Skip to main content

Marker-Assisted Selection and Genomic Selection

  • Chapter
  • First Online:

Abstract

Breeding techniques and molecular tools, i.e., biotechnology, have increased crop yield over the last century. Marker-assisted selection and, more recently, genome-wide association studies and genomic selection have been used as tools of breeding programs, especially in the resistant genotype selection. The genomic association study refers to significant associations between a loci and an interesting trait. Genomic selection is based on the effects of single nucleotide polymorphism (SNP) markers distributed throughout the genome, where the number of markers must be sufficiently high so all quantitative trait loci are in linkage disequilibrium with at least one marker. Thousands of markers distributed throughout the genome at reduced costs, as well as the easy access to biotechnologies, are the main way of aggregating these techniques in breeding programs. Several studies have shown that genomic selection is highly effective for improving crop yield. This tool increases the genetic gain of improved populations by increasing selection accuracy and, mainly, by reducing the generation intervals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Bastien, M., Sonah, H., Belzile, F.: Genome wide association mapping of Sclerotinia sclerotiorum resistance in soybean with a genotyping-by-sequencing approach. Plant Genome. 7(1), 1–13 (2014)

    Article  Google Scholar 

  • Caixeta, E.T., Oliveira, A.C.B., Brito, G.G., Sakiyama, N.S.: Tipos de marcadores moleculares. In: Borém, A., Caixeta, E.T. (eds.) Marcadores Moleculares, pp. 11–94. Ed. UFV, Viçosa (2009)

    Google Scholar 

  • Collard, B.C.Y., Mackill, D.J.: Marker-assisted selection: an approach for precision plant breeding in the twenty-first century. Philos. Trans. R. Soc. 363, 557–572 (2008)

    Article  CAS  Google Scholar 

  • Cregan, P.B., Jarvik, T., Bush, A.L., Shoemaker, R.C., Lark, K.G., Kahler, A.L., Kaya, N., Vantoai, T.T., Lohnes, D.G., Chung, J., Specht, J.E.: An integrated genetic linkage map of the soybean genome. Crop Sci. 39(5), 1464–1490 (1999)

    Article  CAS  Google Scholar 

  • Federizzi, L.C.: Estrutura de um programa de melhoramento de plantas e possíveis aplicações de marcadores moleculares: visão do melhorista. In: Milach, S.C.K. (ed.) Marcadores Moleculares em Plantas, pp. 3–15. UFRGS, Porto Alegre (1998)

    Google Scholar 

  • Ferreira, M.E., Grattapaglia, D.: Introdução ao uso de marcadores moleculares em análise genética, 3rd edn, p. 220. Embrapa-Cenargen, Brasília (1998)

    Google Scholar 

  • Gavioli, E.A., Di Mauro, A.O., Centurion, M.A.P.C., Di Mauro, S.M.Z.: Development of SCAR marker inked to stem canker resistance gene in soybean. Crop Breed. Appl. Biotechnol. 7, 133–140 (2007)

    Article  CAS  Google Scholar 

  • Guo, Z., Tucker, D.M., Lu, J., Kishore, V., Gay, G.: Evaluation of genome-wide selection efficiency in maize nested association mapping populations. Theor. Appl. Genet. 124(2), 261–275 (2012)

    Article  PubMed  Google Scholar 

  • Hayes, B.J., Daetwyler, H.D., Bowman, P., Moser, G., Tie, R.B., Crump, R., Khatkar, M., Raadsma, H.W., Goddard, M.E.: Accuracy of genomic selection: comparing theory and results. Proc. Assoc. Advmt. Anim. Breed. 18, 34–37 (2009)

    Google Scholar 

  • Heer, J.A., Knap, H.T., Mahalingam, R., Shipe, E.R., Arelli, P.R., Matthews, B.F.: Molecular markers for resistance to Heterodera glycines in advanced soybean germplasm. Mol. Breed. 4, 359–367 (1998)

    Article  CAS  Google Scholar 

  • Heffner, E.L., Sorrells, M.E., Jannink, J.L.: Genomic selection for crop improvement. Crop Sci. 49(1), 1–12 (2009)

    Article  CAS  Google Scholar 

  • Hwang, E.Y., Song, Q., JIA, G., Specht, J.E., Hyten, D.L., Costa, J.M.: A genome-wide association study of seed protein and oil content in soybean. BMC Genomics. 15(1), 1–12 (2014)

    Article  PubMed  PubMed Central  Google Scholar 

  • Hyten, D.L., Cannon, S.B., Song, Q., Weeks, N., Fickus, E.W., Shoemaker, R.C., Specht, J.E., Farmer, A.D., May, G.D., Cregan, P.B.: High-throughput SNP discovery through deep resequencing of a reduced representation library to anchor and orient scaffolds in the soybean whole genome sequence. BMC Genomics. 11(38), 1–8 (2010)

    Google Scholar 

  • Jarquín, D., Kocak, K., Posadas, L., Hyma, K., Jedlicka, J., Graef, G., Lorenz, A.: Genotyping by sequencing for genomic prediction in soybean breeding population. BMC Genomics. 15(740), 1–10 (2014)

    Google Scholar 

  • Keim, P., Diem, B.W., Olson, T.C., Shoemaker, R.C.: RFLP mapping in soybean: association between marker loci and variation in quantitative traits. Genetics. 126, 735–742 (1990)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, L.S.: DNA markers in plant improvement: an overview. Biotechnol. Adv. 17, 143–182 (1999)

    Article  CAS  PubMed  Google Scholar 

  • Martins Filho, S., Sediyama, C.S., Moreira, M.A., Barros, E.G.: RAPD and SCAR markers linked to resistance to frogeye leaf spot in soybean. Genet. Mol. Biol. 25(3), 317–321 (2002)

    Article  CAS  Google Scholar 

  • Meuwissen, T.H.E., Hayes, B.J., Goddard, M.E.: Prediction of total genetic value using genome-wide dense marker maps. Genetics. 157, 1819–1829 (2001)

    CAS  PubMed  PubMed Central  Google Scholar 

  • Michelmore, R.W., Paran, I., Kesseli, R.V.: Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregation populations. Proc. Natl. Acad. Sci. USA. 88, 9828–9832 (1991)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mullis, K., Faloona, F.: Specific synthesis of DNA in vitro via polymerase catalyzed chain reaction. Methods Enzymol. 55, 335–350 (1987)

    Article  Google Scholar 

  • Resende, M.D., Lopes, P.S., Silva, R.L., Pires, I.E.: Seleção genômica ampla (GWS) e maximização da eficiência do melhoramento genético. Pesquisa Florestal Brasileira. 56, 63–78 (2008)

    Google Scholar 

  • Resende, D.V., Silva, F.F., Resende Júnior, M.F.R.: Seleção Genômica Ampla (GWS). In: Borém, A., Fritsche-Neto, R. (eds.) Biotecnologia aplicada ao melhoramento de plantas, pp. 151–188. Suprema, Visconde do Rio Branco (2013)

    Google Scholar 

  • Shi, Z., Liu, S., Noe, J., Arelli, P., Meksem, K., Li, Z.: SNP identification and marker assay development for high-throughput selection of soybean cyst nematode resistance. BMC Genomics. 16(314), 1–12 (2015)

    Google Scholar 

  • Sonah, H., O’donoughue, L., Cober, E., Rajcan, I., François, B.: Identification of loci governing eight agronomic traits using a GBS-GWAS approach and validation by QTL mapping in soya bean. Plant Biotechnol. J. 13, 211–221 (2015)

    Article  CAS  PubMed  Google Scholar 

  • Song, Q., Hyten, D.L., Jia, G., Quigley, C.V., Fickus, E.W., Nelson, R.L., Cregan, P.B.: Development and evaluation of SoySNP50K, a high-density genotyping array for soybean. PLoS One. 8(1), 1–12 (2013)

    CAS  Google Scholar 

  • Vuong, T.D., Sonah, H., Meinhardt, C.G., Deshmukh, R., Kadam, S., Nelson, R.L., Shannon, J.G., Nguyen, H.T.: Genetic architecture of cyst nematode resistance revealed by genome-wide association study in soybean. BMC Genomics. 16(593), 1–13 (2015)

    Google Scholar 

  • Wen, Z., Boyse, J.F., Song, Q., Cregan, P.B., Wang, D.: Genomic consequences of selection and genome-wide association mapping in soybean. BMC Genomics. 15(671), 1–14 (2015)

    CAS  Google Scholar 

  • Yadav, C.B., Bhareti, P., Muthamilarasan, M., Mukherjee, M., Khan, Y., Rathi, P., Prasad, M.: Genome-wide SNP identification and characterization in two soybean cultivars with contrasting Mungbean Yellow Mosaic India Virus disease resistance traits. PLoS One. 10(4), 1–15 (2015)

    Article  Google Scholar 

  • Zhang, J., Song, Q., Cregan, P.B., Nelson, R.L., Wang, X., Wu, J., Jiang, G.L.: Genome-wide association study for flowering time, maturity dates and plant height in early maturing soybean (Glycine max) germplasm. BMC Genomics. 16(217), 1–11 (2015)

    Google Scholar 

  • Zhao, Y., Zeng, J., Frenando, R., Reif, J.C.: Genomic prediction of hybrid wheat performance. Crop Sci. 53, 1–9 (2013)

    Article  Google Scholar 

  • Zheng, C., Chang, R., Qiu, L., Chen, P., Wu, X., Chen, S.: Identification and characterization of a RAPD/ SCAR marker linked to a resistance gene for soybean mosaic virus in soybean. Euphytica. 132, 199–210 (2003)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sandra Helena Unêda-Trevisoli M.Sc., D.Sc., Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Unêda-Trevisoli, S.H., da Silva, F.M., Di Mauro, A.O. (2017). Marker-Assisted Selection and Genomic Selection. In: Lopes da Silva, F., Borém, A., Sediyama, T., Ludke, W. (eds) Soybean Breeding. Springer, Cham. https://doi.org/10.1007/978-3-319-57433-2_14

Download citation

Publish with us

Policies and ethics