Skip to main content

Molecular Chaperones in Neurodegenerative Diseases: A Short Review

  • Conference paper
  • First Online:
GeNeDis 2016

Abstract

Stress and misfolded proteins result to dysfunction in the cell, often leading to neurodegenerative diseases and aging. Misfolded proteins form toxic aggregates that threaten cell’s stability and normal functions. In order to restore its homeostasis, the cell activates the UPR system. Leading role in the restoration play the molecular chaperones which target the misfolded proteins with the purpose of either helping them to unfold and refold to their natural state or lead them degradation. This paper aims to present some of the most known molecular chaperones and their relation with diseases associated to protein misfolding and neurodegeneration, as well as the role of chaperones in proteostasis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Söti, C., and P. Csermely. 2002. Chaperones and aging: role in neurodegeneration and in other civilizational diseases. Neurochemistry International 41(6):383–389.

    Article  PubMed  Google Scholar 

  2. Tiroli-Cepeda, A.O., and C.H.I. Ramos. 2011. An overview of the role of molecular chaperones in protein homeostasis. Protein and Peptide Letters 18(2):101–109.

    Article  CAS  PubMed  Google Scholar 

  3. Sharma, S.K., P. Christen, and P. Goloubinoff. 2009. Disaggregating chaperones: an unfolding story. Current Protein and Peptide Science 10(5):432–446.

    Article  CAS  PubMed  Google Scholar 

  4. Fulda, S., A.M. Gorman, O. Hori, and A. Samali. 2010. Cellular stress responses: cell survival and cell death. International Journal of Cell Biology 2010:214074.

    PubMed  PubMed Central  Google Scholar 

  5. Pincus, D., A. Aranda-Díaz, I.A. Zuleta, P. Walter, and H. El-Samad. 2014. Delayed Ras/PKA signaling augments the unfolded protein response. Proceedings of the National Academy of Sciences 111(41):14,800–14,805.

    Article  CAS  Google Scholar 

  6. Pratt, W.B., and D.O. Toft. 2003. Regulation of signaling protein function and trafficking by the Hsp90/Hsp70-based chaperone machinery. Experimental Biology and Medicine 228(2):111–133.

    Article  CAS  PubMed  Google Scholar 

  7. Hong, D.S., U. Banerji, B. Tavana, G.C. George, J. Aaron, and R. Kurzrock. 2013. Targeting the molecular chaperone heat shock protein 90 (Hsp90): lessons learned and future directions. Cancer Treatment Reviews 39(4):375–387.

    Article  CAS  PubMed  Google Scholar 

  8. Moreno-Gonzalez, I., and C. Soto. 2011. Misfolded protein aggregates: mechanisms, structures and potential for disease transmission. In Seminars in Cell and Developmental Biology, vol. 22, 482–487. New York: Elsevier.

    Google Scholar 

  9. Dobson, C.M. 2003. Protein folding and misfolding. Nature 426(6968):884–890.

    Article  CAS  PubMed  Google Scholar 

  10. Jha, S. 2009. Molecular Biology of Protein Folding, vol. 84. Amsterdam: Academic.

    Google Scholar 

  11. Ross, C.A., and M.A. Poirier. 2004. Protein aggregation and neurodegenerative disease. Nature Reviews Neuroscience 5:S10–S17.

    Google Scholar 

  12. Berger, P., A. Niemann, and U. Suter. 2006. Schwann cells and the pathogenesis of inherited motor and sensory neuropathies (Charcot–Marie–Tooth disease). Glia 54(4):243–257.

    Article  PubMed  Google Scholar 

  13. Koo, E.H., P.T. Lansbury, and J.W. Kelly. 1999. Amyloid diseases: abnormal protein aggregation in neurodegeneration. Proceedings of the National Academy of Sciences 96(18):9989–9990.

    Article  CAS  Google Scholar 

  14. Planté-Bordeneuve, V., and G. Said. 2011. Familial amyloid polyneuropathy. The Lancet Neurology 10(12):1086–1097.

    Article  PubMed  Google Scholar 

  15. Wood, J., T. Beaujeux, and P. Shaw. 2003. Protein aggregation in motor neurone disorders. Neuropathology and Applied Neurobiology 29(6):529–545.

    Article  CAS  PubMed  Google Scholar 

  16. Tyedmers, J., A. Mogk, and B. Bukau. 2010. Cellular strategies for controlling protein aggregation. Nature Reviews Molecular Cell Biology 11(11):777–788.

    Article  CAS  PubMed  Google Scholar 

  17. Parsell, D.A., A.S. Kowal, M.A. Singer, and S. Lindquist. 1994. Protein disaggregation mediated by heat-shock protein Hspl04. Nature 372(6505):475–478.

    Article  CAS  PubMed  Google Scholar 

  18. Bukau, B., and A.L. Horwich. 1998. The Hsp70 and Hsp60 chaperone machines. Cell 92(3):351–366.

    Article  CAS  PubMed  Google Scholar 

  19. Hartl, F.U., and M. Hayer-Hartl. 2002. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295(5561):1852–1858.

    Article  CAS  PubMed  Google Scholar 

  20. Arias, E., and A.M. Cuervo. 2011. Chaperone-mediated autophagy in protein quality control. Current Opinion in Cell Biology 23(2):184–189.

    Article  CAS  PubMed  Google Scholar 

  21. Koga, H., and A.M. Cuervo. 2011. Chaperone-mediated autophagy dysfunction in the pathogenesis of neurodegeneration. Neurobiology of Disease 43(1):29–37.

    Article  CAS  PubMed  Google Scholar 

  22. Orenstein, S.J., and A.M. Cuervo. 2010. Chaperone-mediated autophagy: molecular mechanisms and physiological relevance. Seminars in Cell and Developmental Biology 21(7):719–726.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. David, D.C., N. Ollikainen, J.C. Trinidad, M.P. Cary, A.L. Burlingame, and C. Kenyon. 2010. Widespread protein aggregation as an inherent part of aging in C. elegans. PLoS Biol 8(8):e1000,450.

    Google Scholar 

  24. Morley, J.F., H.R. Brignull, J.J. Weyers, and R.I. Morimoto. 2002. The threshold for polyglutamine-expansion protein aggregation and cellular toxicity is dynamic and influenced by aging in Caenorhabditis elegans. Proceedings of the National Academy of Sciences 99(16):10,417–10,422.

    Article  Google Scholar 

  25. Olzscha, H., S.M. Schermann, A.C. Woerner, S. Pinkert, M.H. Hecht, G.G. Tartaglia, M. Vendruscolo, M. Hayer-Hartl, F.U. Hartl, and R.M. Vabulas. 2011. Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144(1):67–78.

    Article  CAS  PubMed  Google Scholar 

  26. Friguet, B. 2006. Oxidized protein degradation and repair in ageing and oxidative stress. FEBS Letters 580(12):2910–2916.

    Article  CAS  PubMed  Google Scholar 

  27. López-Otín, C., M.A. Blasco, L. Partridge, M. Serrano, and G. Kroemer. 2013. The hallmarks of aging. Cell 153(6):1194–1217.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Leak, R.K. 2014. Heat shock proteins in neurodegenerative disorders and aging. Journal of Cell Communication and Signaling 8(4):293–310.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Verbeke, P., J. Fonager, B.F. Clark, and S.I. Rattan. 2001. Heat shock response and ageing: mechanisms and applications. Cell Biology International 25(9):845–857.

    Article  CAS  PubMed  Google Scholar 

  30. Pereira, C.M. 2013. Crosstalk between endoplasmic reticulum stress and protein misfolding in neurodegenerative diseases. ISRN Cell Biology 2013:1–22.

    Article  Google Scholar 

  31. Perri, E.R., C.J. Thomas, S. Parakh, D.M. Spencer, and J.D. Atkin. 2015. The unfolded protein response and the role of protein disulfide isomerase in neurodegeneration. Frontiers in Cell and Developmental Biology 3:80.

    PubMed  Google Scholar 

  32. Salminen, A., A. Kauppinen, T. Suuronen, K. Kaarniranta, and J. Ojala. 2009. ER stress in alzheimer’s disease: a novel neuronal trigger for inflammation and alzheimer’s pathology. Journal of Neuroinflammation 6(1):1.

    Article  Google Scholar 

  33. Schröder, M., and R.J. Kaufman. 2005. The mammalian unfolded protein response. Annual Review of Biochemistry 74:739–789.

    Article  PubMed  Google Scholar 

  34. Rao, R.V., and D.E. Bredesen. 2004. Misfolded proteins, endoplasmic reticulum stress and neurodegeneration. Current Opinion in Cell Biology 16(6):653–662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Manié, S.N., J. Lebeau, and E. Chevet. 2014. Cellular mechanisms of endoplasmic reticulum stress signaling in health and disease. 3. Orchestrating the unfolded protein response in oncogenesis: an update. American Journal of Physiology-Cell Physiology 307(10):C901–C907.

    Article  PubMed  Google Scholar 

  36. Tabas, I., and D. Ron. 2011. Integrating the mechanisms of apoptosis induced by endoplasmic reticulum stress. Nature Cell Biology 13(3):184–190.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Logue, S.E., P. Cleary, S. Saveljeva, and A. Samali. 2013. New directions in ER stress-induced cell death. Apoptosis 18(5):537–546.

    Article  PubMed  Google Scholar 

  38. Rutkowski, D.T., and R.J. Kaufman. 2007. That which does not kill me makes me stronger: adapting to chronic er stress. Trends in Biochemical Sciences 32(10):469–476.

    Article  CAS  PubMed  Google Scholar 

  39. Lindholm, D., H. Wootz, and L. Korhonen. 2006. ER stress and neurodegenerative diseases. Cell Death and Differentiation 13(3):385–392.

    Article  CAS  PubMed  Google Scholar 

  40. Sano, R., and J.C. Reed. 2013. ER stress-induced cell death mechanisms. Biochimica et Biophysica Acta (BBA)-Molecular Cell Research 1833(12):3460–3470.

    Article  CAS  Google Scholar 

  41. Kadowaki, H., H. Nishitoh, and H. Ichijo. 2004. Survival and apoptosis signals in er stress: the role of protein kinases. Journal of Chemical Neuroanatomy 28(1):93–100.

    Article  CAS  PubMed  Google Scholar 

  42. Kim, I., W. Xu, and J.C. Reed. 2008. Cell death and endoplasmic reticulum stress: disease relevance and therapeutic opportunities. Nature Reviews Drug Discovery 7(12):1013–1030.

    Article  CAS  PubMed  Google Scholar 

  43. Nishitoh, H. 2012. Chop is a multifunctional transcription factor in the er stress response. Journal of Biochemistry 151(3):217–219. DOI 10.1093/jb/mvr143, http://jb.oxfordjournals.org/content/151/3/217.abstract.

    Article  CAS  PubMed  Google Scholar 

  44. Frokjaer, S., and D.E. Otzen. 2005. Protein drug stability: a formulation challenge. Nature Reviews Drug Discovery 4(4):298–306.

    Article  CAS  PubMed  Google Scholar 

  45. Asea, A.A., and I.R. Brown. 2008. Heat Shock Proteins and the Brain: Implications for Neurodegenerative Diseases and Neuroprotection, vol. 3. London: Springer Science and Business Media.

    Book  Google Scholar 

  46. Franklin, T., A. Krueger-Naug, D. Clarke, A.P. Arrigo, and R. Currie. 2005. The role of heat shock proteins Hsp70 and Hsp27 in cellular protection of the central nervous system. International Journal of Hyperthermia 21(5):379–392.

    Article  CAS  PubMed  Google Scholar 

  47. Turturici, G., G. Sconzo, and F. Geraci. 2011. Hsp70 and its molecular role in nervous system diseases. Biochemistry Research International 2011:1–18.

    Article  Google Scholar 

  48. Ou, J.R., M.S. Tan, A.M. Xie, J.T. Yu, and L. Tan. 2014. Heat shock protein 90 in alzheimer’s disease. BioMed Research International 2014:796869.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lajtha, A., G. Gibson, and G. Dienel. 2007. Handbook of Neurochemistry and Molecular Neurobiology: Neuroactive Proteins and Peptides, Ed. Krieglstein, J., 123142. New York: Springer.

    Google Scholar 

  50. Amor, S., M. Bugiani, and J. van Noort. 2016. Heat shock proteins: old and novel roles in neurodegenerative diseases in the central nervous system. CNS and Neurological Disorders Drug Targets.

    Google Scholar 

  51. Alexander, G.E. 2004. Biology of parkinson’s disease: pathogenesis and pathophysiology of a multisystem neurodegenerative disorder. Dialogues in Clinical Neuroscience 6:259–280.

    PubMed  PubMed Central  Google Scholar 

  52. Ryu, E.J., H.P. Harding, J.M. Angelastro, O.V. Vitolo, D. Ron, and L.A. Greene. 2002. Endoplasmic reticulum stress and the unfolded protein response in cellular models of parkinson’s disease. The Journal of Neuroscience 22(24):10,690–10,698.

    CAS  Google Scholar 

  53. Varma, D., and D. Sen. 2015. Role of the unfolded protein response in the pathogenesis of parkinson’s disease. Acta Neurobiologiae Experimentalis 75:1–26.

    PubMed  Google Scholar 

  54. Ebrahimi-Fakhari, D., L.J. Saidi, and L. Wahlster. 2013. Molecular chaperones and protein folding as therapeutic targets in parkinson’s disease and other synucleinopathies. Acta Neuropathologica Communications 1(1):1.

    Article  Google Scholar 

  55. Redler, R.L., and N.V. Dokholyan. 2012. The complex molecular biology of amyotrophic lateral sclerosis (ALS). Progress in Molecular Biology and Translational Science 107:215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Mayer, M., and B. Bukau. 2005. Hsp70 chaperones: cellular functions and molecular mechanism. Cellular and Molecular Life Sciences 62(6):670–684.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kubota, H. 2009. Quality control against misfolded proteins in the cytosol: a network for cell survival. Journal of Biochemistry 146(5):609–616.

    Article  CAS  PubMed  Google Scholar 

  58. Carman, A., S. Kishinevsky, W.L. John Koren III, and G. Chiosis. 2013. Chaperone-dependent neurodegeneration: a molecular perspective on therapeutic intervention. Journal of Alzheimer’s Disease and Parkinsonism 2013 (Suppl 10).

    Google Scholar 

  59. Melkani, G.C., A.S. Trujillo, R. Ramos, R. Bodmer, S.I. Bernstein, and K. Ocorr. 2013. Huntington’s disease induced cardiac amyloidosis is reversed by modulating protein folding and oxidative stress pathways in the drosophila heart. PLoS Genet 9(12):e1004,024.

    Article  Google Scholar 

  60. Plerou, A., and P. Vlamos. 2015. Evaluation of mathematical cognitive functions with the use of eeg brain imaging. In Experimental Multimedia Systems for Interactivity and Strategic Innovation, 284–306. Hershey, P.A.: IGI Global.

    Google Scholar 

  61. Plerou, A., C. Bobori, and P. Vlamos. 2015. Molecular basis of huntington’s disease and brain imaging evidence. In 2015 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), 387–391. Piscataway, NJ: IEEE.

    Chapter  Google Scholar 

  62. Schulte, J., and J.T. Littleton. 2011. The biological function of the huntingtin protein and its relevance to huntingtons disease pathology. Current trends in neurology 5:65.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Scherzinger, E., R. Lurz, M. Turmaine, L. Mangiarini, B. Hollenbach, R. Hasenbank, G.P. Bates, S.W. Davies, H. Lehrach, and E.E. Wanker. 1997. Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90(3):549–558.

    Article  CAS  PubMed  Google Scholar 

  64. Stefani, M., and C.M. Dobson. 2003. Protein aggregation and aggregate toxicity: new insights into protein folding, misfolding diseases and biological evolution. Journal of Molecular Medicine 81(11):678–699.

    Article  CAS  PubMed  Google Scholar 

  65. Lupski, J.R., R.M. de Oca-Luna, S. Slaugenhaupt, L. Pentao, V. Guzzetta, B.J. Trask, O. Saucedo-Cardenas, D.F. Barker, J.M. Killian, and C.A. Garcia, et al. 1991. DNA duplication associated with Charcot–Marie–Tooth disease type 1A. Cell 66(2):219–232.

    Article  CAS  PubMed  Google Scholar 

  66. Juárez, P., and F. Palau. 2012. Neural and molecular features on Charcot–Marie–Tooth disease plasticity and therapy. Neural Plasticity 2012:171636.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Lee, S.M., L.S. Chin, and L. Li. 2012. Protein misfolding and clearance in demyelinating peripheral neuropathies: therapeutic implications. Communicative and Integrative Biology 5(1):107–110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhao, J.H., H.L. Liu, H.Y. Lin, C.H. Huang, H.W. Fang, S.S. Chen, Y. Ho, W.B. Tsai, and W.Y. Chen. 2007. Chemical chaperone and inhibitor discovery: potential treatments for protein conformational diseases. Perspectives in Medicinal Chemistry 1:39.

    CAS  PubMed  PubMed Central  Google Scholar 

  69. DebBurman, S.K., G.J. Raymond, B. Caughey, and S. Lindquist. 1997. Chaperone-supervised conversion of prion protein to its protease-resistant form. Proceedings of the National Academy of Sciences 94(25):13,938–13,943.

    Article  CAS  Google Scholar 

  70. Newnam, G.P., R.D. Wegrzyn, S.L. Lindquist, and Y.O. Chernoff. 1999 Antagonistic interactions between yeast chaperones Hsp104 and Hsp70 in prion curing. Molecular and Cellular Biology 19(2):1325–1333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgia Theocharopoulou .

Editor information

Editors and Affiliations

Appendix

Appendix

Chaperone

Location

Role

Characteristics

Related disease

UPR

Lumen of ER

Halting protein translation

 

Creutzfeldt-Jakob disease,

  

Degrading misfolded proteins

 

Alzheimer’s disease, Parkinson’s disease, Huntington’s disease

  

Activating signaling pathways that increase the production of molecular chaperones apoptosis

 

Prion diseases

First chaperone

Nucleus

Assembly of nucleosomes form histones to DNA

  

Steric chaperone

 

Convey folding information into some other proteins

  

Calnexin/Calreticulin

Lumen of ER

Calnexin forms part of the quality control monitor that recognize and target abnormally folded proteins for rapid degradation

Lectin chaperones

Glycan processing

HD

  

Protein folding

  
  

Functions as a chaperone for the folding of MHC class I α-chain in the membrane of the ER

  
  

Calreticulin binds to misfolded proteins and prevents them from being exported from the endoplasmic reticulum to the Golgi apparatus

  
  

Calreticulin, an abundant ER chaperone was shown to participate in the quality control of the amyloid precursor protein

  

Crystallin

   

AD

Hsp47/ERp29

ER

Non classical molecular chaperones

Hsp47 Procollagen chaperone

 

PDI/PPI/ERp57

ER

Folding chaperones

  

Transfer chaperones (Sec61 membrane protein)

Mitochondria & ER of eukaryotes

Transport across membranes

  

GroEl/GroEs, Dnak/DnaJ/GrpC

 

Foldases

Dnak is an Hsp70 protein.

 
   

One of Hsp40 chaperones is DnaJ (75-residue protein), which interacts with DnaK (a Hsp70 chaperone) and assists in capturing substrate proteins

 

DnaJ/Hsp53

 

Holdases

DnaJ is one of Hsp40

 

GRP78/BiP,GRP94

ER

General chaperones

 

AD,PD

GRP170

    

Erp57/BiP

ER

Quality control

Recognize misfolded proteins and help their retention in the ER allowing only correctly folded proteins to the cytosol

 

Hsp60/Hsp100/Hsp90

 

Hsp100/Hsp90 Protein disaggregation and refolding

Heat shock proteins,ATP/ADP

HD, prion diseases

Hsp70/Hsp40

 

Are involved in blocking aggregation of misfolded proteins by binding to their hydrophobic segments

Hsp70 consists of ATP-binding N-terminal domain and peptide binding C-terminal domain

AD, PD, HD, prion diseases

   

Hsp70 works in tandem with Hsp40 co-chaperone

 
   

Proteins in a cell may experience partial unfolding due to variety of factors, such as temperature increase, pH change etc. Some proteins may also fail to reach their native states after synthesis. As result such proteins adopt aggregation-prone states. To prevent this Hsp70 binds to such proteins and act as a general “safe keeper” for misfolded proteins

 

Cdc48p (valosin containing protein (VCP/p97))

ER

Ubiquitin binding protein

Transport substances from ER to cytoplasm

 

PDIA3 (Protein disulfide isomeric A3)

ER

Interacts with lectin chaperones

  
  

Modulate folding of newly synthesized glycoproteins

  

X-box binding protein (XbP1)

Part of UPR

Correlates with the expression level of expressed proteins in order to adapt the folding capacity of the ER to the respective requirements

 

AD, Crohn’s disease

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bobori, C., Theocharopoulou, G., Vlamos, P. (2017). Molecular Chaperones in Neurodegenerative Diseases: A Short Review. In: Vlamos, P. (eds) GeNeDis 2016. Advances in Experimental Medicine and Biology, vol 987. Springer, Cham. https://doi.org/10.1007/978-3-319-57379-3_20

Download citation

Publish with us

Policies and ethics