Skip to main content

Rehabilitation of Ageing People with Neurological Disorders

  • Chapter
  • First Online:
Rehabilitation Medicine for Elderly Patients

Abstract

Neurological conditions are the most common cause of severe disability in the elderly and constitute a heavy burden on healthcare and social services.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 54.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 69.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hyder AA, Wunderlich CA, Puvanachandra P, Gururaj G, Kobusingye OC (2007) The impact of traumatic brain injuries: a global perspective. Neuro Rehabilitation 22(5):341–353

    PubMed  Google Scholar 

  2. Peeters W, van den Brande R, Polinder S, Brazinova A, Steyerberg EW, Lingsma HF, Maas AI (2015) Epidemiology of traumatic brain injury in Europe. Acta Neurochir 157(10):1683–1696. doi:10.1007/s00701-015-2512-7. Epub 2015 Aug 14

    Article  PubMed  PubMed Central  Google Scholar 

  3. Awad A, Stuve O (2010) Multiple sclerosis in the elderly patient. Drugs Aging 27(4):283–294

    Article  CAS  PubMed  Google Scholar 

  4. Medifocus Guidebook on Peripheral Neuropathy (2009) A comprehensive patient guide to symptoms, treatment, research, and support

    Google Scholar 

  5. Strait S, Medcalf P (2012) Peripheral neuropathy in older people. GM J

    Google Scholar 

  6. Le Forestier N, Bouche P (2006) Peripheral neuropathy in the elderly. [Neuropathies du sujet age: etiologies et conduite pratique]. Psychologie Neuropsychiatrie Du Vieillissement 4(2):109–119

    PubMed  Google Scholar 

  7. Nussbaum RL, Ellis CE (2003) Alzheimer’s disease and Parkinson’s disease. N Engl J Med 348:1356–1364

    Article  CAS  PubMed  Google Scholar 

  8. Fall PA, Axelson O, Fredriksson M et al (1996) Age-standardized incidence and prevalence of Parkinson’s disease in a Swedish community. J Clin Epidemiol 49:637–641

    Article  CAS  PubMed  Google Scholar 

  9. Mayeux R, Marder K, Cote LJ et al (1995) The frequency of idiopathic Parkinson’s disease by age, ethnic group, and sex in northern Manhattan, 1988–1993. Am J Epidemiol 142:820–827

    Article  CAS  PubMed  Google Scholar 

  10. de Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5(6):525–535

    Article  PubMed  Google Scholar 

  11. Przedborski S (2017) The two-century journey of Parkinson disease research. Nat Rev Neurosci 18(4):251–259

    Article  CAS  PubMed  Google Scholar 

  12. Ott A, Breteler MM, van Harskamp F, Claus JJ, van der Cammen TJ, Grobbee DE et al (1995) Prevalence of Alzheimer’s disease and vascular dementia: association with education. The Rotterdam study. BMJ 310(6985):970–973. PubMed PMID: 7728032. Pubmed Central PMCID: PMC2549358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Cobb JL, Wolf PA, Au R, White R, D’Agostino RB (1995) The effect of education on the incidence of dementia and Alzheimer’s disease in the Framingham study. Neurology 45(9):1707–1712. PubMed PMID: 7675231

    Article  CAS  PubMed  Google Scholar 

  14. Jouvent E, Sun ZY, De Guio F, Duchesnay E, Duering M, Ropele S, Dichgans M, Mangin JF, Chabriat H (2016) Shape of the central sulcus and disability after subcortical stroke: a motor reserve hypothesis. Stroke 47(4):1023–1029. doi:10.1161/STROKEAHA.115.012562

    Article  PubMed  Google Scholar 

  15. Langhorne P, Bernhardt J, Kwakkel G (2011) Stroke rehabilitation. Lancet 377(9778):1693–1702

    Article  PubMed  Google Scholar 

  16. De Silva D. Helping people help themselves. A review of the evidence considering whether it is worthwhile to support self-management. 2011

    Google Scholar 

  17. Warner G, Packer T, Villeneuve M, Audulv A, Versnel J (2015) A systematic review of the effectiveness of stroke self-management programs for improving function and participation outcomes: self-management programs for stroke survivors. Disabil Rehabil 37(23):2141–2163

    Article  PubMed  Google Scholar 

  18. Playford ED, Siegert R, Levack W, Freeman J (2009) Areas of consensus and controversy about goal setting in rehabilitation: a conference report. Clin Rehabil 23(4):334–344

    Article  PubMed  Google Scholar 

  19. Stroke Unit Trialists’ Collaboration (2007) Organised inpatient (stroke unit) care for stroke. Cochrane Database Syst Rev 4:CD000197. PubMed PMID: 17943737

    Google Scholar 

  20. Irish Heart Foundation (2000) Council on Stroke: Towards Excellence in Stroke Care, Dublin

    Google Scholar 

  21. Irish Heart Foundation, in association with the Department of Health and Children, National Audit of Stroke Care, Dublin, Ireland, April 2008

    Google Scholar 

  22. AHA Impact of Stroke (Stroke statistics), accessed 19 December 2016

    Google Scholar 

  23. Manganotti P, Patuzzo S, Cortese F et al (2002) Motor disinhibition in affected and unaffected hemisphere in the early period of recovery after stroke. Clin Neurophysiol 113:936

    Article  CAS  PubMed  Google Scholar 

  24. Veerbeek JM, Van Wegen EE, Harmeling-van der Wel BC, Kwakkel G (2011) EPOS investigators. Is accurate prediction of gait in nonambulatory stroke patients possible within 72 hours poststroke? The EPOS study. Neurorehabil Neural Repair 25(3):268–274

    Article  CAS  PubMed  Google Scholar 

  25. Jones PS, Pomeroy VM, Wang J, Schlaug G, Tulasi Marrapu S, Geva S, Rowe PJ, Chandler E, Kerr A, Baron JC (2016) SWIFT-cast investigators. Does stroke location predict walk speed response to gait rehabilitation? Hum Brain Mapp 37(2):689–703

    Article  PubMed  Google Scholar 

  26. Ward NS (2015) Does neuroimaging help to deliver better recovery of movement after stroke? Curr Opin Neurol 28:323

    Article  CAS  PubMed  Google Scholar 

  27. Ward NS, Brown MM, Thompson AJ et al (2003) Neural correlates of motor recovery after stroke: a longitudinal fMRI study. Brain 126:2476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Burke Quinlan E, Dodakian L, See J et al (2015) Neural function, injury, and stroke subtype predict treatment gains after stroke. Ann Neurol 77:132

    Article  PubMed  Google Scholar 

  29. Leray E, Moreau T, Fromont A, Edan G (2016) Epidemiology of multiple sclerosis. Rev Neurol (Paris) 172(1):3–13

    Article  CAS  Google Scholar 

  30. Kister I, Chamot E, Salter AR, Cutter GR, Bacon TE, Herbert J (2013) Disability in multiple sclerosis: a reference for patients and clinicians. Neurology 80(11):1018–1024

    Article  PubMed  PubMed Central  Google Scholar 

  31. University of California, San Francisco MS-EPIC Team, Cree BA, Gourraud PA, Oksenberg JR, Bevan C, Crabtree-Hartman E, Gelfand JM, Goodin DS, Graves J, Green AJ, Mowry E, Okuda DT, Pelletier D, von Büdingen HC, Zamvil SS, Agrawal A, Caillier S, Ciocca C, Gomez R, Kanner R, Lincoln R, Lizee A, Qualley P, Santaniello A, Suleiman L, Bucci M, Panara V, Papinutto N, Stern WA, Zhu AH, Cutter GR, Baranzini S, Henry RG, Hauser SL (2016) Long-term evolution of multiple sclerosis disability in the treatment era. Ann Neurol 80(4):499–510

    Article  Google Scholar 

  32. Zeiler SR, Krakauer JW (2013) The interaction between training and plasticity in the poststroke brain. Curr Opin Neurol 26(6):609–616

    Article  PubMed  PubMed Central  Google Scholar 

  33. McCabe J, Monkiewicz M, Holcomb J, Pundik S, Daly JJ (2015) Comparison of robotics functional electrical stimulation, and motor learning methods for treatment of presistent upper extremity dysfunction after stroke: a randomized controlled trial. Arch Phys Med Rehabil 96(6):981–990

    Article  PubMed  Google Scholar 

  34. Kwakkel G, Winters C, van Wegen EE, Nijland RH, van Kuijk AA, Visser-Meily A, de Groot J, de Vlugt E, Arendzen JH, Geurts AC, Meskers CG, EXPLICIT-stroke consortium (2016) Effects of unilateral upper limb training in two distinct prognostic groups early after stroke: the EXPLICIT- stroke randomized clinical trial. Neurorehabil Neural Repair 30(9):804–816

    Article  PubMed  Google Scholar 

  35. Veerbeek JM, van Wegen E, van Peppen R, van der Wees PJ, Hendriks E, Rietberg M, Kwakkel G (2014) What is the evidence for physical theraphy poststroke? A systematic review and meta-analysis. PLoS One 9(2):e87987

    Article  PubMed  PubMed Central  Google Scholar 

  36. Bernhardt J, Churilov L, Ellery F et al (2016) Prespecified dose-response analysis for a very early rehabilitation trial (AVERT). Neurology 86(23):2138–2145

    Article  PubMed  PubMed Central  Google Scholar 

  37. AVERT Trial Collaboration Group, Bernhardt J, Langhorne P et al (2015) Efficacy and safety of very early mobilisation within 24 h of stroke onset (AVERT): a randomised controlled trial. Lancet 386(9988):46–55

    Article  Google Scholar 

  38. Broeder S, Nackaerts E, Heremans E, Vervoort G, Meesen R, Verheyden G, Nieuwboer A (2015) Transcranial direct current stimulation in Parkinson’s disease: neurophysiological mechanisms and behavioral effects. Neurosci Biobehav Rev 57:105–117

    Article  PubMed  Google Scholar 

  39. Austin MW, Ploughman M, Glynn L, Corbett D (2014) Aerobic exercise effects on neuroprotection and brain repair following stroke: a systematic review and perspective. Neurosci Res 87:8–15

    Article  PubMed  Google Scholar 

  40. Pollock A, Farmer SE, Brady MC, Langhorne P, Mead GE, Mehrholz J, van Wijck F. Interventions for improving upper limb function after stroke. Cochrane Database Syst Rev. 2014:12;(11):CD010820. doi: 10.1002/14651858.CD010820.pub2.

  41. Rizzolatti G, Sinigaglia C (2016) The mirror mechanism: a basic principle of brain function. Nat Rev Neurosci 17(12):757–765

    Article  CAS  PubMed  Google Scholar 

  42. Pfurtscheller G, Aranibar A (1979) Evaluation of event-related desynchronization (ERD) preceding and following voluntary self-paced movement. Electroencephalogr Clin Neurophysiol 46:138–146

    Article  CAS  PubMed  Google Scholar 

  43. Formaggio E, Storti SF, Cerini R, Fiaschi A, Manganotti P (2010 Dec) Brain oscillatory activity during motor imagery in EEG-fMRI coregistration. Magn Reson Imaging 28(10):1403–1412

    Article  PubMed  Google Scholar 

  44. Formaggio E, Masiero S, Bosco A, Izzi F, Piccione F, Del Felice A (2016) Quantitative EEG evaluation during robot-assisted foot movement. IEEE Trans Neural Syst Rehabil Eng

    Google Scholar 

  45. Veerbeek JM, Langbroek-Amersfoort AC, van Wegen EE, Meskers CG, Kwakkel G (2017) Effects of robot-assisted therapy for the upper limb after stroke. Neurorehabil Neural Repair 31(2):107–121

    Article  PubMed  Google Scholar 

  46. Mani S, Przybyla A, Good DC, Haaland KY, Sainburg RL (2014) Contralesional Arm Preference Depends on Hemisphere of Damage and Target Location in Unilateral Stroke Patients. Neurorehabil Neural Repair 28(6):584–93. doi: 10.1177/1545968314520720

  47. Mehrholz J, Thomas S, Werner C, Kugler J, Pohl M, Elsner B (2017) Electromechanical-assisted training for walking after stroke. Cochrane Database Syst Rev 5:CD006185

    PubMed  Google Scholar 

  48. Saunders DH, Sanderson M, Hayes S, Kilrane M, Greig CA, Brazzelli M, Mead GE (2016) Physical fitness training for stroke patients. Cochrane Database Syst Rev 3:CD003316

    PubMed  Google Scholar 

  49. Laver KE, George S, Thomas S, Deutsch JE, Crotty M (2015) Virtual reality for stroke rehabilitation. Cochrane Database Syst Rev 2:CD008349. doi:10.1002/14651858.CD008349.pub3

    Google Scholar 

  50. National Institute of Neurological Disorders and Stroke Peripheral neuropathy fact sheet. (2012). Available from: http://www.ninds.nih.gov/disorders/peripheralneuropathy

  51. Sejvar JJ, Baughman AL, Wise M, Morgan OW (2011) Population incidence of Guillain-Barré syndrome: a systematic review and meta-analysis. Neuroepidemiology 36:123–133

    Article  PubMed  Google Scholar 

  52. Khan F, Ng L, Amatya B, Brand C, Turner-Stokes L (2010) Multidisciplinary care for Guillain-Barre syndrome. Cochrane Database Syst Rev 06(10):CD008505. PubMed PMID: 20927774

    Google Scholar 

  53. Harms M (2011) Inpatient management of guillain-barré syndrome. Neurohospitalist 1(2):78–84

    Article  PubMed  PubMed Central  Google Scholar 

  54. Provost C, Piccinini G, Tasseel-Ponche S, Lozeron P, Arnulf B, Yelnik A (2016) Sensory information treatment during disturbed standing posture in chronic acquired demyelinating polyneuropathies (CADP). Ann Phys Rehabil Med 59S:e123. PubMed PMID: 27676757

    Article  Google Scholar 

  55. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, Obeso J, Marek K, Litvan I, Lang AE, Halliday G, Goetz CG, Gasser T, Dubois B, Chan P, Bloem BR, Adler CH, Deuschl G (2015) MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord 30(12):1591–1601

    Article  PubMed  Google Scholar 

  56. Smania N, Picelli A, Geroin C, Ianes P, La Marchina E, Zenorini A, Gandolfi M (2011) Balance and gait rehabilitation in patients with Parkinson’s disease. In: Rana AQ (ed) Diagnosis and treatment of Parkinson’s disease. ISBN 978-953-307-465-8

    Google Scholar 

  57. Sutoo D, Akiyama K (2003) Regulation of brain function by exercise. Neurobiol Dis 13:1–14

    Article  CAS  PubMed  Google Scholar 

  58. Fox CM, Ramig LO, Ciucci MR, Sapir S, McFarland DH, Farley BG (2006) The science and practice of LSVT/LOUD: neural plasticity-principled approach to treating individuals with Parkinson’s disease and other neurological disorders. Semin Speech Lang 27:283–299

    Article  PubMed  Google Scholar 

  59. Keus SJH, Munneke M, Graziano M et al (2014) European Physiotherapy Guidelines for Parkinsons Disease. KNGF/ ParkinsonNet, The Netherlands.

    Google Scholar 

  60. Oertel WH, Berardelli A, Bloem BR et al (2011) Late (complicated) Parkinson’s disease. In: BaB G (ed) European handbook of neurological management, 2nd edn. Blackwell Publishing, Hoboken, NJ, pp 237–255

    Google Scholar 

  61. Morris ME (2000) Movement disorders in people with Parkinson disease: a model for physical therapy. Phys Ther 80(6):578–597

    CAS  PubMed  Google Scholar 

  62. Hummel FC, Cohen LG (2006) Non-invasive brain stimulation: a new strategy to improve neurorehabilitation after stroke? Lancet Neurol 5(8):708–712

    Article  PubMed  Google Scholar 

  63. Madhavan S, Shah B (2012) Enhancing motor skill learning with transcranial direct current stimulation - a concise review with applications to stroke. Front Psych 3:66

    Google Scholar 

  64. Schlaug G, Renga V, Nair D (2008) Transcranial direct current stimulation in stroke recovery. Arch Neurol 65(12):1571–1576

    Article  PubMed  PubMed Central  Google Scholar 

  65. Schulz R, Gerloff C, Hummel FC (2013) Non-invasive brain stimulation in neurological diseases. Neuropharmacology 64:579–587

    Article  CAS  PubMed  Google Scholar 

  66. Gunduz A, Kumru H, Pascual-Leone A. Outcomes in spasticity after repetitive transcranial magnetic and transcranial direct current stimulations. Neural Regen Res. 2014;9(7):712–8. doi: 10.4103/1673-5374.131574.

  67. Del Felice A, Daloli V, Masiero S, Manganotti P. Contralesional Cathodal versus Dual Transcranial Direct Current Stimulation for Decreasing Upper Limb Spasticity in Chronic Stroke Individuals: A Clinical and Neurophysiological Study. J Stroke Cerebrovasc Dis. 2016;25(12):2932–2941. doi: 10.1016/j.jstrokecerebrovasdis.2016.08.008.

  68. Lu C, Wei Y, Hu R, Wang Y, Li K, Li X (2015) Transcranial direct current stimulation ameliorates behavioral deficits and reduces oxidative stress in 1-methyl-4-phenyl-1,2,3,6-Tetrahydropyridine-induced mouse model of Parkinson’s disease. Neuromodulation 18(6):442–446. discussion 447

    Article  PubMed  Google Scholar 

  69. Horvath JC, Forte JD, Carter O (2015) Quantitative review finds no evidence of cognitive effects in healthy populations from single-session transcranial direct current stimulation (tDCS). Brain Stimul 8(3):535–550

    Article  PubMed  Google Scholar 

  70. Tatti E, Rossi S, Innocenti I, Rossi A, Santarnecchi E (2016) Non-invasive brain stimulation of the aging brain: State of the art and future perspectives. Ageing Res Rev 29:66–89. doi:10.1016/j.arr.2016.05.006

  71. Cotman CW, Berchtold NC (2002) Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci 25(6):295–301

    Article  CAS  PubMed  Google Scholar 

  72. Kramer AF, Erickson KI, Colcombe SJ (2006) Exercise, cognition, and the aging brain. J Appl Physiol (1985) 101(4):1237–1242

    Article  Google Scholar 

  73. Ahlskog JE, Geda YE, Graff-Radford NR, Petersen RC (2011) Physical exercise as a preventive or disease-modifying treatment of dementia and brain aging. Mayo Clin Proc 86(9):876–884

    Article  PubMed  PubMed Central  Google Scholar 

  74. Chollet F, Tardy J, Albucher JF, Thalamas C, Berard E, Lamy C, Bejot Y, Deltour S, Jaillard A, Niclot P, Guillon B, Moulin T, Marque P, Pariente J, Arnaud C, Loubinoux I (2011) Fluoxetine for motor recovery after acute ischaemic stroke (FLAME): a randomised placebo-controlled trial. Lancet Neurol 10(2):123–130

    Article  CAS  PubMed  Google Scholar 

  75. Secades JJ, Alvarez-Sabín J, Castillo J, Díez-Tejedor E, Martínez-Vila E, Ríos J, Oudovenko N (2016) Citicoline for acute ischemic stroke: a systematic review and formal meta-analysis of randomized, double-blind, and placebo-controlled trials. J Stroke Cerebrovasc Dis 25(8):1984–1996

    Article  PubMed  Google Scholar 

  76. Menzie J, Pan C, Prentice H, Wu J.-Y. (2014) Taurine and central nervous system disorders. Amino Acids 46(1):31–46. doi:10.1007/s00726-012-1382-z

  77. Mohammad-Gharibani P, Modi J, Menzie J et al (2014) Mode of action of S-methyl-N, N-diethylthiocarbamate sulfoxide (DETC-MeSO) as a novel therapy for stroke in a rat model. Molecular Neurobiology 50(2):655–672. doi: 10.1007/s12035-014-8658-0

  78. Chen HSV, Wang YF, Rayudu PV et al (1998) Neuroprotective concentrations of the N-methyl-D-aspartate open-channel blocker memantine are effective without cytoplasmic vacuolation following post-ischemic administration and do not block maze learning or long-term potentiation. Neuroscience 86(4):1121–1132. doi: 10.1016/S0306-4522(98)00163-8

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Del Felice MD, PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Del Felice, A. et al. (2018). Rehabilitation of Ageing People with Neurological Disorders. In: Masiero, S., Carraro, U. (eds) Rehabilitation Medicine for Elderly Patients. Practical Issues in Geriatrics. Springer, Cham. https://doi.org/10.1007/978-3-319-57406-6_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57406-6_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57405-9

  • Online ISBN: 978-3-319-57406-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics