholar 

  75. Eifler JB, Feng Z, Lin BM, et al. An updated prostate cancer staging nomogram (Partin tables) based on cases from 2006 to 2011. BJU Int. 2013;111(1):10.

    Article  Google Scholar 

  76. Mohler JL, Armstrong AJ, Bahnson RR, D’Amico AV, Davis BJ, Eastham JA, et al. Prostate cancer, version 1.2016. J Natl Compr Canc Netw. 2016;14:19–30.

    Article  PubMed  Google Scholar 

  77. Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69(3):89–95.

    Article  Google Scholar 

  78. Knezevic D, Goddard AD, Natraj N, et al. Analytical validation of the OncotypeDX prostate cancer assay – a clinical RT-PCR assay optimized for prostate needle biopsies. BMC Genomics. 2013;14:690.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Cooperberg M, Simko J, Falzarano S, Maddala T, Chan J, Cowan J, Magi-Galluzzi C, Tsiatis A, Tenggara-Hunter I, Knezevic D. Development and validation of the biopsy-based genomic prostate score (GPS) as a predictor of high grade or extracapsular prostate cancer to improve patient selection for active surveillance. J Urol. 2013;189(4):e873.

    Article  Google Scholar 

  80. Klein EA, Cooperberg MR, Magi-Galluzzi C, Simko JP, Falzarano SM, Maddala T, et al. A 17-gene assay to predict prostate cancer aggressiveness in the context of gleason grade heterogeneity, tumor multifocality, and biopsy undersampling. Eur Urol. 2014;66:550–60.

    Article  PubMed  Google Scholar 

  81. Cullen J, Rosner IL, Brand TC, Zhang N, Tsiatis AC, Moncur J, et al. A biopsy-based 17-gene genomic prostate score predicts recurrence after radical prostatectomy and adverse surgical pathology in a racially diverse population of men with clinically low- and intermediate-risk prostate cancer. Eur Urol. 2015;68:123–31.

    Article  PubMed  Google Scholar 

  82. Sartori DA, Chan DW. Biomarkers in prostate cancer: what’s new? Curr Opin Oncol. 2014;26(3):259–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Cuzick J, Swanson GP, Fisher G, Brothman AR, Berney DM, Reid JE, et al. Prognostic value of an RNA expression signature derived from cell cycle proliferation genes in patients with prostate cancer: a retrospective study. Lancet Oncol. 2011;12:245–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Cuzick J, Berney DM, Fisher G, Mesher D, Møller H, Reid JE, et al. Prognostic value of a cell cycle progression signature for prostate cancer death in a conservatively managed needle biopsy cohort. Br J Cancer. 2012;106:1095–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Freedland SJ, Gerber L, Reid J, Welbourn W, Tikishvili E, Park J, et al. Prognostic utility of cell cycle progression score in men with prostate cancer after primary external beam radiation therapy. Int J Radiat Oncol Biol Phys. 2013;86:848–53.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Bishoff JT, Freedland SJ, Gerber L, Tennstedt P, Reid J, Welbourn W, et al. Prognostic utility of the cell cycle progression score generated from biopsy in men treated with prostatectomy. J Urol. 2014;192:409–14.

    Article  PubMed  Google Scholar 

  87. Shipitsin M, Small C, Choudhury S, Giladi E, Friedlander S, Nardone J, et al. Identification of proteomic biomarkers predicting prostate cancer aggressiveness and lethality despite biopsy-sampling error. Br J Cancer. 2014;111:1201–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Blume-Jensen P, Berman DM, Rimm DL, Shipitsin M, Putzi M, Nifong TP, et al. Development and clinical validation of an in situ biopsy-based multimarker assay for risk stratification in prostate cancer. Clin Cancer Res. 2015;21:2591–600.

    Article  CAS  PubMed  Google Scholar 

  89. Porten SP, Whitson JM, Cowan JE, Cooperberg MR, Shinohara K, Perez N, et al. Changes in prostate cancer grade on serial biopsy in men undergoing active surveillance. J Clin Oncol. 2011;29:2795–800.

    Article  PubMed  Google Scholar 

  90. Goodman M, Ward KC, Osunkoya AO, Datta MW, Luthringer D, Young AN, et al. Frequency and determinants of disagreement and error in gleason scores: a population-based study of prostate cancer. Prostate. 2012;72:1389–98.

    Article  PubMed  PubMed Central  Google Scholar 

  91. Erho N, Crisan A, Vergara IA, Mitra AP, Ghadessi M, Buerki C, et al. Discovery and validation of a prostate cancer genomic classifier that predicts early metastasis following radical prostatectomy. PLoS One. 2013;8:e66855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Shipley WU, Thames HD, Sandler HM, et al. Radiation therapy for clinically localized PCa: a multiinstitutional pooled analysis. JAMA. 1999;281:1598–604.

    Article  CAS  PubMed  Google Scholar 

  93. Alshalalfa M, Crisan A, Vergara IA, Ghadessi M, Buerki C, Erho N, et al. Clinical and genomic analysis of metastatic prostate cancer progression with a background of postoperative biochemical recurrence. BJU Int. 2015;116:556–67.

    Article  CAS  PubMed  Google Scholar 

  94. Karnes RJ, Bergstralh EJ, Davicioni E, Ghadessi M, Buerki C, Mitra AP, et al. Validation of a genomic classifier that predicts metastasis following radical prostatectomy in an at risk patient population. J Urol. 2013;190:2047–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ross AE, Feng FY, Ghadessi M, Erho N, Crisan A, Buerki C, et al. A genomic classifier predicting metastatic disease progression in men with biochemical recurrence after prostatectomy. Prostate Cancer Prostatic Dis. 2014;17:64–9.

    Article  CAS  PubMed  Google Scholar 

  96. Den RB, Feng FY, Showalter TN, Mishra MV, Trabulsi EJ, Lallas CD, et al. Genomic prostate cancer classifier predicts biochemical failure and metastases in patients after postoperative radiation therapy. Int J Radiat Oncol. 2014;89:1038–46.

    Article  Google Scholar 

  97. Den RB, Yousefi K, Trabulsi EJ, Abdollah F, Choeurng V, Feng FY, et al. Genomic classifier identifies men with adverse pathology after radical prostatectomy who benefit from adjuvant radiation therapy. J Clin Oncol. 2015;33:944–51.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Van Hoof, A., Bunn, W., Klein, A., Albala, D.M. (2018). Role of Molecular Diagnostics in Prostate Cancer. In: Goonewardene, S., Persad, R. (eds) Surgical Procedures for Core Urology Trainees. Springer, Cham. https://doi.org/10.1007/978-3-319-57442-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57442-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57441-7

  • Online ISBN: 978-3-319-57442-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics