Skip to main content

Relations as Images

  • Conference paper
  • First Online:
  • 390 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10226))

Abstract

Boolean matrices constitute an immediate representation of black and white images, with 1 and 0 representing the black and white pixels, respectively. We give relational expressions for calculating two morphological operations on images, namely dilation and erosion. These operations have been implemented under RelView and we compare the performance of RelView with that of Matlab and Mathematica, which have a package for computing various morphological operations. Heijmans et al. have defined dilation and erosion for undirected graphs with vertices weighted by grey-level values. Graphs generalise images by allowing irregular “grids”. We propose a definition of dilation and erosion for nonweighted directed graphs (i.e., relations) along the same lines. These operations have been implemented under RelView too.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    In these expressions, the first \(o_2\) is a vector and the second one is an origin; the vector \(o_2\) is composed with an \(\mathsf {L}\) of the appropriate type to ensure the compatibility of the codomain of \(o_2 \mathbin {\mathrm{;}}\mathsf {L}\) with that of \(\mathsf {I}_1\). We write xRy for \((x,y) \in R\).

References

  1. Berghammer, R.: Computing minimal extending sets by relation-algebraic modeling and development. J. Log. Algebr. Methods Program. 83, 103–119 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  2. Desharnais, J., Möller, B., Struth, G.: Kleene algebra with domain. ACM Trans. Comput. Log. (TOCL) 7(4), 798–833 (2006)

    Article  MathSciNet  Google Scholar 

  3. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)

    MATH  Google Scholar 

  4. Gries, D., Schneider, F.B.: A Logical Approach to Discrete Math. Springer, New York (1993)

    Book  MATH  Google Scholar 

  5. Heijmans, H.J.A.M., Ronse, C.: The algebraic basis of mathematical morphology I. Dilations and erosions. Comput. Vis. Graph. Image Process. 50, 245–295 (1990)

    Article  MATH  Google Scholar 

  6. Heijmans, H.J.A.M., Nacken, P., Toet, A., Vincent, L.: Graph morphology. J. Visual Commun. Image Represent. 3(1), 24–38 (1992)

    Article  Google Scholar 

  7. Heijmans, H.J.A.M., Vincent, L.: Graph morphology in image analysis. In: Dougherty, E. (ed.) Mathematical Morphology in Image Processing, pp. 171–203. Marcel-Dekker, New York (1992)

    Google Scholar 

  8. Klette, R., Rosenfeld, A.: Digital Geometry - Geometric Methods for Digital Picture Analysis. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  9. Kozen, D.: Kleene algebra with tests. ACM Trans. Program. Lang. Syst. 19(3), 427–443 (1997)

    Article  MATH  Google Scholar 

  10. Schmidt, G.: Relational Mathematics. Encyclopedia of Mathematics and Its Applications, vol. 132. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  11. Schmidt, G., Ströhlein, T.: Relations and Graphs. Springer, New York (1988)

    MATH  Google Scholar 

  12. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1982)

    MATH  Google Scholar 

  13. Stell, J.G.: Relations in mathematical morphology with applications to graphs and rough sets. In: Winter, S., Duckham, M., Kulik, L., Kuipers, B. (eds.) COSIT 2007. LNCS, vol. 4736, pp. 438–454. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74788-8_27

    Chapter  Google Scholar 

  14. Stell, J.G.: Relations on hypergraphs. In: Kahl, W., Griffin, T.G. (eds.) RAMICS 2012. LNCS, vol. 7560, pp. 326–341. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33314-9_22

    Chapter  Google Scholar 

  15. Data. http://www2.ift.ulaval.ca/~desharnais/RAMiCS2017/RAMiCS2017.zip

  16. Matlab homepage. https://www.mathworks.com/products/matlab.html

  17. Mathematica homepage. https://www.wolfram.com/mathematica/

  18. RelView homepage. http://www.informatik.uni-kiel.de/~progsys/relview/

Download references

Acknowledgements

We gratefully acknowledge the input of the anonymous referees and the financial support of NSERC (Natural Sciences and Engineering Research Council of Canada).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jules Desharnais .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Alain, M., Desharnais, J. (2017). Relations as Images. In: Höfner, P., Pous, D., Struth, G. (eds) Relational and Algebraic Methods in Computer Science. RAMICS 2017. Lecture Notes in Computer Science(), vol 10226. Springer, Cham. https://doi.org/10.1007/978-3-319-57418-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57418-9_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57417-2

  • Online ISBN: 978-3-319-57418-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics