Skip to main content

The Aging Effects in Spinal Cord Injury Rehabilitation

  • Chapter
  • First Online:
Rehabilitation Medicine for Elderly Patients

Part of the book series: Practical Issues in Geriatrics ((PIG))

  • 2329 Accesses

Abstract

The prevalence of spinal injuries among older adults has been increasing more and more. The spinal cord injury (SCI) affects conduction of sensory, motor, autonomic nervous system generating a clinical picture of paraplegia or quadriplegia both accompanied by many organ dysfunctions.

SCI can be traumatic or non-traumatic and complete or incomplete, depending on the absence or presence of the sacral sparing, respectively. Traumatic SCI is less frequent in older patients and non-traumatic SCI usually involves an underlying pathology. The patients’ clinical course depends not only on age at the onset of the injury but also is related to cumulative illness associated and in particular to completeness versus incompleteness of the injury. AIS D does better than B or A. In terms of age onset of the spinal injury, the more the age of onset is earlier, the longer the SCI subject will maintain his residual or acquired functional capacities. Older people may have premorbid medical conditions associated that determine poorer end results of the rehabilitation process if CIRS is >21. Respiratory complications are the most common cause of death.

Cognitive impairment following SCI is high; education and income largely positively impact on the risk of depression. Moreover, SCI patients have a higher incidence of cardiovascular diseases, bowel disturbances, diabetes, skin and soft tissue complications, and neuropathic and musculoskeletal pain. Pain may occur with abnormal posture and gait and overuse and is more common and severe in older individuals. Osteoporosis, which is observed in the paralyzed part soon after SCI, reaches plateau level in the body 6–9 months after the onset of the spinal injury: the majority of pathological fractures occur in the knee. Most spinal cord injury subjects become obese and functionally limited as time goes by.

Physical capacity and functioning after SCI may follow three phases: (1) the acute functional restoration, (2) the maintenance phase, and (3) the functional decline. Proper medical treatment, multidisciplinary interventions of the healthcare professionals, and social and family support largely impact on SCI outcomes as well as patient’s characteristics and willingness to cope and overcome the constraints of his condition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Thomas Jefferson University (2007) Elderly spinal cord injuries increase five-fold in 30 years, neurosurgeons find. Science Daily 2007. Available at www.sciencedaily.com/releases/2007/03/070319111256.htm

    Google Scholar 

  2. Kannus P, Palvanen N, Niemi S, Parkkari J (2007) J Gerontol A Biol 62:180–183

    Article  Google Scholar 

  3. Menter RR, Hudson LM (1995) In: Stover S (ed) Spinal cord injury clinical outcomes from the model systems. Aspen, New York, p 272

    Google Scholar 

  4. Williams ME, Hadler NM (1983) Sounding board. The illness as the focus of geriatric medicine. N Engl J Med 308(22):1357–1360

    Article  CAS  PubMed  Google Scholar 

  5. Franceschini M, Cerrel Bazo H, Lauretani F et al (2011) Age influences rehabilitative outcomes in patients with spinal cord injury (SCI). Aging Clin Exp Res 23(3):202–208

    Article  PubMed  Google Scholar 

  6. Waring WP III, Biering-Sorensen F, Burns S, Donovan W, Graves D, Jha A et al (2010) Review and revisions of the international standards for the neurological classification of spinal cord injury. J Spinal Cord Med 33:346–352

    Article  PubMed  PubMed Central  Google Scholar 

  7. Fawcett JW, Curt A, Steeves JD, Coleman WP, Tuszynski MH, Lammertse D, Bartlett PF, Blight AR, Dietz V, Ditunno J, Dobkin BH, Havton LA, Ellaway PH, Fehlings MG, Privat A, Grossman R, Guest JD, Kleitman N, Nakamura M, Gaviria M, Short D (2007) Guidelines for the conduct of clinical trials for spinal cord injury as developed by the ICCP panel: spontaneous recovery after spinal cord injury and statistical power needed for therapeutic clinical trials. Spinal Cord 45:190–205

    Article  CAS  PubMed  Google Scholar 

  8. Cushman LA, Hassett J (1992) Spinal cord injury: 10 and 15 years after. Paraplegia 30(10):690–696

    Article  CAS  PubMed  Google Scholar 

  9. Smith AE, Molton IR, Jensen MP (2016) Self-reported incidence and age of onset of chronic comorbid medical conditions in adults aging with long-term physical disability. Disabil Health J 9:533

    Article  PubMed  Google Scholar 

  10. Sawka MN, Glaser RM, Laubach LL, Al-Samkari O, Suryaprasad AG (1981) Wheelchair exercise performance of the young, middle-aged, and elderly. J Appl Physiol 50(4):824–828

    CAS  PubMed  Google Scholar 

  11. Byrne DW, Salzberg CA (1996) Major risk factors for pressure ulcers in the spinal cord disabled: a literature review. Spinal Cord 34:255–263

    Article  CAS  PubMed  Google Scholar 

  12. Vidal J, Sarrias M (1991) An analysis of the diverse factors concerned with the development of pressure sores in spinal cord injured patients. Paraplegia 29:261–267

    Article  CAS  PubMed  Google Scholar 

  13. Elliott TR, Kurylo M, Chen Y, Hicken B (2002) Alcohol abuse history and adjustment following spinal cord injury. Rehabil Psychol 47:278–290

    Article  Google Scholar 

  14. Bennett L, Kavner D, Lee BK, Trainor FA (1979) Shear vs pressure as causative factors in skin blood flow occlusion. Arch Phys Med Rehabil 60:309–314

    CAS  PubMed  Google Scholar 

  15. DeVivo MJ, Kartus PL, Rutt RD, Stover SL, Fine PR (1990) The influence of age at time of spinal cord injury on rehabilitation outcome. Arch Neurol 47:681–691

    Article  Google Scholar 

  16. Chen Y, DeVivo MJ, Jackson AB (2005) Pressure ulcer prevalence in people with spinal cord injury: age-period-duration effects. Arch Phys Med Rehabil 86:1208–1213

    Article  PubMed  Google Scholar 

  17. McKinley WO, Jackson AB, Cardenas DD, DeVivo MJ (1999) Long-term medical complications after traumatic spinal cord injury: a regional model systems analysis. Arch Phys Med Rehabil 80:1402–1410

    Article  CAS  PubMed  Google Scholar 

  18. Sekar P, Wallace DD, Waites KB, DeVivo MJ, Lloyd LK, Stover SL et al (1997) Comparison of long-term renal function after spinal cord injury using different urinary management methods. Arch Phys Med Rehabil 78:992–997

    Article  CAS  PubMed  Google Scholar 

  19. Chen Y, DeVivo MJ, Roseman JM (2000) Current trend and risk factors for kidney stones in persons with spinal cord injury: a longitudinal study. Spinal Cord 38:346–353

    Article  CAS  PubMed  Google Scholar 

  20. DeVivo MJ, Fine PR (1986) Predicting renal calculus occurrence in spinal cord injury patients. Arch Phys Med Rehabil 67:722–725

    Article  CAS  PubMed  Google Scholar 

  21. Australian Institute of Health and Welfare (2000) Disability and ageing: Australian population patterns and implications. Australian Institute of Health and Welfare, Canberra

    Google Scholar 

  22. Ragnarsson KT, Lammertse DP (1991) Rehabilitation in spinal cord disorders. 2. Anatomy, pathogenesis, and research for neurologic recovery. Arch Phys Med Rehabil 72:S295–S297

    CAS  PubMed  Google Scholar 

  23. Brown M, Gordon WA, Ragnarsson KT (1987) Unhandicapping the disabled: what is possible? Arch Phys Med Rehabil 68:206

    CAS  PubMed  Google Scholar 

  24. Burke RE (1980) Motor units: anatomy, physiology and functional organization. In: Brooks U (ed) Handbook of physiology I: the nervous system, vol 1. American Physiology Society, Bethesda

    Google Scholar 

  25. Kern H, Hofer C, Mödlin M, Mayr W, Vindigni V et al (2008) Stable muscle atrophy in long-term paraplegics with complete upper motor neuron lesion from 3- to 20-year SCI. Spinal Cord 46:293–304

    Article  CAS  PubMed  Google Scholar 

  26. Kern H et al (2004) Long-term denervation in humans causes degeneration of both contractile and excitation-contraction coupling apparatus, which is reversible by functional electrical stimulation (FES): a role for myofiber regeneration? J Neuropathol Exp Neurol 63:919–931

    Article  PubMed  Google Scholar 

  27. Boncompagni S, Kern H, Rossigni K, Hofer C, Mayr W, Carraro U, Protasi F (2007) Structural differentiation of skeletal muscle fibers in the absence of innervation in humans. Proc Natl Acad Sci U S A 104(49):19339–19344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cerrel Bazo HA, Carraro U, Helmut K (2007) The role of regenerative miogenesis in motor recovery of plegic muscles through FES. Research thesis for the Physical Medicine and Rehabilitation Residency program & specialty. University of Verona School of Medicine, Verona, Italy

    Google Scholar 

  29. Trieschmann RB (1987) Aging with a disability. Demos, New York

    Google Scholar 

  30. Katz RT et al (1987) Functional electrical stimulation to enhance fibrinolytic activity in spinal cord injury patients. Arch Phys Med Rehabil 68:423

    CAS  PubMed  Google Scholar 

  31. Fugl-Meyer AR (1971) Effects of respiratory muscle paralysis in tetraplegic and paraplegic patients. Scand J Rehabil Med 3:141

    CAS  PubMed  Google Scholar 

  32. Dearwater S et al (1979) Assessment of physical activity in inactive populations. Med Sci Sports Exerc 17:67

    Google Scholar 

  33. Figoni SF (1984) Spinal cord injury and maximal aerobic power. Am Correct Ther J 38:44

    CAS  PubMed  Google Scholar 

  34. Green D (ed) (1996) Medical management of long-term disability. Rehabilitation Institute of Chicago, Don Olson, 2nd edn. Butterworth-Heinemann, Newton

    Google Scholar 

  35. Heldenberg D et al (1981) Lipid concentrations in young quadriplegic patients. Atherosclerosis 39:163

    Article  CAS  PubMed  Google Scholar 

  36. LaPorte RE et al (1983) HDL cholesterol across a spectrum of physical activity from quadriplegia to marathon running. Lancet 1:1212

    Article  CAS  PubMed  Google Scholar 

  37. Brenes G et al (1986) HDL serum concentrations in physically active and sedentary spinal cord injured patients. Arch Phys Med Rehabil 67:445

    CAS  PubMed  Google Scholar 

  38. George C, Dugan N, Porter J (1987) Body composition and exercise tolerance in spinal cord injury. Presented at the ASIA meeting, Boston, 20–22 March 1987

    Google Scholar 

  39. Bauman WA, Adkins RH, Spungen AM, Herbert R et al (1999) Is immobilization associated with an abnormal lipoprotein profile? Observations from a diverse cohort. Spinal Cord 37:485–493

    Article  CAS  PubMed  Google Scholar 

  40. Garland DE, Steward CA, Adkins RH et al (1992) Osteoporosis after spinal cord injury. J Orthop Res 10:371

    Article  CAS  PubMed  Google Scholar 

  41. Ragnarsson KT, Sell GH (1981) Lower extremity fractures after spinal cord injury: a retrospective study. Arch Phys Med Rehabil 62:413–423

    Google Scholar 

  42. Adams MM, Hicks AL (2005) Spasticity after SCI. Spinal Cord 43:577–586. doi:10.1038/sj.sc.3101757

    Article  CAS  PubMed  Google Scholar 

  43. Young RR (1994) Spasticity: a review. Neurology 44:512–520

    Google Scholar 

  44. Daniel RK, Wheatley D, Priest D (1985) Pressure sores and paraplegia: an experimental model. Ann Plast Surg 15:41

    Article  CAS  PubMed  Google Scholar 

  45. Eriksson P, Lofstrom L, Ekblom B (1988) Aerobic power during maximal exercise in untrained and well-trained persons with quadriplegia and paraplegia. Scand J Rehabil Med 20(4):141–147

    CAS  PubMed  Google Scholar 

  46. Kofsky PR, Shephard RJ, Davis GM, Jackson RW (1985) Muscle strength and aerobic power: a study of lower-limb disabled males. Int Rehabil Med 7(4):151–155

    Article  CAS  PubMed  Google Scholar 

  47. Davis GM, Shephard RJ (1988) Cardiorespiratory fitness in highly active versus inactive paraplegics. Med Sci Sports Exerc 20(5):463–468

    Article  CAS  PubMed  Google Scholar 

  48. Glaser RM, Davis GM (1989) Wheelchair-dependent individuals. In: Franklin BA, Gordon S, Timmis GC (eds) Exercise in modern medicine. Williams & Wilkins Co., Baltimore, pp 237–267

    Google Scholar 

  49. Field MJ, Jette AM (eds) (2007) The future of disability in America. The National Academies Press, Washington

    Google Scholar 

  50. Kocina P (1997) Body composition of spinal cord injured adults. Sports Med 23(1):48–60

    Article  CAS  PubMed  Google Scholar 

  51. Szlachcic Y, Carrothers L, Adkins R, Waters R (2007) Clinical significance of abnormal electrocardiographic findings in individuals aging with spinal injury and abnormal lipid profiles. J Spinal Cord Med 30(5):473–476

    Article  PubMed  PubMed Central  Google Scholar 

  52. Groah SL, Nash MS, Ward EA, Libin A, Mendez AJ, Burns P et al (2011) Cardiometabolic risk in community-dwelling persons with chronic spinal cord injury. J Cardpulm Rehabil 31(2):73–80

    Article  Google Scholar 

  53. Myers J, Lee M, Kiratli J (2007) Cardiovascular disease in spinal cord injury: an overview of prevalence, risk, evaluation, and management. Am J Phys Med Rehabil 86(2):142–152

    Article  PubMed  Google Scholar 

  54. DeVivo MJ, Chen Y (2011) Trends in new injuries, prevalent cases, and aging with spinal cord injury. Arch Phys Med Rehabil 92(3):332–338

    Article  PubMed  Google Scholar 

  55. Lidal IB, Snekkevik H, Aamodt G, Hjeltnes N, Biering-Sørensen F, Stanghelle JK (2007) Mortality after spinal cord injury in Norway. J Rehabil Med 39(2):145

    Article  PubMed  Google Scholar 

  56. Brown R, DiMarco AF, Hoit JD, Garshick E (2006) Respiratory dysfunction and management in spinal cord injury. Respir Care 51(8):853–870

    PubMed  PubMed Central  Google Scholar 

  57. Arora S, Flower O, Murray NP, Lee BB (2012) Respiratory care of patients with cervical spinal cord injury: a review. Crit Care Resusc 14(1):64–73

    PubMed  Google Scholar 

  58. Hitzig SL, Sakakibara BM, Miller WC, Eng JJ (2012) Aging following spinal cord injury. In: Eng JJ, Teasell RW, Miller WC, Wolfe DL, Townson AF, Hsieh, JTC et al (eds) Spinal cord injury rehabilitation evidence version 40. Vancouver, pp 1–82

    Google Scholar 

  59. Richards JS, Siddall P, Bryce T, Dijkers M, Cardenas DD (2007) Spinal cord injury pain classification: history, current trends, and commentary. Top Spinal Cord Inj Rehabil 13(2):1–19

    Article  Google Scholar 

  60. Widerström-Noga EG, Finnerup NB, Siddall PJ (2009) Biopsychosocial perspective on a mechanisms-based approach to assessment and treatment of pain following spinal cord injury. J Rehabil Res Dev 46(1):1–12

    Article  PubMed  Google Scholar 

  61. Siddall PJ (2009) Management of neuropathic pain following spinal cord injury: now and in the future. Spinal Cord 47(5):352–359

    Article  CAS  PubMed  Google Scholar 

  62. Goossens D, Dousse M, Ventura M, Fattal C (2009) Chronic neuropathic pain in spinal cord injury patients: what is the impact of social and environmental factors on care management? Ann Phys Rehabil Med 52(2):173–179. Epub 2009/11/17

    Article  CAS  PubMed  Google Scholar 

  63. Edgar R, Quail P (1994) Progressive post-traumatic cystic and non-cystic myelopathy. Br J Neurosurg 8(1):7–22. Epub 1994/01/01

    Article  CAS  PubMed  Google Scholar 

  64. Jensen MP, Hoffman AJ, Cardenas DD (2005) Chronic pain in individuals with spinal cord injury: a survey and longitudinal study. Spinal Cord 43:704–712

    Article  CAS  PubMed  Google Scholar 

  65. Rintala DH, Hart KA, Priebe MM (2004) Predicting consistency of pain over a 10-year period in persons with spinal cord injury. J Rehabil Res Dev 41:75–88

    Article  PubMed  Google Scholar 

  66. McColl MA (2002) A house of cards: women, aging and spinal cord injury. Spinal Cord 40:371–373

    Article  CAS  PubMed  Google Scholar 

  67. Krause JS, Kemp B, Coker J (2000) Depression after spinal cord injury: relation to gender, ethnicity, aging, and socioeconomic indicators. Arch Phys Med Rehabil 81:1099–1109

    Article  CAS  PubMed  Google Scholar 

  68. Bloch A, Tamir D, Vakil E, Zeilig G (2016) Specific deficit in implicit motor sequence learning following spinal cord injury. PLoS One 11(6):e0158396. doi:10.1371/journal.pone.0158396

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Davidoff GN, Morris J, Roth E, Bleiberg J (1985) Cognitive dysfunction and mild closed head injury in traumatic spinal cord injury. Arch Phys Med Rehabil 66:489–491

    CAS  PubMed  Google Scholar 

  70. Dowler RN, Harrington DL, Haaland KY, Swanda RM, Fee F, Fiedler K (1997) Profiles of cognitive functioning in chronic spinal cord injury and the role of moderating variables. J Int Neuropsychol Soc 3:464–472

    CAS  PubMed  Google Scholar 

  71. Schueneman AL, Morris J (1982) Neuropsychological deficits associated with spinal cord injury. Sci Dig 4:64–69

    Google Scholar 

  72. Wilmot CB, Cope DN, Hall KM, Acker M (1985) Occult head injury: it’s incidence in spinal cord injury. Arch Phys Med Rehabil 66:227–231

    Article  CAS  PubMed  Google Scholar 

  73. Trieschmann RB (1988) Spinal cord injuries: psychological, social, and vocational rehabilitation, 2nd edn. Demos, New York

    Google Scholar 

  74. Warren AN, Pullins J, Elliott TR (2008) Concomitant cognitive impairment in persons with spinal cord injuries in rehabilitation settings. In: Gontovsky ST, Golden CJ (eds) Neuropsychology within the inpatient rehabilitation environment. Nova Science Publishers, Inc, Hauppauge, pp 79–98

    Google Scholar 

  75. Jegede AB, Rosado-Rivera D, Bauman WA, Cardozo CP, Sano M, Moyer JM et al (2010) Cognitive performance in hypotensive persons with spinal cord injury. Clin Auton Res 20:3–9. doi:10.1007/s10286-009-0036-z

    Article  PubMed  Google Scholar 

  76. Craig A, Nicholson Perry K, Guest R, Tran Y, Middleton J (2015) Adjustment following chronic spinal cord injury: determining factors that contribute to social participation. Br J Health Psychol 20:807–823. doi:10.1111/bjhp.12143

    Article  PubMed  Google Scholar 

  77. Sabbah P, de Schonen S, Leveque C, Gay S, Pfefer F, Nioche C et al (2002) Sensorimotor cortical activity in patients with complete spinal cord injury: a functional magnetic resonance imaging study. J Neurotrauma 19:53–60. doi:10.1089/809771502753460231

    Article  CAS  PubMed  Google Scholar 

  78. Bonanno GA, Kennedy P, Galatzer-Levy IR, Lude P, Elfström ML (2012) Trajectories of resilience, depression, and anxiety following spinal cord injury. Rehabil Psychol 57:236. doi:10.1037/a0029256

    Article  PubMed  Google Scholar 

  79. Craig AR, Hancock KM, Dickson H (1994) A longitudinal investigation into anxiety and depression over the first two years of spinal cord injury. Paraplegia 33:221–230

    Google Scholar 

  80. Kennedy P, Rogers BA (2000) Anxiety and depression after spinal cord injury: a longitudinal analysis. Arch Phys Med Rehabil 81:932–937. doi:10.1053/apmr.2000.5580

    Article  CAS  PubMed  Google Scholar 

  81. Castaneda AE, Tuulio-Henriksson A, Marttunen M et al (2008) A review on cognitive impairments in depressive and anxiety disorders with a focus on young adults. J Affect Disord 106:1–27. doi:10.1016/j.jad.2007.06.006

    Article  PubMed  Google Scholar 

  82. Lungu O, Frigon A, Piché M et al (2010) Changes in spinal reflex excitability associated with motor sequence learning. J Neurophysiol 103:2675–2683. doi:10.1152/jn.00006.2010

    Article  PubMed  Google Scholar 

  83. Vahdat S, Lungu O, Cohen-Aded J, Marchand-Pauvert V, Benali H, Doyon J (2015) Simultaneous brain-cervical cord fMRI reveals intrinsic spinal cord plasticity during motor sequence learning. PLoS Biol 13:e1002186. doi:10.1371/journal.pbio.1002186

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Kowalczyk I, Duggal N, Bartha R (2012) Proton magnetic resonance spectroscopy of the motor cortex in cervical myelopathy. Brain 135:461–468

    Article  PubMed  Google Scholar 

  85. Lynch AC, Wong C, Anthony A et al (2000) Bowel dysfunction following spinal cord injury: a description of bowel function in a spinal cord-injured population and comparison with age and gender matched controls. Spinal Cord 38:717–723

    Article  CAS  PubMed  Google Scholar 

  86. Kirshblum S, Johnston MV, Brown J, O’Connor KC, Jarosz P (1999) Predictors of dysphagia after spinal cord injury. Arch Phys Med Rehabil 80:1101–1105

    Article  CAS  PubMed  Google Scholar 

  87. Martin RE, Neary MA, Diamant NE (1997) Dysphagia following anterior cervical spine surgery. Dysphagia 12(1):2–8

    Article  CAS  PubMed  Google Scholar 

  88. Segal JL, Milne N, Brunnemann SR, Lyons KP (1987) Metoclopramide-induced normalization of impaired gastric emptying in spinal cord injury. Am J Gastroenterol 82:1143–1148

    CAS  PubMed  Google Scholar 

  89. Zhang RL, Chayes Z, Korsten MA, Bauman WA (1994) Gastric emptying rates to liquid or solid meals appear to be unaffected by spinal cord injury. Am J Gastroenterol 89:1856–1858

    CAS  PubMed  Google Scholar 

  90. Gore RM, Mintzer RA, Calenoff L (1981) Gastrointestinal complications of spinal cord injury. Spine 6:538–544

    Article  CAS  PubMed  Google Scholar 

  91. DiPalma JA, Smith JR, Cleveland M (2002) Overnight efficacy of polyethylene glycol laxative. Am J Gastroenterol 97:1776–1779

    Article  CAS  Google Scholar 

  92. Wrenn K (1989) Fecal impaction. N Engl J Med 321:658–662

    Article  CAS  PubMed  Google Scholar 

  93. Rosman AS, Chaparala G, Monga A, Spungen AM, Bauman WA, Korsten MA (2008) Intramuscular neostigmine and glycopyrrolate safely accelerated bowel evacuation in patients with spinal cord injury and defecatory disorders. Dig Dis Sci 53:2710–2713

    Article  CAS  PubMed  Google Scholar 

  94. Harari D, Minaker KL (2000) Megacolon in patients with chronic spinal cord injury. Spinal Cord 38:331–339

    Article  CAS  PubMed  Google Scholar 

  95. Banwell JG, Creasy GH, Aggarwal AM, Mortimer JT (1993) Management of the neurogenic bowel in patients with spinal cord injury. Urologic Clin North Am 20:517–526

    CAS  Google Scholar 

  96. Ebert E (2012) Gastrointestinal involvement in spinal cord injury: a clinical perspective. J Gastrointestin Liver Dis 21(1):75–82

    PubMed  Google Scholar 

  97. Scott D, Papa MZ, Sareli M, Velano A, Ben-Ari GY, Koller M (2002) Management of hemorrhoidal disease in patients with chronic spinal cord injury. Tech Coloproctol 6:19–22

    Article  CAS  PubMed  Google Scholar 

  98. Stratton MD, McKirgan LW, Wade TP et al (1996) Colorectal cancer in patients with previous spinal cord injury. Dis Colon Rectum 39:965–968

    Article  CAS  PubMed  Google Scholar 

  99. Moonka R, Stiens SA, Resnick WJ et al (1999) The prevalence and natural history of gallstones in spinal cord injured patients. J Am Coll Surg 189:274–281

    Article  CAS  PubMed  Google Scholar 

  100. Ketover SR, Ansel HJ, Goldish G, Roche B, Gebhard RL (1996) Gallstones in chronic spinal cord injury: is impaired gallbladder emptying a risk factor? Arch Phys Med Rehabil 77:1136–1138

    Article  CAS  PubMed  Google Scholar 

  101. Fealey RD, Szurszewski JH, Merritt JL, DiMagno EP (1984) Effect of traumatic spinal cord transaction on human upper gastrointestinal motility and gastric emptying. Gastroenterology 87:69–75

    CAS  PubMed  Google Scholar 

  102. Apstein MD, Dalecki-Chipperfield K (1987) Spinal cord injury is a risk factor for gallstone disease. Gastroenterology 92:966–968

    Article  CAS  PubMed  Google Scholar 

  103. Romero Ganuza FJ, La Banda G, Montalvo R, Mazaira J (1997) Acute acalculous cholecystitis in patients with acute traumatic spinal cord injury. Spinal Cord 35:124–128

    Article  CAS  PubMed  Google Scholar 

  104. Lavela SL, Weaver FM, Goldstein B, Chen K, Miskevics S, Rajan S, Gater DR Jr (2006) Diabetes mellitus in individuals with spinal cord injury or disorder. J Spinal Cord Med 29:387–395

    Article  PubMed  PubMed Central  Google Scholar 

  105. Bauman WA, Spungen AM (1994) Disorders of carbohydrate and lipid metabolism in veterans with paraplegia or quadriplegia: a model of premature aging. Metabolism 43(6):749–756

    Article  CAS  PubMed  Google Scholar 

  106. Tenover JL (1997) Testosterone and the aging male. J Androl 18(2):103–106

    CAS  PubMed  Google Scholar 

  107. Hitzig SL, Eng JJ, Miller WC, Sakakibara M, SCIRE Research Team (2011) An evidence-based review of aging of the body systems following spinal cord injury. Spinal Cord 49(6):684–701. doi:10.1038/sc.2010.178

    Article  CAS  PubMed  Google Scholar 

  108. Chiodo AE, Scelza WM, Kirshblum SC, Wuermser LA, Ho CH, Priebe MM (2007) Spinal cord injury medicine. 5. Long-term medical issues and health maintenance. Arch Phys Med Rehabil 88:S76–S83. doi:10.1016/j.apmr.2006.12.015

    Article  PubMed  Google Scholar 

  109. McKinley WO, Gittler MS, Kirshblum SC, Stiens SA, Groah SL (2002) Spinal cord injury medicine. 2. Medical complications after spinal cord injury: identification and management. Arch Phys Med Rehabil 83:S58–S64, S90–S98

    Article  PubMed  Google Scholar 

  110. Rekand T, Hagen EM, Grønning M (2012) Chronic pain following spinal cord injury. Tidsskr Nor Laegeforen 132:974–979. doi:10.4045/tidsskr.11.0794

    Article  PubMed  Google Scholar 

  111. Siddall PJ, Middleton JW (2006) A proposed algorithm for the management of pain following spinal cord injury. Spinal Cord 44:67–77

    Article  CAS  PubMed  Google Scholar 

  112. Subbarao JV, Klopfstein J, Turpin R (1995) Prevalence and impact of wrist and shoulder pain in patients with spinal cord injury. J Spinal Cord Med 18(1):9–13

    Article  CAS  PubMed  Google Scholar 

  113. Kirshblum S, Druin E, Planten K (1997) Musculoskeletal conditions in chronic spinal cord injury. Top Spinal Cord Inj Rehabil 2:23–35

    Google Scholar 

  114. Dalyan M, Cardenas DD, Gerard B (1999) Upper extremity pain after spinal cord injury. Spinal Cord 37:191–195

    Article  CAS  PubMed  Google Scholar 

  115. Uebelhart D, Demiaux-Domenech B et al (1995) Bone metabolism in spinal cord injured individuals and in others who have prolonged immobilisation. A review. Paraplegia 33(11):669–673

    Article  CAS  PubMed  Google Scholar 

  116. Garland DE, Adkins RH, Stewart CA, Ashford R, Vigil D (2001) Regional osteoporosis in women who have a complete spinal cord injury. J Bone Joint Surg Am 83-A(8):1195–1200

    Article  CAS  PubMed  Google Scholar 

  117. Comarr AE, Hutchinson RH, Bors EB (1962) Extremity fractures of patients with spinal cord injuries. Am J Surg 103:732–739

    Article  CAS  PubMed  Google Scholar 

  118. Eichenholtz SN (1963) Management of long-bone fractures in paraplegic patients. J Bone Joint Surg Am 45:299–310

    Article  Google Scholar 

  119. Freehafer AA (1995) Limb fractures in patients with spinal cord injury. Arch Phys Med Rehabil 76:823–827

    Article  CAS  PubMed  Google Scholar 

  120. Rossier AB, Favre H, Valloton MB (1991) Body composition of spinal cord injured adults. In: The spinal cord injured patient: comprehensive management. WB Saunders, Philadelphia, pp 163–170

    Google Scholar 

  121. Bauman WA, Garland DE, Schwartz E (1997) Calcium metabolism and osteoporosis in individuals with spinal cord injury. Top Spinal Cord Inj Rehabil 2:84–96

    Google Scholar 

  122. Bauman WA, Waters RL (2004) Aging with a spinal cord injury. In: Kemp BJ, Mosqueda L (eds) Aging with a disability: what the clinician needs to know. Johns Hopkins University Press, Baltimore, pp 153–174

    Google Scholar 

  123. Thompson L, Yakura J (2006) Aging related functional changes in persons with spinal cord injury. Top Spinal Cord Inj Rehabil 6:69–82

    Article  Google Scholar 

  124. Adkins RH (2004) Research and interpretation perspectives on aging related physical morbidity with spinal cord injury and brief review of systems. NeuroRehabil 19:3–13

    Google Scholar 

  125. Liem N, McColl M, King W, Smith K (2004) Aging with a spinal cord injury: factors associated with the need for more help with activities of daily living. Arch Phys Med Rehabil 85(10):1567–1577

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. A. Cerrel Bazo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Cerrel Bazo, H.A., Demertzis, E., Musumeci, A. (2018). The Aging Effects in Spinal Cord Injury Rehabilitation. In: Masiero, S., Carraro, U. (eds) Rehabilitation Medicine for Elderly Patients. Practical Issues in Geriatrics. Springer, Cham. https://doi.org/10.1007/978-3-319-57406-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57406-6_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57405-9

  • Online ISBN: 978-3-319-57406-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics