Skip to main content

3D Cell Culture Models

  • Chapter
  • First Online:
Patient-Derived Mouse Models of Cancer

Part of the book series: Molecular and Translational Medicine ((MOLEMED))

  • 711 Accesses

Abstract

In the 1960s, scientists searching for a cell-based system that would reflect the physiology and heterogeneity of solid tumors in a well-controlled experimental setting developed multicell spheroid cultures. Early studies focused on the biology, physiology, and drug and radiation response of spheroids. With the advent of high-throughput screening, the focus returned to improving the cell-based models. Plasticware and other tools were developed to allow high-throughput screening with spheroids. To improve cell-based models further, mixed-cell spheroids, including stromal components, fibroblasts, and endothelial cells, are being used in compound and drug testing. To move models closer to the patient, clinical specimens are being tested as tumor minceates. Malignant and other cells from the tumor tissue are treated as organoids to select drugs for specific patients. The field is moving toward freshly-prepared tumor cells from clinical specimens to allow rapid screening of drugs for personalized medicine in the treatment of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sutherland RM, McCredie JA, Inch WR. Growth of multicell spheroids in tissue culture as a model of nodular carcinomas. J Natl Cancer Inst. 1971;46:113–20.

    CAS  PubMed  Google Scholar 

  2. Hirschhaeuser F, Menne H, Dittfield C, West J, Mueller-Klieser W, Kunz-Schugart LA. Multicellular tumor spheroids: an underestimated tool is catching up again. J Biotechnol. 2010;148(1):3–15.

    Article  CAS  PubMed  Google Scholar 

  3. Durand RE. Radiation-resistant tumor cells may be more sensitive in vitro. Cancer Res. 1972;32:2587–8.

    CAS  PubMed  Google Scholar 

  4. Sutherland RM. Cell contact as a possible contribution to radiation resistance of some tumors. Br J Radiol. 1972;45(538):788–9.

    Article  CAS  PubMed  Google Scholar 

  5. Durand RE, Sutherland RM. Effects of intercellular contact on repair of radiation damage. Exp Cell Res. 1972;71:75–80.

    Article  CAS  PubMed  Google Scholar 

  6. Durand RE, Sutherland RM. Dependence of the radiation response of an in vitro tumor model on cell cycle effects. Cancer Res. 1973;33:213–9.

    CAS  PubMed  Google Scholar 

  7. Durand RE. Isolation of cell subpopulations from in vitro tumor models according to sedimentation velocity. Cancer Res. 1975;35:1295–300.

    CAS  PubMed  Google Scholar 

  8. Durand RE. Cure, regression and cell survival: a comparison of common radiobiological endpoints using an in vitro tumor model. Br J Radiol. 1975;48:556–71.

    Article  CAS  PubMed  Google Scholar 

  9. Sutherland RM, Durand RE. Radiation response of multicell spheroids – an in vitro tumor model. Curr Top Radiat Res Q. 1976;11:87–139.

    CAS  PubMed  Google Scholar 

  10. Sutherland RM, MacDonald HR, Howell RL. Multicellular spheroids: a new model target for in vitro studies of immunity to solid tumor allografts. J Natl Cancer Inst. 1977;58:1849–53.

    Article  CAS  PubMed  Google Scholar 

  11. Sutherland RM, Eddy HA, Bareham B, Reich K, Van Antwerp D. Resistance to adriamycin in multicellular spheroids. Int J Radiat Oncol Biol Phys. 1979;5:1225–30.

    Article  CAS  PubMed  Google Scholar 

  12. Sutherland RM, Bareham BJ, Reich KA. Cytotoxicity of hypoxic cell sensitizers in multicell spheroids. Cancer Clin Trials. 1980;3:73–83.

    CAS  PubMed  Google Scholar 

  13. Freyer JP, Sutherland RM. Selective dissociation and characterization of cells from different regions of multicell tumor spheroids. Cancer Res. 1980;40:3956–65.

    CAS  PubMed  Google Scholar 

  14. Durand RE. Flow cytometry studies of intracellular adriamycin in multicell spheroids in vitro. Cancer Res. 1981;41:3495–8.

    CAS  PubMed  Google Scholar 

  15. Durand RE. Slow penetration of anthracyclines into spheroids and tumors: a therapeutic advantage? Cancer Chemother Pharmacol. 1990;26:198–204.

    Article  CAS  PubMed  Google Scholar 

  16. Durand RE. Use of Hoechst 33342 for cell selection from multicell systems. J Histochem Cytochem. 1982;30:117–22.

    Article  CAS  PubMed  Google Scholar 

  17. Bauer KD, Keng PC, Sutherland RM. Isolation of quiescent cells from multicellular tumor spheroids using centrifugal elutriation. Cancer Res. 1982;42:72–8.

    CAS  PubMed  Google Scholar 

  18. Durand RE, Vanderbyl SL. Sequencing radiation and Adriamycin exposures in spheroids to maximize therapeutic gain. Int J Radiat Oncol Biol Phys. 1989;17:345–50.

    Article  CAS  PubMed  Google Scholar 

  19. Sutherland RM. Cell and environment interactions in tumor microregions: the multicell spheroid model. Science. 1988;240:177–84.

    Article  CAS  PubMed  Google Scholar 

  20. Landry J, Freyer JP, Sutherland RM. Shedding of mitotic cells from the surface of multicell spheroids during growth. J Cell Physiol. 1981;106:23–32.

    Article  CAS  PubMed  Google Scholar 

  21. Landry J, Freyer JP, Sutherland RM. A model for the growth of multicellular spheroids. Cell Tissue Kinet. 1982;15:585–94.

    CAS  PubMed  Google Scholar 

  22. Durand RE. Multicell spheroids as a model for cell kinetic studies. Cell Tissue Kinet. 1990;23:141–59.

    CAS  PubMed  Google Scholar 

  23. Brown RC, Durand RE. Repair, redistribution and repopulation of V79 spheroids during multifraction irradiation. Cell Prolif. 1994;27:343–54.

    Article  CAS  PubMed  Google Scholar 

  24. Durand RE. Chemosensitivity testing in V79 spheroids: drug delivery and cellular microenvironment. J Natl Cancer Inst. 1986;77:247–52.

    CAS  PubMed  Google Scholar 

  25. Rasey JS, Grunbaum Z, Magee S, Nelson NJ, Olive PL, Durand RE, Krohn KA. Characterization of radio labeled fluoromisonidazole as a probe for hypoxic cells. Radiat Res. 1987;111:292–304.

    Article  CAS  PubMed  Google Scholar 

  26. Mueller-Klieser WF, Sutherland RM. Influence of convection in the growth medium on oxygen tensions in multicellular tumor spheroids. Cancer Res. 1982;42:237–42.

    CAS  PubMed  Google Scholar 

  27. Durand RE. Oxygen enhancement ratio in V79 spheroids. Radiat Res. 1983;96:322–34.

    Article  CAS  PubMed  Google Scholar 

  28. Durand RE. Repair during multifraction exposures: spheroids versus monolayers. Br J Cancer Suppl. 1984;6:203–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Sutherland RM, Durand RE. Growth and cellular characteristics of multicell spheroids. Recent Results Cancer Res. 1984;95:24–49.

    Article  CAS  PubMed  Google Scholar 

  30. Freyer JP, Sutherland RM. Regulation of growth saturation and development of necrosis in EMT6/Ro multicellular spheroids by the glucose and oxygen supply. Cancer Res. 1986;46:3504–12.

    CAS  PubMed  Google Scholar 

  31. Sutherland RM, Sordat B, Bamat J, Gabbert H, Bournat B, Mueller-Klieser W. Oxygenation and differentiation in multicellular spheroids of human colon carcinoma. Cancer Res. 1986;46:5320–9.

    CAS  PubMed  Google Scholar 

  32. Casciari JJ, Sotirchos SV, Sutherland RM. Glucose diffusivity in multicellular tumor spheroids. Cancer Res. 1988;48:3905–9.

    CAS  PubMed  Google Scholar 

  33. Casciari JJ, Sotirchos SV, Sutherland RM. Mathematical modelling of microenvironment and growth in EMT6/Ro multicellular tumor spheroids. Cell Prolif. 1992;25:1–22.

    Article  CAS  PubMed  Google Scholar 

  34. Durand RE, Vanderbyl SL. Response of cell subpopulations in spheroids to radiation-drug combinations. NCI Monogr. 1988;6:95–100.

    Google Scholar 

  35. Rofstad EK, Sutherland RM. Growth and radiation sensitivity of the MLS human ovarian carcinoma cell line grown as multicellular spheroids and xenografted tumors. Br J Cancer. 1989;59:28–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Durand RE. Cisplatin and CCNU synergism in spheroid cell subpopulations. Br J Cancer. 1990;62:947–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Olive PL, Durand RE, Banath JP, Evans HH. Etoposide sensitivity and topoisomerase II activity in Chinese hamster V79 monolayers and small spheroids. Int J Radiat Biol. 1991;60:453–66.

    Article  CAS  PubMed  Google Scholar 

  38. Durand RE, Olive PL. Evaluation of bioreductive drugs in multicell spheroids. Int J Radiat Oncol Biol Phys. 1992;22:689–92.

    Article  CAS  PubMed  Google Scholar 

  39. Teicher BA, Herman TS, Holden SA, Wang YY, Pfeffer MR, Crawford JW, Frei E. Tumor resistance to alkylating agents conferred by mechanisms operative only in vivo. Science. 1990;247:1457–61.

    Article  CAS  PubMed  Google Scholar 

  40. Kobayashi H, Man S, Graham CH, Kapitain SJ, Teicher BA, Kerbel RS. Acquired multicellular-mediated resistance to alkylating agents in cancer. Proc Natl Acad Sci U S A. 1993;90:3294–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. St Croix B, Florenes VA, Rak JW, Flanagan M, Bhattacharya N, Slingerland JM, Kerbel RS. Impact of the cyclin-dependent kinase inhibitor p27Kip1 on resistance of tumor cells to anticancer agents. Nat Med. 1996;2:1204–10.

    Article  CAS  PubMed  Google Scholar 

  42. Francia G, Man S, Teicher B, Grasso L, Kerbel RS. Gene expression analysis of tumor spheroids reveals a role for suppressed DNA mismatch repair in multicellular resistance to alkylating agents. Mol Cell Biol. 2004;24:6837–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Olive PL, Durand RE. Drug and radiation resistance in spheroids: cell contact and kinetics. Cancer Metastasis Rev. 1994;13:121–38.

    Article  CAS  PubMed  Google Scholar 

  44. Frankel A, Buckman R, Kerbel RS. Abrogation of taxol-induced G2-M arrest and apoptosis in human ovarian cancer cells grown as multicellular tumor spheroids. Cancer Res. 1997;57:2388–93.

    CAS  PubMed  Google Scholar 

  45. Frankel A, Man S, Elliott P, Adams J, Kerbel RS. Lack of multicellular drug resistance observed in human ovarian and prostate carcinoma treated with the proteasome inhibitor PS-341. Clin Cancer Res. 2000;6:3719–28.

    CAS  PubMed  Google Scholar 

  46. Waleh NS, Brody MD, Knapp MA, Mendonca HL, Lord EM, Koch CJ, Laderoute KR, Sutherland RM. Mapping of the vascular endothelial growth factor-producing hypoxic cells in multicellular tumor spheroids using a hypoxia-specific marker. Cancer Res. 1995;55:6222–6.

    CAS  PubMed  Google Scholar 

  47. Rak J, Mitsuhashi Y, Sheehan C, Krestow JK, Florenes VA, Filmus J, Kerbel RS. Collateral expression of proangiogenic and tumorigenic properties in intestinal epithelial cell variants selected for resistance to anoikis. Neoplasia. 1999;1:23–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Durand RE, Sham E. The lifetime of hypoxic human tumor cells. Int J Radiat Oncol Biol Phys. 1998;42:711–5.

    Article  CAS  PubMed  Google Scholar 

  49. Lieubeau-Teillet B, Rak J, Jothy S, Iliopoulos O, Kaelin W, Kerbel RS. Von Hippel-Lindau gene-mediated suppression and induction of differentiation in renal cell carcinoma cells grown as multicellular tumor spheroids. Cancer Res. 1998;58:4957–62.

    CAS  PubMed  Google Scholar 

  50. Shoemaker RH. The NCI60 human tumour cell line anticancer drug screen. Nat Rev Cancer. 2006;6:813–23.

    Article  CAS  PubMed  Google Scholar 

  51. Pampaloni F, Reynaud EG, Stelzer EHK. The third dimension bridges the gap between cell culture and live tissue. Nat Rev Mol Cell Biol. 2007;8:839–45.

    Article  CAS  PubMed  Google Scholar 

  52. Mayer B, Klement G, Kaneko M, Man S, Jothy S, Rak J, Kerbel RS. Multicellular gastric cancer spheroids recapitulate growth pattern and differentiation phenotype of human gastric carcinomas. Gastroenterology. 2001;121:839–52.

    Article  CAS  PubMed  Google Scholar 

  53. Carlson MW, Alt-Holland A, Egles C, Garlick JA. Three-dimensional tissue models of normal and diseased skin. Curr Protoc Cell Biol. 2008.; Chapter: Unit 19.9. doi:10.1002/0471143030.cb1909s41.

    PubMed  PubMed Central  Google Scholar 

  54. Kajiwara Y, Panchabhai S, Levin VA. A new preclinical 3-dimensional agarose colony formation assay. Technol Cancer Res Treat. 2008;7:329–34.

    Article  PubMed  Google Scholar 

  55. Friedrich J, Seidel C, Ebner R, Kunz-Schughart LA. Spheroid-based drug screen: considerations and practical approach. Nat Protoc. 2009;4:309–24.

    Article  CAS  PubMed  Google Scholar 

  56. Tung YC, Hsiao AY, Allen SG, Torisawa Y, Ho M, Takayama S. High throughput 3D spheroid culture and drug testing using 384 hanging drop array. Analyst. 2011;136:473–8.

    Article  CAS  PubMed  Google Scholar 

  57. Vinci M, Gowan S, Boxall F, Patterson L, Zimmermann M, Court W, Lomas C, Mendiola M, Hardisson D, Eccles SA. Advances in establishment and analysis of three-dimensional tumor spheroid-based functional assays for target validation and drug evaluation. BMC Biol. 2012;10:29. doi:10.1186/1741-7007-10-29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. LaBarbera DV, Reid BG, Yoo BH. The multicellular tumor spheroid model for high-throughput cancer drug discovery. Expert Opin Drug Discov. 2012;7:819–30.

    Article  CAS  PubMed  Google Scholar 

  59. Chwalek K, Bray LJ, Werner C. Tissue-engineered 3D tumor angiogenesis models: potential technologies for anti-cancer drug discovery. Adv Drug Deliv Rev. 2014;79–80:30–9.

    Article  PubMed  CAS  Google Scholar 

  60. Song HHG, Park KM, Gerecht S. Hydrogels to model 3D in vitro microenvironment of tumor vascularization. Adv Drug Deliv Rev. 2014;79–80:19–29.

    Article  PubMed  CAS  Google Scholar 

  61. Hirt C, Papadimiropoulos A, Mele V, Muraro MG, Mengus C, Iezzi G, Terracciano L, Martin I, Spagnoli GC. “In vitro” 3D models of tumor-immune system interaction. Adv Drug Deliv Rev. 2014;79–80:145–54.

    Article  PubMed  CAS  Google Scholar 

  62. Lee VK, Kim DY, Ngo H, Lee Y, Seo L, Yoo SS, Vincent PA, Dai G. Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials. 2014;35:8092–102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Crystal AS, Shaw AT, Sequist LV, Friboulet L, Niederst MJ, Lockerman EL, Frias RL, Gainor JF, Amzallag A, et al. Patient-derived models of acquired resistance can identify effective drug combinations for cancer. Science. 2014;346:1480–6.

    Google Scholar 

  64. Orlandi P, Barbara C, Bocci G, Fioravanti A, Di Paolo A, Del Tacca M, Danesi R. Idarubicin and idarubicinol effects on breast cancer multicellular spheroids. J Chemother. 2005;17:663–7.

    Article  CAS  PubMed  Google Scholar 

  65. Erlanson M, Daniel-Szolgay E, Carlsson J. Relations between the penetration, binding and average concentration of cytostatic drugs in human tumour spheroids. Cancer Chemother Pharmacol. 1992;29:343–53.

    Article  CAS  PubMed  Google Scholar 

  66. Kang HG, Jenabi JM, Zhang J, Keshelava N, Shimada H, May WA, Ng T, Reynolds CP, Triche TJ, Sorensen PHB. E-Cadherin cell-cell adhesion in ewing tumor cells mediates suppression of anoikis through activation of the ErbB4 tyrosine kinase. Cancer Res. 2007;67:3094–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Dong Y, Tan OL, Loessner D, Stephens C, Walpole C, Boyle GM, Parsons PG, Clements JA. Kallikrein-related peptidase 7 promotes multicellular aggregation via the alpha(5)beta(1) integrin pathway and paclitaxel chemoresistance in serous epithelial ovarian carcinoma. Cancer Res. 2010;70:2624–33.

    Article  CAS  PubMed  Google Scholar 

  68. Bao BA, Lai CP, Naus CC, Morgan JR. Pannexin 1 drives multicellular aggregate compaction via a signaling cascade that remodels the actin cytoskeleton. J Biol Chem. 2012;287:8407–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Fichtner I, Rolff J, Soong R, Hoffmann J, Hammer S, Sommer A, et al. Establishment of patient derived non-small cell lung cancer xenografts as models for the identification of predictive biomarkers. Clin Cancer Res. 2008;14:6456–68.

    Article  CAS  PubMed  Google Scholar 

  70. Fichtner I, Slisow W, Gill J, Becker M, Elbe B, Hillebrand T, et al. Anticancer drug response and expression of molecular markers in early-passage xenotransplanted colon carcinomas. Eur J Cancer. 2004;40:298–307.

    Article  CAS  PubMed  Google Scholar 

  71. Fiebig HH, Dengler WA, Roth T. Human tumor xenografts: predictivity, characterization and discovery of new anticancer agents. In: Fiebig HH, Burger AM, editors. Relevance of tumor models for anticancer drug development. Basel: Karger; 1999. p. 29–50.

    Google Scholar 

  72. Fiebig HH, Maier A, Burger AM. Clonogenic assay with established human tumour xenografts: correlation of in vitro to in vivo activity as a basis for anticancer drug discovery. Eur J Cancer. 2004;40:802–20.

    Article  CAS  PubMed  Google Scholar 

  73. Fiebig HH, Schuchhardt C, Henss H, Fiedler L, Lohr GW. Comparison of tumor response in nude mice and in the patients. Behring Inst Mitt. 1984;74:343–52.

    Google Scholar 

  74. Fiebig HH, Vuaroqueaux V, Korrat A, Foucault F, Beckers T. Predictive gene signatures for bevacizumab and cetuximab as well as cytotoxic agents. Int J Clin Pharmacol Ther. 2012;50:70–1.

    Article  CAS  PubMed  Google Scholar 

  75. Kunz-Schughart LA, Groebe K, Mueller-Klieser W. Three-dimensional cell culture induces novel proliferative and metabolic alterations associated with oncogenic transformation. Int J Cancer. 1996;66:578–86.

    Article  CAS  PubMed  Google Scholar 

  76. Wartenberg M, Hoffmann E, Schwindt H, Grunheck F, Petros J, Arnold JR, Hescheler J, Sauer H. Reactive oxygen species-linked regulation of the multidrug resistance transporter P-glycoprotein in Nox-1 overexpressing prostate tumor spheroids. FEBS Lett. 2005;579:4541–9.

    Article  CAS  PubMed  Google Scholar 

  77. Oloumi A, Lam W, Banath JP, Olive PL. Identification of genes differentially expressed in V79 cells grown as multicell spheroids. Int J Radiat Biol. 2002;78:483–92.

    Article  CAS  PubMed  Google Scholar 

  78. Shiras A, Bhosale A, Patekar A, Shepal V, Shastry P. Differential expression of CD44(S) and variant isoforms v3, v10 in three-dimensional cultures of mouse melanoma cell lines. Clin Exp Metastasis. 2002;19:445–55.

    Article  CAS  PubMed  Google Scholar 

  79. Zietarska M, Maugard CM, Filali-Mouhim A, Alam-Fahmy M, Tonin PN, Provencher DM, Mes-Masson AM. Molecular description of a 3D in vitro model for the study of epithelial ovarian cancer (EOC). Mol Carcinog. 2007;46:872–85.

    Article  CAS  PubMed  Google Scholar 

  80. L’Esperance S, Bachvarova M, Tetu B, Mes-Masson AM, Bachvarov D. Global gene expression analysis of early response to chemotherapy treatment in ovarian cancer spheroids. BMC Genomics. 2008;9:99.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Zanoni M, Piccinini F, Arienti C, Zamagni A, Santi S, Polico R, Bevilacqua A, Tesei A. 3D tumor spheroid models for in vitro therapeutic screening: a systematic approach to enhance the biological relevance of data obtained. Sci Rep. 2016;6:19103. doi:10.1038/srep19103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kerr DJ, Wheldon TE, Kerr AM, Freshney RI, Kaye SB. The effect of adriamycin and 4′-deoxydoxorubicin on cell survival of human lung tumour cells grown in monolayer and as spheroids. Br J Cancer. 1986;54:423–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Longati P, Jia X, Eimer J, Wagman A, Witt MR, Rehnmark S, Verbeke C, Toftgard R, Lohr M, Heuchel RL. 3D pancreatic carcinoma spheroids induce a matrix-rich chemoresistant phenotype offering a better model for drug testing. BMC Cancer. 2013;13:95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Vichai V, Kirtikara K. Sulforhodamine B colorimetric assay for cytotoxicity screening. Nat Protoc. 2006;1:1112–8.

    Article  CAS  PubMed  Google Scholar 

  85. Liu Y, Peterson DA, Kimura H, Schubert D. Mechanism of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. J Neurochem. 1997;69:581–93.

    Article  CAS  PubMed  Google Scholar 

  86. Riss TL, Moravec RA, Niles AL, et al. Cell viability assays. [2013 May 1 (Updated 2016 Jul 1)]. In: Sittampalam GS, Coussens NP, Nelson H, et al., editors. Assay guidance manual [Internet]. Bethesda, MD: Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2004. http://www.ncbi.nlm.nih.gov/books/NBK144065/

  87. Kijanska M, Kelm J. In vitro 3D spheroids and microtissues: ATP-based cell viability and toxicity assays [2016 Jan 21]. In: Sittampalam GS, Coussens NP, Nelson H, et al., editors. Assay guidance manual [Internet]. Bethesda, MD: Eli Lilly & Company and the National Center for Advancing Translational Sciences; 2004. http://www.ncbi.nlm.nih.gov/books/NBK343426/

  88. McMillin DW, Negri JM, Mitsiades CS. The role of tumour–stromal interactions in modifying drug response: challenges and opportunities. Nat Rev Drug Discov. 2013;12:217–28.

    Article  CAS  PubMed  Google Scholar 

  89. McMillin DW, Delmore J, Weisberg E, Negri JM, Geer DC, Klippel S, Mitsiades N, Schlossman RL, Munshi NC, Kung AL, Griffin JD, Richardson PG, Anderson KC, Mitsiades C. Tumor cell-specific bioluminescence platform to identify stroma-induced changes to anticancer drug activity. Nat Med. 2010;16:483–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Wenzel C, Riefke B, Grundemann S, Krebs A, Christian S, Prinz F, Osterland M, Golfier S, Rase S, et al. 3D high-content screening for the identification of compounds that target cells in dormant tumor spheroid regions. Exp Cell Res. 2014;323:131–43.

    Article  CAS  PubMed  Google Scholar 

  91. Howes AL, Chaing GG, Lang ES, Ho CB, Powis G, Vuori K, Abraham RT. The phosphatidylinositol 3-kinase inhibitor, PX-866, is a potent inhibitor of cancer cell motility and growth in three-dimensional cultures. Mol Cancer Ther. 2007;6:2505–14.

    Article  CAS  PubMed  Google Scholar 

  92. Buchsbaum RJ, Oh SY. Breast cancer-associated fibroblasts: where we are and where we need to go. Cancers. 2016;8:19.

    Article  PubMed Central  Google Scholar 

  93. Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, de Boer J. Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol. 2013;31:108–15.

    Article  CAS  PubMed  Google Scholar 

  94. Breslin S, O’Driscoll L. Three-dimensional cell culture: the missing link in drug discovery. Drug Discov Today. 2013;18:240–9.

    Article  CAS  PubMed  Google Scholar 

  95. Stock K, Estrada MF, Vidic S, Gjerde K, Rudisch A, Santo VE, Barbier M, Blom S, Arundkar SC, et al. Capturing tumor complexity in vitro: comparative analysis of 2D and 3D tumor models for drug discovery. Sci Rep. 2016;6:28951. doi:10.1038/srep28951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Gong X, Lin C, Cheng J, Su J, Zhao H, Liu T, Wen X, Zhao P. Generation of multicellular tumor spheroids with microwell-based agarose scaffolds for drug testing. PLoS One. 2015;10:e0130348.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Selby MH, Delosh R, Laudeman J, Ogle C, Reinhart R, Silvers T, Lawrence S, Kinders R, Parchment R, Teicher BA, Evans DM. 3D models of the NCI60 cell lines for screening oncology compounds. SLAS Discov. 2017;1–11. doi:10.1177/2472555217697434.

  98. Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM, Arcaroli JJ, Messersmith WA, Eckhardt SG. Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol. 2012;9:338–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fiebig HH, Burger AM. Human tumor xenografts and explants. In: Teicher BA, editor. Tumor models in cancer research. New York:Humana Press (Springer Science+Business Media); 2002. p. 113–37.

    Google Scholar 

  100. Uronis JM, Osada T, McCall S, Yang XY, Mantyh C, Morse MA, Lyerly HK, Clary BM, Hsu DS. Histological and molecular evaluation of patient-derived colorectal cancer explants. PLoS One. 2012;7(6):e38422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jin K, Teng L, Shen Y, He K, Xu Z, Li G. Patient-derived human tumour tissue xenografts in immunodeficient mice: a systematic review. Clin Transl Oncol. 2010;12(7):473–80.

    Article  PubMed  Google Scholar 

  102. Hoffman, RM. Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Investigational New Drugs 1999;17:343–59.

    Google Scholar 

  103. Hoffman, RM. Patient-derived orthotopic xenografts: better mimic of metastasis than subcutaneous xenografts. Nature Reviews Cancer 2015;15:451–52.

    Google Scholar 

  104. Von Hoff DD. Activity of gemcitabine in a human tumor cloning assay as a basis for clinical trials with gemcitabine. San Antonio Drug Development Team. Invest New Drugs. 1996;14:265–70.

    Article  Google Scholar 

  105. Hanauske AR, Hilsenbeck SG, Von Hoff DD. Human tumor screening. In: Teicher BA, editor. Anticancer drug development guide. New York: Humana Press (Springer Science+Business Media); 1997. p. 43–58.

    Chapter  Google Scholar 

  106. Boehnke K, Iversen PW, Schumacher D, Lallena MJ, Haro R, Amat J, Haybaeck J, Liebs S, et al. Assay establishment and validation of a high throughput screening platform for three-dimensional patient derived colon cancer organoid cultures. J Biomol Screen. 2016;21(9):931–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F, Pronk A, van Houdt W, van Gorp J, Taylor-Weiner A, Kester L, McLaren-Douglas A, et al. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell. 2015;161:933–45.

    Article  PubMed  CAS  Google Scholar 

  108. Boj SF, Hwang C, Baker LA, Engle DD, Tuveson DA, Clevers H. Model organoids provide new research opportunities for ductal pancreatic cancer. Mol Cell Oncol. 2016;3:e1014757.

    Article  PubMed  CAS  Google Scholar 

  109. Gao H, Korn JM, Ferretti S, Monahan JE, Wang Y, Singh M, Zhang C, Schnell C, Yang G, Zhang Y, Balbin OA, Barbe S, Cai H, et al. High-throughput screening patient-derived tumor xenografts to predict clinical trial drug response. Nat Med. 2015;21:1318–25.

    Article  CAS  PubMed  Google Scholar 

  110. Joyce JA, Pollard JW. Microenvironment regulation of metastasis. Nat Rev Cancer. 2009;9:239–52.

    Article  CAS  PubMed  Google Scholar 

  111. Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis. Nat Med. 2013;19:1423–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Bradford JR, Wappett M, Beran G, Logie A, Delpuech O, Brown H, Boros J, Camp NJ, McEwen R, Mazzola AM, et al. Whole transcriptome profiling of patient derived xenograft models as a tool to identify both tumor and stromal specific biomarkers. Oncotarget. 2016;7:20773–87.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Onion D, Argent R, Reece-Smith AM, Craze ML, Pineda RG, Clarke PA, Ratan HL, Parsons SL, Lobo DN, et al. 3-dimensional patient derived lung cancer assays reveal resistance to standards-of-care promoted by stromal cells but sensitivity to histone deacetylase inhibitors. Mol Cancer Ther. 2016;15:753–63.

    Article  CAS  PubMed  Google Scholar 

  114. Fong ELS, Wan X, Yang J, Morgado M, Mikos AG, Harrington DA, Navone NM, Farach-Carson MC. A 3D in vitro model of patient derived prostate cancer xenograft for controlled interrogation of in vivo tumor-stromal interactions. Biomaterials. 2016;77:164–72.

    Article  CAS  PubMed  Google Scholar 

  115. Zhang JH, Chung TD, Oldenburg KR. A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen. 1999;4:67–73.

    Article  CAS  PubMed  Google Scholar 

  116. Shroyer NF. Tumor organoids fill the niche. Cell Stem Cell. 2016;18:686–8.

    Article  CAS  PubMed  Google Scholar 

  117. Fujii M, Shimokawa M, Date S, Takano A, Matano M, Nanki K, Ohta Y, Toshimitsu K, Nakazato Y, et al. A colorectal tumor organoid library demonstrates progressive loss of niche factor requirements during tumorigenesis. Cell Stem Cell. 2016;18:827–38.

    Article  CAS  PubMed  Google Scholar 

  118. Zhang X, Lewis MT. Establishment of Patient-Derived Xenograft (PDX) models of human breast cancer. Curr Protoc Mouse Biol. 2013;3:21–9.

    PubMed  Google Scholar 

  119. Bogner PN, Patnaik SK, Pitoniak R, Kannisto E, Repasky E, Hylander B, Yendamuri S, Ramnath N. Lung cancer xenografting alters microRNA profile but not immunophenotype. Biochem Biophys Res Commun. 2009;386:305–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. DeRose YS, Wang G, Lin YC, Bernard PS, Buys SS, Ebbert MT, Factor R, Matsen C, Milash BA, Nelson E, Neumayer L, Randall RL, Stijleman IJ, Welm BE, Welm AL. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med. 2011;17:1514–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Loukopoulos P, Kanetaka K, Takamura M, Shibata T, Sakamoto M, Hirohashi S. Orthotopic transplantation models of pancreatic adenocarcinoma derived from cell lines and primary tumors and displaying varying metastatic activity. Pancreas. 2004;29:193–203.

    Article  CAS  PubMed  Google Scholar 

  122. McEvoy J, Ulyanov A, Brennan R, Wu G, Pounds S, Zhang J, Dyer MA. Analysis of MDM2 and MDM4 single nucleotide polymorphisms, mRNA splicing and protein expression in retinoblastoma. PLoS One. 2012;7:e42739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Morton CL, Houghton PJ. Establishment of human tumor xenografts in immunodeficient mice. Nat Protoc. 2007;2:247–50.

    Article  CAS  PubMed  Google Scholar 

  124. Reyal F, Guyader C, Decraene C, Lucchesi C, Auger N, Assayag F, De Plater L, Gentien D, Poupon MF, Cottu P, De Cremoux P, Gestraud P, et al. Molecular profiling of patient-derived breast cancer xenografts. Breast Cancer Res. 2012;14:R11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Zhao X, Liu Z, Yu L, Zhang Y, Baxter P, Voicu H, Gurusiddappa S, Luan J, Su JM, Leung HC, Li XN. Global gene expression profiling confirms the molecular fidelity of primary tumor-based orthotopic xenograft mouse models of medulloblastoma. Neuro Oncol. 2012;14:574–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Bertotti A, Migliardi C, Galimi F, Sassi F, Torti D, Isella C, et al. A molecularly annotated platform of patient-derived xenografts (“xenopatients”) identifies HER2 as an effective therapeutic target in cetuximab-resistant colorectal cancer. Cancer Discov. 2011;1:508–23.

    Article  CAS  PubMed  Google Scholar 

  127. Cunningham D, Humblet Y, Siena S, Khayat D, Bleiburg H, Santoro A, et al. Cetuximab monotherapy and cetuximab plus irinotecan in irinotecan-refractory metastatic colorectal cancer. N Engl J Med. 2004;351:337–45.

    Article  CAS  PubMed  Google Scholar 

  128. Furukawa T, Kubota T, Hoffman RM. Clinical applications of the histoculture drug response assay. Clin Cancer Res. 1995;1:305–11.

    CAS  PubMed  Google Scholar 

  129. Kubota T, Sasano N, Abe O, Nakao I, Kawamura E, Saito T, Endo M, Kimura K, Demura H, Sasano H, Nagura H, Ogawa N, Hoffman RM. Potential of the histoculture drug response assay to contribute to cancer patient survival. Clin Cancer Res. 1995;1:1537–43.

    CAS  PubMed  Google Scholar 

  130. Singh B, Li R, Xu L, Poluri A, Patel S, Shaha AR, Pfister D, Sherman E, Hoffman RM, Shah J. Prediction of survival in patients with head and neck cancer using the histoculture drug response assay. Head Neck. 2002;24:437–42.

    Article  PubMed  Google Scholar 

  131. Jung PS, Kim DY, Kim MB, Lee SW, Kim JH, Kim YM, Kim YT, Hoffman RM, Nam JH. Progression-free survival is accurately predicted in patients treated with chemotherapy for epithelial ovarian cancer by the histoculture drug response assay in a prospective correlative clinical trial at a single institution. Anticancer Res. 2013;33:1029–34.

    CAS  PubMed  Google Scholar 

  132. Robbins KT, Connors KM, Storniolo AM, Hanchett C, Hoffman RM. Sponge-gel-supported histoculture drug-response assay for head and neck cancer. Correlations with clinical response to cisplatin. Arch Otolaryngol Head Neck Surg. 1994;120:288–92.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beverly A. Teicher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Evans, D.M., Teicher, B.A. (2017). 3D Cell Culture Models. In: Hoffman, R. (eds) Patient-Derived Mouse Models of Cancer . Molecular and Translational Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-57424-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57424-0_19

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-57423-3

  • Online ISBN: 978-3-319-57424-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics