Skip to main content

Determination of Soft Tissue Breakpoint Based on Its Temperature Enhancement Pattern: In Vivo and In Vitro Experiments

  • Conference paper
  • First Online:
  • 2023 Accesses

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 987))

Abstract

The breakpoint of fresh commercial meats and in vivo mice has been assessed using tissue temperature enhancement pattern. A 1 cm length and 0.1 cm diameter gold rod was implanted in fresh chicken breast, beef, fish, and in vivo Mus musculus white mice and was insonated with ultrasound. The temperature enhancement of gold rods was measured with a needle type thermistor over a temperature range from 35 to 50 °C. From these results the breakpoints were determined by plotting the gold rod temperature versus ultrasound exposure duration using the interception point of two curves fitted by a linear regression equations of thermal response above and below 43 °C. The linear correlation coefficients for all fitted curves lie within 0.985 and 0.997. The breakpoints were found to be 42.1 ± 1.1, 42.3 ± 0.9, 42.6 ± 0.8 and 43.5 ± 0.6 for fish, chicken breast, beef and in vivo Mus musculus white mice, respectively. The interception of the thermal response curves above and below 43 °C. Soft tissue temperature enhancement pattern has demonstrated to be a fast method to determine breakpoint. It denotes the temperature where cells may start to be destroyed and may be used to spot the startup point in dosimetry of hyperthermia cancer therapy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Dewey, W.C. 2009. Arrhenius Relationships from the Molecule and Cell to the Clinic. International Journal of Hyperthermia 25 (1): 3–20. doi:10.1080/02656730902747919.

    Article  CAS  PubMed  Google Scholar 

  2. Dewhirst, M., B. Vigilanti, M. Lora-Michiels, P. Hoopes, and M. Hanson. 2003. Thermal Dose Requirements for Tissue Effect: Experimental and Clinical Data. Proceedings of SPIE The International Society for Optical Engineering 37. doi:10.14440/jbm.2015.54.A.

  3. Kufe, D.W., R.E. Pollock, R.R. Weichselbaum, R.C. Bast Jr., T.S. Gansler, J.F. Holland, and FEI. 2003. In Cancer Medicine, ed. H.-F.C. Medicine, 6th ed. Hamilton, ON: BC Decker.

    Google Scholar 

  4. Austerlitz, C., I. Gkigkitzis, D. Campos, and I. Haranas. 2014. An Experimental Study on the Heat Enhancement and Bio-Heat Transfer Using Gold Macro Rod and Ultrasound: A Potential Alternative to Kill Cancer Cells. Physics International 5 (2): 132–135. doi:10.3844/pisp.2014.132.135.

    Article  Google Scholar 

  5. Austerlitz, C., A. Barros, I. Gkigkitzis, D. Campos, T. Silva, S. Nascimento, and I. Haranas. 2015. On the Use of Gold Macro-Rods and Ultrasound as a Hyperthermia Cancer Treatment: Experimental Results on Erlich Tumor in Mus musculus Mice. In Patents Eb Ser Top Anti-Cancer Res., vol. 4. Benthan Science Publishers. doi:10.2174/9781681080765115040009.

  6. Gkigkitzis, I., I. Haranas, and C. Austerlitz. 2015. Analytic Considerations and Axiomatic Approaches to the Concept Cell Death and Cell Survival Functions in Biology and Cancer Treatment. Advances in Experimental Medicine and Biology 822: 85–105. doi:10.1007/978-3-319-08927-0_11.

    Article  PubMed  Google Scholar 

  7. Gkigkitzis, I., C. Austerlitz, I. Haranas, and D. Campos. 2015. The Effect of the Shape and Size of Gold Seeds Irradiated with Ultrasound on the Bio-Heat Transfer in Tissue. Advances in Experimental Medicine and Biology 820: 103–124. doi:10.1007/978-3-319-09012-2_8.

    Article  PubMed  Google Scholar 

  8. Welberg, L.A., B. Kinkead, K. Thrivikraman, M.J. Huerkamp, C.B. Nemeroff, and P.M. Plotsky. 2006. Ketamine-Xylazine-Acepromazine Anesthesia and Postoperative Recovery in Rats. Journal of the American Association for Laboratory Animal Science 45 (2): 13–20. http://www.ncbi.nlm.nih.gov/pubmed/16542037.

  9. 9 Ultrasonic Cavitation Fast Slimming Equipment Mod. GS8.2E, Guangzhou Cosmetology Equipment Limited Company, Ltd, Guangzhou/Guangdong, Guizhou, China.

    Google Scholar 

  10. Chicheł, A., J. Skowronek, M. Kubaszewska, and M. Kanikowski. 2007. Hyperthermia – Description of a Method and a Review of Clinical Applications. Reports of Practical Oncology & Radiotherapy 12 (5): 267–275. doi:10.1016/S1507-1367(10)60065-X.

    Article  Google Scholar 

  11. Sapareto, S.A., and W.C. Dewey. 1984. Thermal Dose Determination in Cancer Therapy. International Journal of Radiation Oncology, Biology, Physics 10 (6): 787–800. doi:10.1016/0360-3016(84)90379-1.

    Article  CAS  PubMed  Google Scholar 

  12. He, X. 2011. Thermostability of Biological Systems: Fundamentals, Challenges, and Quantification. Open Biomedical Engineering Journal 5: 47–73.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Dewhirst, M.W., E. Jones, T. Samulski, S. Vujaskovic, C. Li, and L. Prosnitz. 2004. Hiperthermia. In Cancer Medicine, eds. Kufe DW, Polock, RE, Weichselbaum RR, Bast Jr RC, Gansler TS, Holland JF, Frei E, 6 627–636. New York: Dekker.

    Google Scholar 

  14. Field, S.B., and C.C. Morris. 1983. The Relationship Between Heating Time and Temperature: Its Relevance to Clinical Hyperthermia. Radiotherapy and Oncology 1 (2): 179–186. doi:10.1016/S0167-8140(83)80020-6.

    Article  CAS  PubMed  Google Scholar 

  15. Hirsch, L.R., R.J. Stafford, J.A. Bankson, et al. 2003. Nanoshell-Mediated Near-Infrared Thermal Therapy of Tumors under Magnetic Resonance Guidance. Proceedings of the National Academy of Sciences of the United States of America 100 (23): 13549–13554. doi:10.1073/pnas.2232479100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chung, S.H., R. Mehta, B.J. Tromberg, and A.G. Yodh. 2011. Non-Invasive Measurement of Deep Tissue Temperature Changes Caused by Apoptosis during Breast Cancer Neoadjuvant Chemotherapy: A Case Study. Journal of Innovative Optical Health Sciences 4 (4): 361–372. doi:10.1142/S1793545811001708.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Crouzier, D., L. Selek, B.A. Martz, V. Dabouis, R. Arnaud, and J.C. Debouzy. 2012. Risk Assessment of Electromagnetic Fields Exposure with Metallic Orthopedic Implants: A Cadaveric Study. Orthopaedics & Traumatology, Surgery & Research 98 (1): 90–96. doi:10.1016/j.otsr.2011.08.012.

    Article  CAS  Google Scholar 

  18. van Rhoon, Gerard C., Theodoros Samaras, Pavel S. Yarmolenko, Mark W. Dewhirst, Esra Neufeld, and N.K. Kuster. 2013. CEM43 °C Thermal Dose Thresholds: A Potential Guide for Magnetic Resonance Radiofrequency Exposure Levels? European Radiology 23 (8): 2215–2227. doi:10.1007/s00330-013-2825-y.

    Article  PubMed  PubMed Central  Google Scholar 

  19. TS, A. 2015. Thresholds of thermal damage. In: World Heath Organizations 26-28 May 2015, ed. Thermal Dose Thresholds for MRI University of Thessaloniki. Istanbul.

    Google Scholar 

  20. Murbach, M., E. Neufeld, K.P. Pruessmann, N. Kuster. 2012. Safe MR Scan Times Based on CEM43 Tissue Damage Thresholds, Using Electromagnetic and Thermal Simulations with Anatomically Correct Human Models and Considering Local Thermoregulation. ISMRM 20th Annual Meeting & Exhibition: Adapting MR in a Changing World, Melbourne Australia, 31, 313.

    Google Scholar 

  21. Thrall, D., and G. Rosner. 2000. Using Units of CEM 43 C T90, Local Hyperthermia Thermal Dose Can be Delivered as Prescribed. International Journal of Hyperthermia 16 (5): 415–428. doi:10.1080/026567300416712.

    Article  CAS  PubMed  Google Scholar 

  22. Field, S.B.R.G. 1990. Thermal Dose. In An Introduction to the Practical Aspects of Clinical Hyperthermia, ed. S.B. Field and J.W. Hand. London: Taylor and Francis.

    Google Scholar 

  23. Weininger, S., J. Pfefer, and I. Chang. 2005. Factors to Consider in a Risk Analysis for Safe Surface Temperature. 2005 IEEE Symposium on Product Safety Engineering, vol. 2005, 83–91. doi:10.1109/PSES.2005.1529527.

Download references

Acknowledgements

We are grateful to the Ethnic Committee from the Federal University of Pernambuco, Brazil, (CEUA-UFPE) for having allowed the use of the BALB/c mice used in this work. Process Number 23076.002926/2009-06.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Haranas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Austerlitz, C., Gkigkitzis, I., Barros, A.L.S., Melo, J., Haranas, I., Campos, D. (2017). Determination of Soft Tissue Breakpoint Based on Its Temperature Enhancement Pattern: In Vivo and In Vitro Experiments. In: Vlamos, P. (eds) GeNeDis 2016. Advances in Experimental Medicine and Biology, vol 987. Springer, Cham. https://doi.org/10.1007/978-3-319-57379-3_5

Download citation

Publish with us

Policies and ethics