Skip to main content

Comparison of Wetting and Drying Between a RKDG2 Method and Classical FV Based Second-Order Hydrostatic Reconstruction

  • Conference paper
  • First Online:
Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems (FVCA 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 200))

Included in the following conference series:

Abstract

We compare the treatment of wetting and drying for shallow water flows at the coast using a discontinuous Galerkin (DG) scheme with classical finite volumes in one space dimension. The presented DG scheme employs piecewise linear ansatz functions and is formally second-order accurate. The core of the method is a velocity based “limiting” of the momentum, which provides stable and accurate solutions in the computation of inundation events. Artificial gradients of the water surface elevation which are introduced by the DG discretization at the wet/dry interface are specially handled to prevent spurious velocities. The finite volume method is based on second-order hydrostatic reconstruction. In general, both methods show comparable results in terms of stability and accuracy. For certain situations the DG method is slightly superior.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Audusse, E., Bouchut, F., Bristeau, M.O., Klein, R., Perthame, B.: A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows. SIAM J. Sci. Comput. 25(6), 2050–2065 (2004). doi:10.1137/S1064827503431090

    Article  MathSciNet  MATH  Google Scholar 

  2. Barth, T.J., Jespersen, D.C.: The design and application of upwind schemes on unstructured meshes. AIAA Paper 89-0366 (1989)

    Google Scholar 

  3. Bunya, S., Kubatko, E.J., Westerink, J.J., Dawson, C.: A wetting and drying treatment for the Runge-Kutta discontinuous Galerkin solution to the shallow water equations. Comput. Methods Appl. Mech. Eng. 198, 1548–1562 (2009). doi:10.1016/j.cma.2009.01.008

    Article  MathSciNet  MATH  Google Scholar 

  4. Carrier, G.F., Wu, T.T., Yeh, H.: Tsunami run-up and draw-down on a plane beach. J. Fluid Mech. 475, 79–99 (2003). doi:10.1017/S0022112002002653

    Article  MathSciNet  MATH  Google Scholar 

  5. Delestre, O., Cordier, S., Darboux, F., James, F.: A limitation of the hydrostatic reconstruction technique for shallow water equations. C. R. Acad. Sci. Paris Ser. I 350, 677681 (2012)

    Google Scholar 

  6. Einfeldt, B.: On Godunov-type methods for gas dynamics. SIAM J. Numer. Anal. 25(2), 294–318 (1988). doi:10.1137/0725021

    Article  MathSciNet  MATH  Google Scholar 

  7. Giraldo, F.X., Warburton, T.: A high-order triangular discontinuous Galerkin oceanic shallow water model. Int. J. Numer. Methods Fluids 56(7), 899–925 (2008). doi:10.1002/fld.1562

    Article  MathSciNet  MATH  Google Scholar 

  8. Gottlieb, S., Shu, C.W., Tadmor, E.: Strong stability-preserving high-order time discretization methods. SIAM Rev. 43(1), 89–112 (2001). doi:10.1137/S003614450036757X

    Article  MathSciNet  MATH  Google Scholar 

  9. Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications. Springer (2008)

    Google Scholar 

  10. Kärnä, T., de Brye, B., Gourgue, O., Lambrechts, J., Comblen, R., Legat, V., Deleersnijder, E.: A fully implicit wetting-drying method for DG-FEM shallow water models, with an application to the scheldt estuary. Comput. Methods Appl. Mech. Eng. 200(5–8), 509–524 (2011). doi:10.1016/j.cma.2010.07.001

    Article  MathSciNet  MATH  Google Scholar 

  11. Kesserwani, G., Liang, Q.: Well-balanced RKDG2 solutions to the shallow water equations over irregular domains with wetting and drying. Comput. Fluids 39, 2040–2050 (2010). doi:10.1016/j.compfluid.2010.07.008

  12. Kesserwani, G., Wang, Y.: Discontinuous Galerkin flood model formulation: Luxury or necessity? Water Resour. Res. 50(8), 6522–6541 (2014). doi:10.1002/2013WR014906

    Article  Google Scholar 

  13. LeVeque, R.J.: Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, vol. 31. Cambridge University Press (2002)

    Google Scholar 

  14. Shu, C.W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77(2), 439–471 (1988). doi:10.1016/0021-9991(88)90177-5

    Article  MathSciNet  MATH  Google Scholar 

  15. Thacker, W.C.: Some exact solutions to the nonlinear shallow-water wave equations. J. Fluid Mech. 107, 499–508 (1981). doi:10.1017/S0022112081001882

    Article  MathSciNet  MATH  Google Scholar 

  16. The Third International Workshop on Long-Wave Runup Models: Benchmark problem #1: Tsunami runup onto a plane beach (2004). http://isec.nacse.org/workshop/2004_cornell/bmark1.html

  17. Vater, S., Beisiegel, N., Behrens, J.: A limiter-based well-balanced discontinuous Galerkin method for shallow-water flows with wetting and drying: One-dimensional case. Adv. Water Resour. 85, 1–13 (2015). doi:10.1016/j.advwatres.2015.08.008

    Article  Google Scholar 

  18. Xing, Y., Zhang, X., Shu, C.W.: Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations. Adv. Water Resour. 33(12), 1476–1493 (2010). doi:10.1016/j.advwatres.2010.08.005

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge support through the ASCETE (Advanced Simulation of Coupled Earthquake and Tsunami Events) project sponsored by the Volkswagen foundation and through ASTARTE—Assessment, STrategy And Risk Reduction for Tsunamis in Europe. Grant 603839, 7th FP (ENV.2013.6.4-3)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Vater .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Vater, S., Beisiegel, N., Behrens, J. (2017). Comparison of Wetting and Drying Between a RKDG2 Method and Classical FV Based Second-Order Hydrostatic Reconstruction. In: Cancès, C., Omnes, P. (eds) Finite Volumes for Complex Applications VIII - Hyperbolic, Elliptic and Parabolic Problems. FVCA 2017. Springer Proceedings in Mathematics & Statistics, vol 200. Springer, Cham. https://doi.org/10.1007/978-3-319-57394-6_26

Download citation

Publish with us

Policies and ethics