Skip to main content

Introduction

  • Chapter
  • First Online:
Book cover Virtualized Wireless Networks

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 410 Accesses

Abstract

The tremendous increase in multimedia applications and high-end communication devices like smart phones over the last decade has driven the capacity demand for the currently deployed wireless networks. As such, the future generation of wireless networks, e.g., fifth generation of wireless networks (5G), needs to address a number of challenges. First, with the proliferation of the high data-rate applications that have become ubiquitous nowadays, there should be a huge increase in the supported data rates by the next-generation networks. Secondly, with the advent of machine type communications (MTC) and the Internet-of-Things (IoT), the future network will need to support devices that are not only remotely controlled in real time but will also communicate with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Which can also be considered as network slicing in wireless networks.

References

  1. R. Kokku, R. Mahindra, H. Zhang, and S. Rangarajan, “NVS: A substrate for virtualizing wireless resources in cellular networks,” IEEE/ACM Trans. Netw., vol. 20, no. 5, Oct. 2012.

    Google Scholar 

  2. H. Wen, P. K. Tiwary, and T. Le-Ngoc, “Current trends and perspectives in wireless virtualization,” in Intl. Conf. on Sel. Topics in Mobile and Wireless Netw. (MoWNeT), Aug 2013, pp. 62–67.

    Google Scholar 

  3. S. Parsaeefard, V. Jumba, M. Derakhshani, and T. Le-Ngoc, “Joint resource provisioning and admission control in wireless virtualized networks,” in IEEE Wireless Commun. Netw. Conf. (WCNC), Mar. 2015, pp. 2020–2025.

    Google Scholar 

  4. S. Parsaeefard, V. Jumba, M. Derakhshani, and T. Le-Ngoc, “Delay-aware and power-efficient resource allocation in virtualized wireless networks,” in IEEE Wireless Commun. Netw. Conf. (WCNC), Apr. 2016.

    Google Scholar 

  5. M. Derakhshani, S. Parsaeefard, T. Le-Ngoc, A. Leon-Garcia, ”Leveraging Synergy of 5G SDWN and Multi-Layer Resource Management for Network Optimization,” arXiv preprint arXiv:1602.09104, Feb. 2016.

    Google Scholar 

  6. C. Liang and F. Yu, “Wireless network virtualization: A survey, some research issues and challenges,” IEEE Commun. Surveys Tuts., vol. 17, no. 99, pp. 358–380, Aug. 2014.

    Google Scholar 

  7. D. Liu, L. Wang, Y. Chen, M. Elkashlan, K. K. Wong, R. Schober, and L. Hanzo, “User association in 5G networks: A survey and an outlook,” IEEE Commun. Surveys Tuts., vol. 3, no. 99, pp. 67–79, May 2016.

    Google Scholar 

  8. M. Derakhshani, X. Wang, T. Le-Ngoc, A. Leon-Garcia, “Virtualization of multi-cell 802.11 networks: Association and airtime control,” arXiv preprint arXiv:1508.03554, Aug. 2015.

    Google Scholar 

  9. A. Dalili Shoaei, M. Derakhshani, S. Parsaeefard, and T. Le-Ngoc, “MDP-based MAC design with deterministic backoffs in virtualized 802.11 WLANs,” IEEE Trans. Veh. Tech., vol. 65, no. 9, pp. 7754–7759, Sep. 2016.

    Google Scholar 

  10. A. Dalili Shoaei, M. Derakhshani, S. Parsaeefard, and T. Le-Ngoc, “Learning-based hybrid TDMA-CSMA MAC protocol for virtualized 802.11 WLANs,” in IEEE Symp. Personal, Indoor, and Mobile Radio Commun. (PIMRC), Sep. 2015.

    Google Scholar 

  11. A. Dalili Shoaei, M. Derakhshani, S. Parsaeefard, and T. Le-Ngoc, “Efficient and fair hybrid TDMA-CSMA for virtualized green wireless networks,” in IEEE Veh. Tech. Conf. (VTC), Sep. 2016.

    Google Scholar 

  12. V. N. Ha, L. B. Le, and N. D. Dao, “Cooperative transmission in C-RAN considering fronthaul capacity and cloud processing constraints,” in IEEE Wireless Commun. Netw. Conf. (WCNC), Apr. 2014.

    Google Scholar 

  13. C. Liu, K. Sundaresan, M. Jiang, S. Rangarajan, and G.-K. Chang, “The case for re-configurable backhaul in C-RAN based small cell networks,” in IEEE Intl. Conf. on Computer Commun. (INFOCOM), Apr. 2013, pp. 1124–1132.

    Google Scholar 

  14. I. Guvenc, “Capacity and fairness analysis of heterogeneous networks with range expansion and interference coordination,” IEEE Wireless Commun. Lett., vol. 15, no. 10, pp. 1084–1087, Oct. 2011.

    Google Scholar 

  15. H. S. Jo, Y. J. Sang, P. Xia, and J. G. Andrews, “Outage probability for heterogeneous cellular networks with biased cell association,” in IEEE Global Commun. Conf. (GLOBECOM), Dec. 2011, pp. 1–5.

    Google Scholar 

  16. S. Corroy, L. Falconetti, and R. Mathar, “Dynamic cell association for downlink sum rate maximization in multi-cell heterogeneous networks,” in IEEE Intl. Conf. Commun. (ICC), June 2012, pp. 2457–2461.

    Google Scholar 

  17. Q. Ye, B. Rong, Y. Chen, M. Al-Shalash, C. Caramanis, and J. G. Andrews, “User association for load balancing in heterogeneous cellular networks,” IEEE Trans. Wireless Commun., vol. 12, no. 6, pp. 2706–2716, June 2013.

    Google Scholar 

  18. X. Tang, P. Ren, Y. Wang, Q. Du, and L. Sun, “User association as a stochastic game for enhanced performance in heterogeneous networks,” in IEEE Intl. Conf. Commun. (ICC), June 2015, pp. 3417–3422.

    Google Scholar 

  19. M. Fallgren, “An optimization approach to joint cell, channel and power allocation in multicell relay networks,” IEEE Trans. Wireless Commun., vol. 11, no. 8, pp. 2868–2875, 2012.

    Google Scholar 

  20. Y. H. Cho, H. Kim, S.-H. Lee, and H. S. Lee, “A QoE-aware proportional fair resource allocation for Multi-Cell OFDMA Networks,” IEEE Wireless Commun. Lett., no. 19, pp. 82–85, 2015.

    Google Scholar 

  21. N. Forouzan and S. A. Ghorashi, “New algorithm for joint subchannel and power allocation in multi-cell OFDMA-based cognitive radio networks,” IET Commun., vol. 8, no. 4, pp. 508–515, Mar. 2014.

    Google Scholar 

  22. N. Ksairi, P. Bianchi, P. Ciblat, and W. Hachem, “Resource allocation for downlink cellular OFDMA systems - part I: Optimal allocation,” IEEE Trans. Signal Process., vol. 58, no. 2, pp. 720–734, 2010.

    Google Scholar 

  23. Ericsson, “Cloud RAN: The benefits of virtualization, centralization and coordination,” Sept. 2015.

    Google Scholar 

  24. L. Chen, H. Jin, H. Li, J. B. Seo, Q. Guo, and V. Leung, “An energy efficient implementation of C-RAN in HetNet,” in IEEE Veh. Tech. Conf. (VTC), Sep. 2014, pp. 1–5.

    Google Scholar 

  25. S. Luo, R. Zhang, and T. J. Lim, “Downlink and uplink energy minimization through user association and beamforming in C-RAN,” IEEE Trans. Wireless Commun., vol. 14, no. 1, pp. 494–508, Jan. 2015.

    Google Scholar 

  26. H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral efficiency of very large multiuser MIMO systems,” IEEE Trans. Wireless Commun., vol. 61, no. 4, pp. 1–5, Apr. 2013.

    Google Scholar 

  27. E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Commun. Mag., vol. 52, no. 2, pp. 186–195, Feb. 2014.

    Google Scholar 

  28. L. Lu, G. Li, A. Swindlehurst, A. Ashikhmin, and R. Zhang, “An overview of massive MIMO: Benefits and challenges,” IEEE J. Sel. Topics in Signal Processing, vol. 8, pp. 742–758, Oct. 2014.

    Google Scholar 

  29. H. Q. Ngo, M. Matthaiou, and E. G. Larsson, “Massive MIMO with optimal power and training duration allocation,” IEEE Wireless Commun. Lett., vol. 3, pp. 605–608, 2014.

    Google Scholar 

  30. J.-C. Shen, J. Zhang, and K. B. Letaief, “User capacity of pilot contaminated TDD massive MIMO systems,” in IEEE Global Commun. Conf. (GLOBECOM), Dec. 2014, pp. 3713–3718.

    Google Scholar 

  31. D. Bethanabhotla, O. Y. Bursalioglu, H. C. Papadopoulos, and G. Caire, “Optimal user-cell association for massive MIMO wireless networks,” IEEE Trans. Commun., vol. 15, no. 3, pp. 1835–1850, Mar. 2016.

    Google Scholar 

  32. NTT Docomo Inc., “5G radio access: Requirements, concept and technologies,” July 2014.

    Google Scholar 

  33. Y. Saito, Y. Kishiyama, A. Benjebbour, T. Nakamura, A. Li, and K. Higuchi, “Non-orthogonal multiple access (NOMA) for cellular future radio access,” in IEEE Veh. Tech. Conf. (VTC), June 2013, pp. 1–5.

    Google Scholar 

  34. S. Liu, C. Zhang, and G. Lyu, “User selection and power schedule for downlink non-orthogonal multiple access (NOMA) system,” in IEEE Intl. Conf. Commun. (ICC), June 2015, pp. 2561–2565.

    Google Scholar 

  35. P. Parida and S. S. Das, “Power allocation in OFDM-based NOMA systems: A DC programming approach,” in IEEE Global Commun. Conf. (GLOBECOM), Dec. 2014, pp. 1026–1031.

    Google Scholar 

  36. S. Parsaeefard, R. Dawadi, M. Derakhshani, and T. Le-Ngoc, “Joint user-association and resource-allocation in virtualized wireless networks,” IEEE Access, vol. 4, pp. 2738–2750, Apr. 2016.

    Google Scholar 

  37. R. Dawadi, S. Parsaeefard, M. Derakhshani, and T. Le-Ngoc, “Energy-efficient resource allocation in multi-cell virtualized wireless networks,” in IEEE Intl. Conf. on Ubiquitous Wireless Broadband (ICUWB), Oct. 2015, pp. 1–5.

    Google Scholar 

  38. R. Dawadi, S. Parsaeefard, M. Derakhshani, and T. Le-Ngoc, “Adaptive pilot-duration and resource allocation in virtualized wireless networks with massive MIMO,” in IEEE Wireless Commun. Netw. Conf. (WCNC), vol. 61, no. 4, Apr. 2016.

    Google Scholar 

  39. R. Dawadi, S. Parsaeefard, M. Derakhshani, and T. Le-Ngoc, “Power-efficient resource allocation in NOMA VWN,” in IEEE Global Commun. Conf. (GLOBECOM), Dec. 2016.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Le-Ngoc, T., Dawadi, R., Parsaeefard, S., Derakhshani, M. (2018). Introduction. In: Virtualized Wireless Networks. SpringerBriefs in Electrical and Computer Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-57388-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57388-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57387-8

  • Online ISBN: 978-3-319-57388-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics