Skip to main content

Dual Space of a Lattice as the Completion of a Pervin Space

Extended Abstract

  • Conference paper
  • First Online:
Relational and Algebraic Methods in Computer Science (RAMICS 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10226))

Abstract

We assume the reader is familiar with basic topology on the one hand and finite automata theory on the other hand. No proofs are given in this extended abstract.

J. Pin—Funded by the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (grant agreement No. 670624) and by the DeLTA project (ANR-16-CE40-0007).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Recall that \(u^{-1}L = \{x \in A^* \mid ux \in L\}\) and \(Lu^{-1} = \{x \in A^* \mid xu \in L\}\).

  2. 2.

    Formally, an epimorphism, but it is easy to see that in the category \(\mathbf {Pervin}\) epimorphisms coincide with surjective morphisms.

  3. 3.

    Let us define the characteristic function of an ultrafilter \(\mathcal {U}\) as the map from \(\mathcal {P}(A^*)\) to \(\{0, 1\}\) taking value 1 on \(\mathcal {U}\) and 0 elsewhere. It is easy to see that it is a valuation on \(\mathcal {P}(A^*)\). Conversely, if v is a valuation on \(\mathcal {P}(A^*)\), then \(v^{-1}(1)\) is an ultrafilter.

References

  1. Adámek, J., Herrlich, H., Strecker, G.E.: Abstract and concrete categories: the joy of cats. Repr. Theory Appl. Categ. 17, 1–507 (2006). Reprint of the 1990 original [Wiley, New York; MR1051419]

    MathSciNet  MATH  Google Scholar 

  2. Almeida, J.: Residually finite congruences and quasi-regular subsets in uniform algebras. Portugaliæ Math. 46, 313–328 (1989)

    MathSciNet  MATH  Google Scholar 

  3. Almeida, J.: Finite Semigroups and Universal Algebra. World Scientific Publishing Co. Inc., River Edge (1994). Translated from the 1992 Portuguese original and revised by the author

    MATH  Google Scholar 

  4. Almeida, J.: Profinite semigroups and applications. In: Kudryavtsev, V.B., Rosenberg, I.G., Goldstein, M. (eds.) Structural Theory of Automata, Semigroups and Universal Algebra, vol. 207, pp. 1–45. Springer, Dordrecht (2005)

    Chapter  Google Scholar 

  5. Almeida, J., Weil, P.: Relatively free profinite monoids: an introduction and examples. In: Fountain, J. (ed.) NATO Advanced Study Institute Semigroups, Formal Languages and Groups, vol. 466, pp. 73–117. Kluwer Academic Publishers, Dordrecht (1995)

    Chapter  Google Scholar 

  6. Barrington, D.A.M., Compton, K., Straubing, H., Thérien, D.: Regular languages in \({\rm NC}^1\). J. Comput. System Sci. 44(3), 478–499 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bourbaki, N.: General Topology. Chapters 1–4. Elements of Mathematics, vol. 18. Springer, Berlin (1998)

    MATH  Google Scholar 

  8. Clark, D.M., Davey, B.A.: Natural Dualities for the Working Algebraist. Cambridge Studies in Advanced Mathematics, vol. 57. Cambridge University Press, Cambridge (1998)

    MATH  Google Scholar 

  9. Császár, A.: \(D\)-completions of Pervin-type quasi-uniformities. Acta Sci. Math. 57(1–4), 329–335 (1993)

    MathSciNet  MATH  Google Scholar 

  10. Davey, B.A., Priestley, H.A.: Introduction to Lattices and Order, 2nd edn. Cambridge University Press, Cambridge (2002)

    Book  MATH  Google Scholar 

  11. Erné, M.: Ideal completions and compactifications. Appl. Categ. Struct. 9(3), 217–243 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gehrke, M.: Canonical extensions, esakia spaces, and universal models. In: Bezhanishvili, G. (ed.) Leo Esakia on Duality in Modal and Intuitionistic Logics. OCL, vol. 4, pp. 9–41. Springer, Dordrecht (2014). doi:10.1007/978-94-017-8860-1_2

    Google Scholar 

  13. Gehrke, M.: Stone duality, topological algebra, and recognition. J. Pure Appl. Algebra 220(7), 2711–2747 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gehrke, M., Grigorieff, S., Pin, J.É.: Duality and equational theory of regular languages. In: Aceto, L., Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) ICALP 2008. LNCS, vol. 5126, pp. 246–257. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70583-3_21

    Chapter  Google Scholar 

  15. Gehrke, M., Grigorieff, S., Pin, J.É.: A topological approach to recognition. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 151–162. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14162-1_13

    Chapter  Google Scholar 

  16. Hausdorff, F.: Set Theory. Chelsea Publishing Company, New York (1957). Translated by Aumann, J.R., et al.

    MATH  Google Scholar 

  17. Johnstone, P.T.: Stone Spaces. Cambridge Studies in Advanced Mathematics, vol. 3. Cambridge University Press, Cambridge (1986). Reprint of the 1982 edition

    MATH  Google Scholar 

  18. Künzi, H.-P.A.: Quasi-uniform spaces in the year 2001. In: Recent Progress in General Topology, II, pp. 313–344. North-Holland, Amsterdam (2002)

    Google Scholar 

  19. Künzi, H.-P.A.: Uniform structures in the beginning of the third millenium. Topol. Appl. 154(14), 2745–2756 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Künzi, H.-P.A.: An introduction to quasi-uniform spaces. In: Beyond Topology. Contemporary Mathematics, vol. 486, pp. 239–304. American Mathematical Society, Providence (2009)

    Google Scholar 

  21. Levine, N.: On Pervin’s quasi uniformity. Math. J. Okayama Univ. 14, 97–102 (1969/70)

    Google Scholar 

  22. Pervin, W.J.: Quasi-uniformization of topological spaces. Math. Ann. 147, 316–317 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pin, J.-É.: Profinite methods in automata theory. In: Albers, S., Marion, J.-Y. (eds.) 26th International Symposium on Theoretical Aspects of Computer Science (STACS 2009), pp. 31–50, Internationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss Dagstuhl, Germany (2009)

    Google Scholar 

  24. Pin, J.É.: Equational descriptions of languages. Int. J. Found. Comput. Sci. 23, 1227–1240 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Schützenberger, M.-P.: Une théorie algébrique du codage. In: Séminaire Dubreil-Pisot, année 1955–56, Exposé No. 15, 27 février 1956, 24 p. Inst. H. Poincaré, Paris (1956). http://igm.univ-mlv.fr/berstel/Mps/Travaux/A/1956CodageSemDubreil.pdf

  26. Schützenberger, M.-P.: On finite monoids having only trivial subgroups. Inf. Control 8, 190–194 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  27. Straubing, H.: Finite Automata, Formal Logic, and Circuit Complexity, Progress in Theoretical Computer Science. Birkhäuser Boston Inc., Boston (1994)

    Book  MATH  Google Scholar 

  28. Straubing, H.: On Logical Descriptions of Regular Languages. In: Rajsbaum, S. (ed.) LATIN 2002. LNCS, vol. 2286, pp. 528–538. Springer, Heidelberg (2002). doi:10.1007/3-540-45995-2_46

    Chapter  Google Scholar 

  29. Weil, P.: Profinite methods in semigroup theory. Int. J. Alg. Comput. 12, 137–178 (2002)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank Mai Gehrke and Serge Grigorieff for many fruitful discussions on Pervin spaces. I would also like to thank Daniela Petrişan for her critical help on categorical notions used in this paper. Encouragements from Hans-Peter A. Künzi and Marcel Erné were greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Éric Pin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Pin, JÉ. (2017). Dual Space of a Lattice as the Completion of a Pervin Space. In: Höfner, P., Pous, D., Struth, G. (eds) Relational and Algebraic Methods in Computer Science. RAMICS 2017. Lecture Notes in Computer Science(), vol 10226. Springer, Cham. https://doi.org/10.1007/978-3-319-57418-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57418-9_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57417-2

  • Online ISBN: 978-3-319-57418-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics