Skip to main content

Predicting Huntington’s Disease: Extreme Learning Machine with Missing Values

  • Conference paper
  • First Online:
Proceedings of ELM-2016

Abstract

Problems with incomplete data and missing values are common and important in real-world machine learning scenarios, yet often underrepresented in the research field. Particularly data related to healthcare tends to feature missing values which must be handled properly, and ignoring any incomplete samples is not an acceptable solution. The Extreme Learning Machine has demonstrated excellent performance in a variety of machine learning tasks, including situations with missing values. In this paper, we present an application to predict the onset of Huntington’s disease several years in advance based on data from MRI brain scans. Experimental results show that such prediction is indeed realistic with reasonable accuracy, provided the missing values are handled with care. In particular, Multiple Imputation ELM achieves exceptional prediction accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    fminsearch: https://www.mathworks.com/help/matlab/ref/fminsearch.html.

References

  1. Little, R.J.A., Rubin, D.B.: Statistical Analysis with Missing Data, 2nd edn. Wiley-Interscience (2002). doi:10.1002/9781119013563

  2. Eirola, E., Doquire, G., Verleysen, M., Lendasse, A.: Distance estimation in numerical data sets with missing values. Inf. Sci. 240, 115–128 (2013). doi:10.1016/j.ins.2013.03.043

    Article  MathSciNet  MATH  Google Scholar 

  3. Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(13), 489–501 (2006). doi:10.1016/j.neucom.2005.12.126

    Article  Google Scholar 

  4. Yu, Q., Miche, Y., Eirola, E., van Heeswijk, M., Séverin, E., Lendasse, A.: Regularized extreme learning machine for regression with missing data. Neurocomputing 102, 45–51 (2013). doi:10.1016/j.neucom.2012.02.040

    Article  Google Scholar 

  5. Sovilj, D., Eirola, E., Miche, Y., Björk, K., Nian, R., Akusok, A., Lendasse, A.: Extreme learning machine for missing data using multiple imputations. Neurocomputing 174, Part A, 220–231 (2016). doi:10.1016/j.neucom.2015.03.108

  6. Gao, H., Liu, X.W., Peng, Y.X., Jian, S.L.: Sample-based extreme learning machine with missing data. Math. Prob. Eng. 2015 (2015). doi:10.1155/2015/145156

  7. Xie, P., Liu, X., Yin, J., Wang, Y.: Absent extreme learning machine algorithm with application to packed executable identification. Neural Comput. Appl. 27(1), 93–100 (2016). doi:10.1007/s00521-014-1558-4

    Article  Google Scholar 

  8. Yan, Y.T., Zhang, Y.P., Chen, J., Zhang, Y.W.: Incomplete data classification with voting based extreme learning machine. Neurocomputing 193, 167–175 (2016). doi:10.1016/j.neucom.2016.01.068

    Article  Google Scholar 

  9. Paulsen, J.S., Langbehn, D.R., Stout, J.C., Aylward, E., Ross, C.A., Nance, M., Guttman, M., Johnson, S., MacDonald, M., Beglinger, L.J., Duff, K., Kayson, E., Biglan, K., Shoulson, I., Oakes, D., Hayden, M.: Detection of Huntington’s disease decades before diagnosis: the predict-HD study. J. Neurol. Neurosurg. Psychiatry 79(8), 874–880 (2008). doi:10.1136/jnnp.2007.128728

    Article  Google Scholar 

  10. Paulsen, J.S., Long, J.D., Ross, C.A., Harrington, D.L., Erwin, C.J., Williams, J.K., Westervelt, H.J., Johnson, H.J., Aylward, E.H., Zhang, Y., et al.: Prediction of manifest Huntington’s disease with clinical and imaging measures: a prospective observational study. Lancet Neurol. 13(12), 1193–1201 (2014). doi:10.1016/S1474-4422(14)70238-8

    Article  Google Scholar 

  11. Matsui, J.T., Vaidya, J.G., Wassermann, D., Kim, R.E., Magnotta, V.A., Johnson, H.J., Paulsen, J.S.: Prefrontal cortex white matter tracts in prodromal Huntington disease. Hum. Brain Mapp. 36(10), 3717–3732 (2015). doi:10.1002/hbm.22835

    Article  Google Scholar 

  12. Sturrock, A., Laule, C., Wyper, K., Milner, R.A., Decolongon, J., Santos, R.D., Coleman, A.J., Carter, K., Creighton, S., Bechtel, N., et al.: A longitudinal study of magnetic resonance spectroscopy Huntington’s disease biomarkers. Mov. Disord. 30(3), 393–401 (2015). doi:10.1002/mds.26118

    Article  Google Scholar 

  13. Miche, Y., Sorjamaa, A., Bas, P., Simula, O., Jutten, C., Lendasse, A.: OP-ELM: optimally-pruned extreme learning machine. IEEE Trans. Neural Netw. 21(1), 158–162 (2010). doi:10.1109/TNN.2009.2036259

    Article  Google Scholar 

  14. Miche, Y., van Heeswijk, M., Bas, P., Simula, O., Lendasse, A.: TROP-ELM: a double-regularized ELM using LARS and Tikhonov regularization. Neurocomputing 74(16), 2413–2421 (2011). doi:10.1016/j.neucom.2010.12.042

  15. Rubin, D.B.: Multiple Imputation for Nonresponse in Surveys. Wiley (1987)

    Google Scholar 

  16. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. Ser. B 39(1), 1–38 (1977)

    MathSciNet  MATH  Google Scholar 

  17. Eirola, E., Lendasse, A., Vandewalle, V., Biernacki, C.: Mixture of gaussians for distance estimation with missing data. Neurocomputing 131, 32–42 (2014). doi:10.1016/j.neucom.2013.07.050

    Article  Google Scholar 

  18. Eirola, E., Liitiäinen, E., Lendasse, A., Corona, F., Verleysen, M.: Using the Delta test for variable selection. In: Proceedings of ESANN 2008, European Symposium on Artificial Neural Networks, Bruges (Belgium), pp. 25–30 (2008)

    Google Scholar 

  19. Eirola, E., Lendasse, A., Corona, F., Verleysen, M.: The Delta test: The 1-NN estimator as a feature selection criterion. In: 2014 International Joint Conference on Neural Networks (IJCNN), pp. 4214–4222. IEEE (2014). doi:10.1109/IJCNN.2014.6889560

  20. Sovilj, D.: Multistart strategy using delta test for variable selection. In: International Conference on Artificial Neural Networks, Springer Berlin Heidelberg, pp. 413–420 (2011). doi:10.1007/978-3-642-21738-8_53

  21. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20, 273–297 (1995). doi:10.1023/A:1022627411411

    MATH  Google Scholar 

  22. Rijsbergen, C.J.V.: Information Retrieval, 2nd edn. Butterworth-Heinemann (1979)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emil Eirola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this paper

Cite this paper

Eirola, E., Akusok, A., Björk, KM., Johnson, H., Lendasse, A. (2018). Predicting Huntington’s Disease: Extreme Learning Machine with Missing Values. In: Cao, J., Cambria, E., Lendasse, A., Miche, Y., Vong, C. (eds) Proceedings of ELM-2016. Proceedings in Adaptation, Learning and Optimization, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-57421-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57421-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57420-2

  • Online ISBN: 978-3-319-57421-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics