Skip to main content

Molecular Characteristics of Patient-Derived Tumor Xenografts: Similarities to Patient Tumors and Relevance for Biomarker Discovery

  • Chapter
  • First Online:
Patient-Derived Mouse Models of Cancer

Abstract

Molecular features of patient-derived xenograft (PDX) tumor models have been analyzed extensively over the last decade. The main purposes were to optimize tumor model selection for preclinical efficacy testing, to facilitate the investigation of drug sensitivity mechanisms, and to allow biomarker discovery. Molecular data were also used to demonstrate the relevance of PDXs as preclinical models, by in-depth comparisons of PDX with patient tumors, facilitating evaluation whether or not PDX collections reflect the diversity of patient tumors, and addressing questions of PDX stability over passages and clonal selection of cancer cells. Here we aimed to summarize and discuss the results of the molecular dissection of our PDXs collection to establish their relevance as preclinical models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rygaard J, Povlsen CO. Heterotransplantation of a human malignant tumor to the mouse mutant nude. Acta Pathol Microbiol Scand. 1969;77:758–66.

    Article  CAS  PubMed  Google Scholar 

  2. Fiebig HH, Schuchhardt C, Henss H, Fiedler L, Lohr GW. Comparison of tumor response in nude mice and in the patients. Behring Inst Mitt. 1984;74:343–52.

    Google Scholar 

  3. Sausville EA, Burger AM. Contributions of human tumor xenografts to anticancer drug development. Cancer Res. 2006;66:3351–4. discussion 3354.

    Article  CAS  PubMed  Google Scholar 

  4. Tentler JJ, Tan AC, Weekes CD, Jimeno A, Leong S, Pitts TM, Arcaroli JJ, Messersmith WA, Eckhardt SG. Patient-derived tumour xenografts as models for oncology drug development. Nat Rev Clin Oncol. 2012;9:338–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Siolas D, Hannon GJ. Patient-derived tumor xenografts: transforming clinical samples into mouse models. Cancer Res. 2013;73:5315–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Williams SA, Anderson WC, Santaguida MT, Dylla SJ. Patient-derived xenografts, the cancer stem cell paradigm, and cancer pathobiology in the 21st century. Lab Invest. 2013;93:970–82.

    Article  PubMed  Google Scholar 

  7. Hidalgo M, Amant F, Biankin AV, Budinska E, Byrne AT, Caldas C, Clarke RB, de Jong S, Jonkers J, Maelandsmo GM, Roman-Roman S, Seoane J, Trusolino L, Villanueva A. Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov. 2014;4:998–1013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Choi SY, Lin D, Gout PW, Collins CC, Xu Y, Wang Y. Lessons from patient-derived xenografts for better in vitro modeling of human cancer. Adv Drug Deliv Rev. 2014;79–80:222–37.

    Article  PubMed  Google Scholar 

  9. Burger AM, Fiebig H-H. Preclinical screening for anticancer agents. In: Rudek MA, Chau CH, Figg W, McLeod HL, editors. Handbook of anticancer pharmacokinetics and pharmacodynamics. Cancer Drug Discovery and Development. New York: Springer-Verlag; 2014. p. 836.

    Google Scholar 

  10. Rosfjord E, Lucas J, Li G, Gerber HP. Advances in patient-derived tumor xenografts: from target identification to predicting clinical response rates in oncology. Biochem Pharmacol. 2014;91:135–43.

    Article  CAS  PubMed  Google Scholar 

  11. Gao H, Korn JM, Ferretti S, Monahan JE, Wang Y, Singh M, Zhang C, Schnell C, Yang G, Zhang Y, Balbin OA, Barbe S, Cai H, Casey F, Chatterjee S, Chiang DY, Chuai S, Cogan SM, Collins SD, Dammassa E, Ebel N, Embry M, Green J, Kauffmann A, Kowal C, Leary RJ, Lehar J, Liang Y, Loo A, Lorenzana E, Robert McDonald III E, McLaughlin ME, Merkin J, Meyer R, Naylor TL, Patawaran M, Reddy A, Roelli C, Ruddy DA, Salangsang F, Santacroce F, Singh AP, Tang Y, Tinetto W, Tobler S, Velazquez R, Venkatesan K, Von Arx F, Wang HQ, Wang Z, Wiesmann M, Wyss D, Xu F, Bitter H, Atadja P, Lees E, Hofmann F, Li E, Keen N, Cozens R, Jensen MR, Pryer NK, Williams JA, Sellers WR. High-throughput screening using patient-derived tumor xenografts to predict clinical trial drug response. Nat Med. 2015;21:1318–25.

    Article  CAS  PubMed  Google Scholar 

  12. Krumbach R, Virayah J, Metcalfe T, Fiebig HH, Vuaroqueaux V. A functional mutational profile of a compendium of 350 patient-derived tumor xenografts (PDXs). In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics, Boston, MA. 2013.

    Google Scholar 

  13. Cho SY, Kang W, Han JY, Min S, Kang J, Lee A, Kwon JY, Lee C, Park H. An integrative approach to precision cancer medicine using patient-derived xenografts. Mol Cells. 2016;39:77–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mardis ER. Genome sequencing and cancer. Curr Opin Genet Dev. 2012;22:245–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Tomasetti C, Vogelstein B, Parmigiani G. Half or more of the somatic mutations in cancers of self-renewing tissues originate prior to tumor initiation. Proc Natl Acad Sci U S A. 2013;110:1999–2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vandin F, Upfal E, Raphael BJ. De novo discovery of mutated driver pathways in cancer. Genome Res. 2012;22:375–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Foucault F, Kiefer F, Zeitouni B, Virayah J, Metcalfe T, Vuaroqueaux V, Fiebig, HH. Whole-exome sequencing analysis across 23 histotypes of patient-derived tumor xenografts reveals their similarities with TCGA patient tumors. In: Proceedings of the 105th Annual Meeting of the American Association for Cancer Research, Philadelphia, PA. 2014.

    Google Scholar 

  18. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV, Bignell GR, Bolli N, Borg A, Borresen-Dale AL, Boyault S, Burkhardt B, Butler AP, Caldas C, Davies HR, Desmedt C, Eils R, Eyfjord JE, Foekens JA, Greaves M, Hosoda F, Hutter B, Ilicic T, Imbeaud S, Imielinski M, Jager N, Jones DT, Jones D, Knappskog S, Kool M, Lakhani SR, Lopez-Otin C, Martin S, Munshi NC, Nakamura H, Northcott PA, Pajic M, Papaemmanuil E, Paradiso A, Pearson JV, Puente XS, Raine K, Ramakrishna M, Richardson AL, Richter J, Rosenstiel P, Schlesner M, Schumacher TN, Span PN, Teague JW, Totoki Y, Tutt AN, Valdes-Mas R, van Buuren MM, van ‘t Veer L, Vincent-Salomon A, Waddell N, Yates LR, Australian Pancreatic Cancer Genome Initiative, ICGC Breast Cancer Consortium, ICGC MMML-Seq Consortium, ICGC PedBrain, Zucman-Rossi J, Futreal PA, McDermott U, Lichter P, Meyerson M, Grimmond SM, Siebert R, Campo E, Shibata T, Pfister SM, Campbell PJ, Stratton MR. Signatures of mutational processes in human cancer. Nature. 2013;500:415–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Peille AL, Zeitouni B, Fiebig V, Fiebig HH, Vuaroqueaux V. Molecular profiling of a non-small cell lung PDX collection by whole exome sequencing and RNAseq revealed subtype specificities with therapeutic implications. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics, Boston, MA. 2015.

    Google Scholar 

  20. Krumbach R, Schuler J, Hofmann M, Giesemann T, Fiebig HH, Beckers T. Primary resistance to cetuximab in a panel of patient-derived tumour xenograft models: activation of MET as one mechanism for drug resistance. Eur J Cancer. 2011;47:1231–43.

    Article  CAS  PubMed  Google Scholar 

  21. Smith MA, Hall R, Fisher K, Haake SM, Khalil F, Schabath MB, Vuaroqueaux V, Fiebig HH, Altiok S, Chen YA, Haura EB. Annotation of human cancers with EGFR signaling-associated protein complexes using proximity ligation assays. Sci Signal. 2015;8:ra4.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Cancer Genome Atlas Research Network. Comprehensive molecular profiling of lung adenocarcinoma. Nature. 2014;511:543–50.

    Article  Google Scholar 

  23. Cancer Genome Atlas Research Network. Comprehensive genomic characterization of squamous cell lung cancers. Nature. 2012;489:519–25.

    Article  Google Scholar 

  24. Martinez-Garcia R, Lopez-Casas PP, Rico D, Valencia A, Hidalgo M. Colorectal cancer classification based on gene expression is not associated with FOLFIRI response. Nat Med. 2014;20:1230–1.

    Article  CAS  PubMed  Google Scholar 

  25. Guo S, Qian W, Cai J, Zhang L, Wery JP, Li QX. Molecular pathology of patient tumors, patient-derived xenografts, and cancer cell lines. Cancer Res. 2016;76:4619–26.

    Article  CAS  PubMed  Google Scholar 

  26. Vuaroqueaux V, Peille AL, Zeitouni B, Fiebig V, Fiebig HH. Comprehensive genomic profile analyses of small cell lung cancer patient-derived xenografts for pharmacogenomics. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics, Boston, MA. 2015.

    Google Scholar 

  27. George J, Lim JS, Jang SJ, Cun Y, Ozretic L, Kong G, Leenders F, Lu X, Fernandez-Cuesta L, Bosco G, Muller C, Dahmen I, Jahchan NS, Park KS, Yang D, Karnezis AN, Vaka D, Torres A, Wang MS, Korbel JO, Menon R, Chun SM, Kim D, Wilkerson M, Hayes N, Engelmann D, Putzer B, Bos M, Michels S, Vlasic I, Seidel D, Pinther B, Schaub P, Becker C, Altmuller J, Yokota J, Kohno T, Iwakawa R, Tsuta K, Noguchi M, Muley T, Hoffmann H, Schnabel PA, Petersen I, Chen Y, Soltermann A, Tischler V, Choi CM, Kim YH, Massion PP, Zou Y, Jovanovic D, Kontic M, Wright GM, Russell PA, Solomon B, Koch I, Lindner M, Muscarella LA, la Torre A, Field JK, Jakopovic M, Knezevic J, Castanos-Velez E, Roz L, Pastorino U, Brustugun OT, Lund-Iversen M, Thunnissen E, Kohler J, Schuler M, Botling J, Sandelin M, Sanchez-Cespedes M, Salvesen HB, Achter V, Lang U, Bogus M, Schneider PM, Zander T, Ansen S, Hallek M, Wolf J, Vingron M, Yatabe Y, Travis WD, Nurnberg P, Reinhardt C, Perner S, Heukamp L, Buttner R, Haas SA, Brambilla E, Peifer M, Sage J, Thomas RK. Comprehensive genomic profiles of small cell lung cancer. Nature. 2015;524:47–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Budinska E, Popovici V, Tejpar S, D’Ario G, Lapique N, Sikora KO, Di Narzo AF, Yan P, Hodgson JG, Weinrich S, Bosman F, Roth A, Delorenzi M. Gene expression patterns unveil a new level of molecular heterogeneity in colorectal cancer. J Pathol. 2013;231:63–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. De Sousa EMF, Wang X, Jansen M, Fessler E, Trinh A, de Rooij LP, de Jong JH, de Boer OJ, van Leersum R, Bijlsma MF, Rodermond H, van der Heijden M, van Noesel CJ, Tuynman JB, Dekker E, Markowetz F, Medema JP, Vermeulen L. Poor-prognosis colon cancer is defined by a molecularly distinct subtype and develops from serrated precursor lesions. Nat Med. 2013;19:614–8.

    Article  Google Scholar 

  30. Marisa L, de Reynies A, Duval A, Selves J, Gaub MP, Vescovo L, Etienne-Grimaldi MC, Schiappa R, Guenot D, Ayadi M, Kirzin S, Chazal M, Flejou JF, Benchimol D, Berger A, Lagarde A, Pencreach E, Piard F, Elias D, Parc Y, Olschwang S, Milano G, Laurent-Puig P, Boige V. Gene expression classification of colon cancer into molecular subtypes: characterization, validation, and prognostic value. PLoS Med. 2013;10:e1001453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sadanandam A, Lyssiotis CA, Homicsko K, Collisson EA, Gibb WJ, Wullschleger S, Ostos LC, Lannon WA, Grotzinger C, Del Rio M, Lhermitte B, Olshen AB, Wiedenmann B, Cantley LC, Gray JW, Hanahan D. A colorectal cancer classification system that associates cellular phenotype and responses to therapy. Nat Med. 2013;19:619–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guinney J, Ferte C, Dry J, McEwen R, Manceau G, Kao KJ, Chang KM, Bendtsen C, Hudson K, Huang E, Dougherty B, Ducreux M, Soria JC, Friend S, Derry J, Laurent-Puig P. Modeling RAS phenotype in colorectal cancer uncovers novel molecular traits of RAS dependency and improves prediction of response to targeted agents in patients. Clin Cancer Res. 2014;20:265–72.

    Article  CAS  PubMed  Google Scholar 

  33. Sadanandam A, Wang X, de Sousa EMF, Gray JW, Vermeulen L, Hanahan D, Medema JP. Reconciliation of classification systems defining molecular subtypes of colorectal cancer: interrelationships and clinical implications. Cell Cycle. 2014;13:353–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vuaroqueaux V, Giesemann T, Tornillo L, Maier A, Krumbach R, Peille AL, Kees T, Guo J, Foucault F, Amalou Z, Eppenberger S, Terracciano L, Fiebig HH. The use of a patient derived tumor xenograft collection to assess different Met and HGF detection methods and their predictive values for therapy response. In: Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics, Boston, MA. 2013.

    Google Scholar 

  35. Isella C, Terrasi A, Bellomo SE, Petti C, Galatola G, Muratore A, Mellano A, Senetta R, Cassenti A, Sonetto C, Inghirami G, Trusolino L, Fekete Z, De Ridder M, Cassoni P, Storme G, Bertotti A, Medico E. Stromal contribution to the colorectal cancer transcriptome. Nat Genet. 2015;47:312–9.

    Article  CAS  PubMed  Google Scholar 

  36. Vermeulen L, De Sousa EMF, van der Heijden M, Cameron K, de Jong JH, Borovski T, Tuynman JB, Todaro M, Merz C, Rodermond H, Sprick MR, Kemper K, Richel DJ, Stassi G, Medema JP. Wnt activity defines colon cancer stem cells and is regulated by the microenvironment. Nat Cell Biol. 2010;12:468–76.

    Article  CAS  PubMed  Google Scholar 

  37. Loboda A, Nebozhyn M, Klinghoffer R, Frazier J, Chastain M, Arthur W, Roberts B, Zhang T, Chenard M, Haines B, Andersen J, Nagashima K, Paweletz C, Lynch B, Feldman I, Dai H, Huang P, Watters J. A gene expression signature of RAS pathway dependence predicts response to PI3K and RAS pathway inhibitors and expands the population of RAS pathway activated tumors. BMC Med Genet. 2010;3:26.

    Google Scholar 

  38. Brown KM, Xue A, Mittal A, Samra JS, Smith R, Hugh TJ. Patient-derived xenograft models of colorectal cancer in pre-clinical research: a systematic review. Oncotarget. 2016;7(40):66212–66225.

    Google Scholar 

  39. Chou J, Fitzgibbon MP, Mortales CL, Towlerton AM, Upton MP, Yeung RS, McIntosh MW, Warren EH. Phenotypic and transcriptional fidelity of patient-derived colon cancer xenografts in immune-deficient mice. PLoS One. 2013;8:e79874.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Julien S, Merino-Trigo A, Lacroix L, Pocard M, Goere D, Mariani P, Landron S, Bigot L, Nemati F, Dartigues P, Weiswald LB, Lantuas D, Morgand L, Pham E, Gonin P, Dangles-Marie V, Job B, Dessen P, Bruno A, Pierre A, De The H, Soliman H, Nunes M, Lardier G, Calvet L, Demers B, Prevost G, Vrignaud P, Roman-Roman S, Duchamp O, Berthet C. Characterization of a large panel of patient-derived tumor xenografts representing the clinical heterogeneity of human colorectal cancer. Clin Cancer Res. 2012;18:5314–28.

    Article  CAS  PubMed  Google Scholar 

  41. Ostman A, Augsten M. Cancer-associated fibroblasts and tumor growth—bystanders turning into key players. Curr Opin Genet Dev. 2009;19:67–73.

    Article  PubMed  Google Scholar 

  42. Garrido-Laguna I, Uson M, Rajeshkumar NV, Tan AC, de Oliveira E, Karikari C, Villaroel MC, Salomon A, Taylor G, Sharma R, Hruban RH, Maitra A, Laheru D, Rubio-Viqueira B, Jimeno A, Hidalgo M. Tumor engraftment in nude mice and enrichment in stroma- related gene pathways predict poor survival and resistance to gemcitabine in patients with pancreatic cancer. Clin Cancer Res. 2011;17:5793–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bronsert P, Kees T, Zeitouni B, Peille AL, Landesfeind M, Fiebig HH, Küsters S, Vuaroqueaux V. Subtyping of pancreatic cancer patient-derived xenograft tumors and implications for anticancer agent testing. In: Proceedings of the 107th Annual Meeting of the American Association for Cancer Research, New Orleans, LA. 2016.

    Google Scholar 

  44. Beckers T, Maier A, Schüler J, Giesemann T, Hopt U, Haller T, Fiebig HH, Küsters S. Comprehensive characterization of a newly established patient-derived pancreatic adenocarcinoma xenograft collection. In AACR 101st Annual Meeting 2010 for Cancer Research, Washington, DC. 2010.

    Google Scholar 

  45. Mei L, Du W, Ma WW. Targeting stromal microenvironment in pancreatic ductal adenocarcinoma: controversies and promises. J Gastrointest Oncol. 2016;7:487–94.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Collisson EA, Sadanandam A, Olson P, Gibb WJ, Truitt M, Gu S, Cooc J, Weinkle J, Kim GE, Jakkula L, Feiler HS, Ko AH, Olshen AB, Danenberg KL, Tempero MA, Spellman PT, Hanahan D, Gray JW. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat Med. 2011;17:500–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Moffitt RA, Marayati R, Flate EL, Volmar KE, Loeza SG, Hoadley KA, Rashid NU, Williams LA, Eaton SC, Chung AH, Smyla JK, Anderson JM, Kim HJ, Bentrem DJ, Talamonti MS, Iacobuzio-Donahue CA, Hollingsworth MA, Yeh JJ. Virtual microdissection identifies distinct tumor- and stroma-specific subtypes of pancreatic ductal adenocarcinoma. Nat Genet. 2015;47:1168–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bailey P, Chang DK, Nones K, Johns AL, Patch AM, Gingras MC, Miller DK, Christ AN, Bruxner TJ, Quinn MC, Nourse C, Murtaugh LC, Harliwong I, Idrisoglu S, Manning S, Nourbakhsh E, Wani S, Fink L, Holmes O, Chin V, Anderson MJ, Kazakoff S, Leonard C, Newell F, Waddell N, Wood S, Xu Q, Wilson PJ, Cloonan N, Kassahn KS, Taylor D, Quek K, Robertson A, Pantano L, Mincarelli L, Sanchez LN, Evers L, Wu J, Pinese M, Cowley MJ, Jones MD, Colvin EK, Nagrial AM, Humphrey ES, Chantrill LA, Mawson A, Humphris J, Chou A, Pajic M, Scarlett CJ, Pinho AV, Giry-Laterriere M, Rooman I, Samra JS, Kench JG, Lovell JA, Merrett ND, Toon CW, Epari K, Nguyen NQ, Barbour A, Zeps N, Moran-Jones K, Jamieson NB, Graham JS, Duthie F, Oien K, Hair J, Grutzmann R, Maitra A, Iacobuzio-Donahue CA, Wolfgang CL, Morgan RA, Lawlor RT, Corbo V, Bassi C, Rusev B, Capelli P, Salvia R, Tortora G, Mukhopadhyay D, Petersen GM, Australian Pancreatic Cancer Genome Initiative, Munzy DM, Fisher WE, Karim SA, Eshleman JR, Hruban RH, Pilarsky C, Morton JP, Sansom OJ, Scarpa A, Musgrove EA, Bailey UM, Hofmann O, Sutherland RL, Wheeler DA, Gill AJ, Gibbs RA, Pearson JV, Waddell N, Biankin AV, Grimmond SM. Genomic analyses identify molecular subtypes of pancreatic cancer. Nature. 2016;531:47–52.

    Article  CAS  PubMed  Google Scholar 

  49. Waddell N, Pajic M, Patch AM, Chang DK, Kassahn KS, Bailey P, Johns AL, Miller D, Nones K, Quek K, Quinn MC, Robertson AJ, Fadlullah MZ, Bruxner TJ, Christ AN, Harliwong I, Idrisoglu S, Manning S, Nourse C, Nourbakhsh E, Wani S, Wilson PJ, Markham E, Cloonan N, Anderson MJ, Fink JL, Holmes O, Kazakoff SH, Leonard C, Newell F, Poudel B, Song S, Taylor D, Waddell N, Wood S, Xu Q, Wu J, Pinese M, Cowley MJ, Lee HC, Jones MD, Nagrial AM, Humphris J, Chantrill LA, Chin V, Steinmann AM, Mawson A, Humphrey ES, Colvin EK, Chou A, Scarlett CJ, Pinho AV, Giry-Laterriere M, Rooman I, Samra JS, Kench JG, Pettitt JA, Merrett ND, Toon C, Epari K, Nguyen NQ, Barbour A, Zeps N, Jamieson NB, Graham JS, Niclou SP, Bjerkvig R, Grutzmann R, Aust D, Hruban RH, Maitra A, Iacobuzio-Donahue CA, Wolfgang CL, Morgan RA, Lawlor RT, Corbo V, Bassi C, Falconi M, Zamboni G, Tortora G, Tempero MA, Australian Pancreatic Cancer Genome Initiative, Gill AJ, Eshleman JR, Pilarsky C, Scarpa A, Musgrove EA, Pearson JV, Biankin AV, Grimmond SM. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature. 2015;518:495–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Li X, Ma Q, Duan W, Liu H, Xu H, Wu E. Paracrine sonic hedgehog signaling derived from tumor epithelial cells: a key regulator in the pancreatic tumor microenvironment. Crit Rev Eukaryot Gene Expr. 2012;22:97–108.

    Article  PubMed  Google Scholar 

  51. Merchant JL, Saqui-Salces M. Inhibition of Hedgehog signaling in the gastrointestinal tract: targeting the cancer microenvironment. Cancer Treat Rev. 2014;40:12–21.

    Article  CAS  PubMed  Google Scholar 

  52. Vuaroqueaux V, Küsters S, Fiebig HH, Foucault F, Beckers T. Expression of Hedgehog pathway molecules in patient-derived pancreatic adenocarcinoma xenograft models. In: Proceedings of the 102nd Annual Meeting of the American Association for Cancer Research, Orlando, FL. 2011.

    Google Scholar 

  53. Marangoni E, Poupon MF. Patient-derived tumour xenografts as models for breast cancer drug development. Curr Opin Oncol. 2014;26:556–61.

    Article  CAS  PubMed  Google Scholar 

  54. Risbridger GP, Taylor RA. Patient-derived prostate cancer: from basic science to the clinic. Horm Cancer. 2016;7:236–40.

    Article  PubMed  Google Scholar 

  55. Whittle JR, Lewis MT, Lindeman GJ, Visvader JE. Patient-derived xenograft models of breast cancer and their predictive power. Breast Cancer Res. 2015;17:17.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Giesemann T, Krumbach R, Schüler J, Vuaroqueaux V, Hofmann M, Liu N, Haegebarth A, Beckers T, Fiebig HH. Molecular characterization of a panel of patient-derived breast cancer xenografts. In: Proceedings of the 101st Annual Meeting of the American Association for Cancer Research, Washington, DC. 2010.

    Google Scholar 

  57. DeRose YS, Wang G, Lin YC, Bernard PS, Buys SS, Ebbert MT, Factor R, Matsen C, Milash BA, Nelson E, Neumayer L, Randall RL, Stijleman IJ, Welm BE, Welm AL. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med. 2011;17:1514–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kanaya N, Somlo G, Wu J, Frankel P, Kai M, Liu X, Wu SV, Nguyen D, Chan N, Hsieh MY, Kirschenbaum M, Kruper L, Vito C, Badie B, Yim JH, Yuan Y, Hurria A, Peiguo C, Mortimer J, Chen S. Characterization of patient-derived tumor xenografts (PDXs) as models for estrogen receptor positive (ER+HER2- and ER+HER2+) breast cancers. J Steroid Biochem Mol Biol. 2016; doi:10.1016/j.jsbmb.2016.05.001.

    PubMed  Google Scholar 

  59. Zhang X, Claerhout S, Prat A, Dobrolecki LE, Petrovic I, Lai Q, Landis MD, Wiechmann L, Schiff R, Giuliano M, Wong H, Fuqua SW, Contreras A, Gutierrez C, Huang J, Mao S, Pavlick AC, Froehlich AM, Wu MF, Tsimelzon A, Hilsenbeck SG, Chen ES, Zuloaga P, Shaw CA, Rimawi MF, Perou CM, Mills GB, Chang JC, Lewis MT. A renewable tissue resource of phenotypically stable, biologically and ethnically diverse, patient-derived human breast cancer xenograft models. Cancer Res. 2013;73:4885–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Eirew P, Steif A, Khattra J, Ha G, Yap D, Farahani H, Gelmon K, Chia S, Mar C, Wan A, Laks E, Biele J, Shumansky K, Rosner J, McPherson A, Nielsen C, Roth AJ, Lefebvre C, Bashashati A, de Souza C, Siu C, Aniba R, Brimhall J, Oloumi A, Osako T, Bruna A, Sandoval JL, Algara T, Greenwood W, Leung K, Cheng H, Xue H, Wang Y, Lin D, Mungall AJ, Moore R, Zhao Y, Lorette J, Nguyen L, Huntsman D, Eaves CJ, Hansen C, Marra MA, Caldas C, Shah SP, Aparicio S. Dynamics of genomic clones in breast cancer patient xenografts at single-cell resolution. Nature. 2015;518:422–6.

    Article  CAS  PubMed  Google Scholar 

  61. Wetterauer C, Vlajnic T, Schuler J, Gsponer JR, Thalmann GN, Cecchini M, Schneider J, Zellweger T, Pueschel H, Bachmann A, Ruiz C, Dirnhofer S, Bubendorf L, Rentsch CA. Early development of human lymphomas in a prostate cancer xenograft program using triple knock-out immunocompromised mice. Prostate. 2015;75:585–92.

    Article  PubMed  Google Scholar 

  62. Choi YY, Lee JE, Kim H, Sim MH, Kim KK, Lee G, Kim HI, An JY, Hyung WJ, Kim CB, Noh SH, Kim S, Cheong JH. Establishment and characterisation of patient-derived xenografts as paraclinical models for gastric cancer. Sci Rep. 2016;6:22172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhu Y, Tian T, Li Z, Tang Z, Wang L, Wu J, Li Y, Dong B, Li Y, Li N, Zou J, Gao J, Shen L. Establishment and characterization of patient-derived tumor xenograft using gastroscopic biopsies in gastric cancer. Sci Rep. 2015;5:8542.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Furukawa T, Kubota T, Watanabe M, Kitajima M, Fu X, Hoffman RM. Orthotopic transplantation of histologically intact clinical specimens of stomach cancer to nude mice: correlation of metastatic sites in mouse and individual patient donors. Int J Cancer. 1993;53:608–12.

    Article  CAS  PubMed  Google Scholar 

  65. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014;513:202–9.

    Article  Google Scholar 

  66. Vuaroqueaux V, Ackermann A, Guo J, Peille AL, Krumbach R, Foucault F, Metz T, Fiebig HH. The molecular determinants of sensitivity to HER2 targeted therapy in Patient Derived Xenograft gastric tumor models from Caucasian and Eastern Asian patients. In: Proceedings of the 104th Annual Meeting of the American Association for Cancer Research, Washington, DC. 2013.

    Google Scholar 

  67. Aparicio S, Hidalgo M, Kung AL. Examining the utility of patient-derived xenograft mouse models. Nat Rev Cancer. 2015;15:311–6.

    Article  CAS  PubMed  Google Scholar 

  68. Fiebig HH, Schuler J, Bausch N, Hofmann M, Metz T, Korrat A. Gene signatures developed from patient tumor explants grown in nude mice to predict tumor response to 11 cytotoxic drugs. Cancer Genomics Proteomics. 2007;4:197–209.

    CAS  PubMed  Google Scholar 

  69. Fiebig HH, Vuaroqueaux V, Korrat A, Foucault F, Beckers T. Predictive gene signatures for bevacizumab and cetuximab as well as cytotoxic agents. Int J Clin Pharmacol Ther. 2012;50:70–1.

    Article  CAS  PubMed  Google Scholar 

  70. Khambata-Ford S, Garrett CR, Meropol NJ, Basik M, Harbison CT, Wu S, Wong TW, Huang X, Takimoto CH, Godwin AK, Tan BR, Krishnamurthi SS, Burris III HA, Poplin EA, Hidalgo M, Baselga J, Clark EA, Mauro DJ. Expression of epiregulin and amphiregulin and K-ras mutation status predict disease control in metastatic colorectal cancer patients treated with cetuximab. J Clin Oncol. 2007;25:3230–7.

    Article  CAS  PubMed  Google Scholar 

  71. Vuaroqueaux V, Korrat A, Foucault F, Beckers T, Fiebig HH. Clinical validation of a 26-gene signature predicting response to Cetuximab in wild type K-ras metastatic colorectal cancer. In: ESMO, Milano, Italy. 2010.

    Google Scholar 

  72. Vuaroqueaux V, Ackermann A, Krumbach R, Tillmann HC, Foucault F, Schuler J, Metz T, Fiebig HH. PTEN/PTENP1 transcripts expression and alterations in a large panel of human tumor xenograft in nude mice: implication for resistance to targeted therapies involving EGFR/PI3K/PTEN pathways. In: AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics, San Francisco, CA. 2011.

    Google Scholar 

  73. Kelter G, Krumbach R, Maier A, Giesemann T, Vuaroqueaux V, Foucault F, Virayah J, Metz T, Metcalfe T, Fiebig HH. Mutation and chemosensitivity profiling of 18 human melanoma cell lines. In Proceedings: AACR 103rd Annual Meeting 2012–Mar 31-Apr 4, 2012; Chicago, IL.

    Google Scholar 

  74. Zeitouni B, Peille AL, Amalou Z, Metz T, Fiebig HH, Vuaroqueaux V. A systematic patient-derived xenograft based solution for preclinical biomarker discovery. In Proceedings of the AACR-NCI-EORTC International Conference: Molecular Targets and Cancer Therapeutics, Boston, MA. 2015.

    Google Scholar 

  75. Fiebig HH, Maier A, Burger AM. Clonogenic assay with established human tumour xenografts: correlation of in vitro to in vivo activity as a basis for anticancer drug discovery. Eur J Cancer. 2004;40:802–20.

    Article  CAS  PubMed  Google Scholar 

  76. Ha SY, Yeo SY, Xuan YH, Kim SH. The prognostic significance of cancer-associated fibroblasts in esophageal squamous cell carcinoma. PLoS One. 2014;9:e99955.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Greenman CD, BignellG, Butler A, Edkins S, Hinton J, Beare D, Swamy S, Santarius T, Chen L, Widaa S, Futreal PA, Stratton MR. PICNIC: an algorithm to predict absolute allelic copy number variation with microarray cancer data. Biostatistics. 2009;11(1):164–175.

    Google Scholar 

Download references

Acknowledgments

We would like to thank Anke Behnke, Stefanie Klingel, Volker Knauff, and Sandra Pimenta for their technical assistance. We are indebted to Dr. Manuel Landesfeind for his helpful support in bioinformatics data analyses and Dr. Peter Bronsert for the histology review of the PDX collection. We thank Dr. Hanz Hendriks and Dr. Thomas Metz for their advice in the manuscript preparation.

Disclosure

A-LP, BZ and A-ME-P are employed by Oncotest, Charles River Discovery. HHF and VV are employed by 4HF Biotec GmbH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Vuaroqueaux .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Vuaroqueaux, V., Peille, AL., Zeitouni, B., Eades-Perner, AM., Fiebig, HH. (2017). Molecular Characteristics of Patient-Derived Tumor Xenografts: Similarities to Patient Tumors and Relevance for Biomarker Discovery. In: Hoffman, R. (eds) Patient-Derived Mouse Models of Cancer . Molecular and Translational Medicine. Humana Press, Cham. https://doi.org/10.1007/978-3-319-57424-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57424-0_17

  • Published:

  • Publisher Name: Humana Press, Cham

  • Print ISBN: 978-3-319-57423-3

  • Online ISBN: 978-3-319-57424-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics