Skip to main content

Live Imaging of Connectivity in Developing Neural Circuits in Drosophila

  • Chapter
  • First Online:
Decoding Neural Circuit Structure and Function

Abstract

How neural circuits assemble during development influences functional adult circuit architecture, specificity, and variability. Live observation of brain development reveals stochastic and dynamic processes that help to understand functional constraints in the adult circuitry. In the first part of this chapter, we will explore what live imaging tells us about how dynamic processes create and constrain circuit specificity. In the second part of this chapter, we provide a current view of how live observation can be achieved in intact Drosophila brains in comparison to developmental imaging in other species. The goal of this chapter is to provide both the context and tools to understand neural circuits as a function of their developmental context.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ai HW, Henderson JN, Remington SJ, Campbell RE (2006) Directed evolution of a monomeric, bright and photostable version of Clavularia cyan fluorescent protein: structural characterization and applications in fluorescence imaging. Biochem J 400:531–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alsina B, Vu T, Cohen-Cory S (2001) Visualizing synapse formation in arborizing optic axons in vivo: dynamics and modulation by BDNF. Nat Neurosci 4:1093–1101

    Article  CAS  PubMed  Google Scholar 

  • Art JJ, Goodman MB (1993) Rapid scanning confocal microscopy. Methods Cell Biol 38:47–77

    Article  CAS  PubMed  Google Scholar 

  • Ayaz D, Leyssen M, Koch M, Yan J, Srahna M, Sheeba V, Fogle KJ, Holmes TC, Hassan BA (2008) Axonal injury and regeneration in the adult brain of Drosophila. J Neurosci Off J Soc Neurosci 28:6010–6021

    Article  CAS  Google Scholar 

  • Borlinghaus RT (2006) MRT letter: high speed scanning has the potential to increase fluorescence yield and to reduce photobleaching. Microsc Res Tech 69:689–692

    Article  CAS  PubMed  Google Scholar 

  • Cabernard C, Doe CQ (2013) Live imaging of neuroblast lineages within intact larval brains in Drosophila. Cold Spring Harb Protoc 2013:970–977

    Article  PubMed  Google Scholar 

  • Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC (1994) Green fluorescent protein as a marker for gene expression. Science 263:802–805

    Article  CAS  PubMed  Google Scholar 

  • Chan CE, Odde DJ (2008) Traction dynamics of filopodia on compliant substrates. Science 322:1687–1691

    Article  CAS  PubMed  Google Scholar 

  • Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76

    Article  CAS  PubMed  Google Scholar 

  • Drobizhev M, Makarov NS, Tillo SE, Hughes TE, Rebane A (2011) Two-photon absorption properties of fluorescent proteins. Nat Methods 8:393–399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duan X, Krishnaswamy A, De la Huerta I, Sanes JR (2014) Type II cadherins guide assembly of a direction-selective retinal circuit. Cell 158:793–807

    Article  CAS  PubMed  Google Scholar 

  • Dwivedy A, Gertler FB, Miller J, Holt CE, Lebrand C (2007) Ena/VASP function in retinal axons is required for terminal arborization but not pathway navigation. Development 134:2137–2146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dynes JL, Ngai J (1998) Pathfinding of olfactory neuron axons to stereotyped glomerular targets revealed by dynamic imaging in living zebrafish embryos. Neuron 20:1081–1091

    Article  CAS  PubMed  Google Scholar 

  • Elul TM, Kimes NE, Kohwi M, Reichardt LF (2003) N- and C-terminal domains of beta-catenin, respectively, are required to initiate and shape axon arbors of retinal ganglion cells in vivo. J Neurosci Off J Soc Neurosci 23:6567–6575

    CAS  Google Scholar 

  • Erdogan B, Ebbert PT, Lowery LA (2016) Using Xenopus laevis retinal and spinal neurons to study mechanisms of axon guidance in vivo and in vitro. Semin Cell Dev Biol 51:64–72

    Article  PubMed  PubMed Central  Google Scholar 

  • Evans IR, Zanet J, Wood W, Stramer BM (2010) Live imaging of Drosophila melanogaster embryonic hemocyte migrations. J Vis Exp 36

    Google Scholar 

  • Gallo G (2011) The cytoskeletal and signaling mechanisms of axon collateral branching. Dev Neurobiol 71:201–220

    Article  PubMed  Google Scholar 

  • Gibbs SM, Truman JW (1998) Nitric oxide and cyclic GMP regulate retinal patterning in the optic lobe of Drosophila. Neuron 20:83–93

    Article  CAS  PubMed  Google Scholar 

  • Godement P, Wang LC, Mason CA (1994) Retinal axon divergence in the optic chiasm: dynamics of growth cone behavior at the midline. J Neurosci Off J Soc Neurosci 14:7024–7039

    CAS  Google Scholar 

  • Hamilton PW, Henry JJ (2014) Prolonged in vivo imaging of Xenopus laevis. Dev Dyn 243:1011–1019

    Article  CAS  PubMed  Google Scholar 

  • Han C, Jan LY, Jan YN (2011) Enhancer-driven membrane markers for analysis of nonautonomous mechanisms reveal neuron-glia interactions in Drosophila. Proc Natl Acad Sci USA 108:9673–9678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassan BA, Hiesinger PR (2015) Beyond molecular codes: simple rules to wire complex brains. Cell 163:285–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heddleston JM, Chew TL (2016) Light sheet microscopes: novel imaging toolbox for visualizing life’s processes. Int J Biochem Cell Biol 80:119–123

    Article  CAS  PubMed  Google Scholar 

  • Heidemann SR, Lamoureux P, Buxbaum RE (1990) Growth cone behavior and production of traction force. J Cell Biol 111:1949–1957

    Article  CAS  PubMed  Google Scholar 

  • Heim R, Prasher DC, Tsien RY (1994) Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc Natl Acad Sci U S A 91:12501–12504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heim R, Cubitt AB, Tsien RY (1995) Improved green fluorescence. Nature 373:663–664

    Article  CAS  PubMed  Google Scholar 

  • Hong W, Mosca TJ, Luo L (2012) Teneurins instruct synaptic partner matching in an olfactory map. Nature 484:201–207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu YS, Zimmerley M, Li Y, Watters R, Cang H (2014) Single-molecule super-resolution light-sheet microscopy. ChemPhysChem 15:577–586

    Article  CAS  PubMed  Google Scholar 

  • Huckfeldt RM, Schubert T, Morgan JL, Godinho L, Di Cristo G, Huang ZJ, Wong RO (2009) Transient neurites of retinal horizontal cells exhibit columnar tiling via homotypic interactions. Nat Neurosci 12:35–43

    Article  CAS  PubMed  Google Scholar 

  • Jones EA, Crotty D, Kulesa PM, Waters CW, Baron MH, Fraser SE, Dickinson ME (2002) Dynamic in vivo imaging of postimplantation mammalian embryos using whole embryo culture. Genesis 34:228–235

    Article  CAS  PubMed  Google Scholar 

  • Jontes JD, Buchanan J, Smith SJ (2000) Growth cone and dendrite dynamics in zebrafish embryos: early events in synaptogenesis imaged in vivo. Nat Neurosci 3:231–237

    Article  CAS  PubMed  Google Scholar 

  • Kaethner RJ, Stuermer CA (1994) Growth behavior of retinotectal axons in live zebrafish embryos under TTX-induced neural impulse blockade. J Neurobiol 25:781–796

    Article  CAS  PubMed  Google Scholar 

  • Keller RE (1978) Time-lapse cinemicrographic analysis of superficial cell behavior during and prior to gastrulation in Xenopus laevis. J Morphol 157:223–247

    Article  Google Scholar 

  • Kerschensteiner D, Morgan JL, Parker ED, Lewis RM, Wong RO (2009) Neurotransmission selectively regulates synapse formation in parallel circuits in vivo. Nature 460:1016–1020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim H, Kim K, Yim J (2013) Biosynthesis of drosopterins, the red eye pigments of Drosophila melanogaster. IUBMB Life 65:334–340

    Article  CAS  PubMed  Google Scholar 

  • Kise Y, Schmucker D (2013) Role of self-avoidance in neuronal wiring. Curr Opin Neurobiol 23:983–989

    Article  CAS  PubMed  Google Scholar 

  • Kolodkin AL, Tessier-Lavigne M (2011) Mechanisms and molecules of neuronal wiring: a primer. Cold Spring Harb Perspect Biol 3

    Google Scholar 

  • Koster RW, Fraser SE (2001) Tracing transgene expression in living zebrafish embryos. Dev Biol 233:329–346

    Article  CAS  PubMed  Google Scholar 

  • Kulesa PM, Fraser SE (2000) In ovo time-lapse analysis of chick hindbrain neural crest cell migration shows cell interactions during migration to the branchial arches. Development 127:1161–1172

    CAS  PubMed  Google Scholar 

  • Kulesa PM, Bailey CM, Cooper C, Fraser SE (2010) In ovo live imaging of avian embryos. Cold Spring Harb Protoc 2010:pdb–prot5446

    Google Scholar 

  • Langen M, Agi E, Altschuler DJ, Wu LF, Altschuler SJ, Hiesinger PR (2015) The developmental rules of neural superposition in Drosophila. Cell 162:120–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22:451–461

    Article  CAS  PubMed  Google Scholar 

  • Lemon WC, Keller PJ (2015) Live imaging of nervous system development and function using light-sheet microscopy. Mol Reprod Dev 82:605–618

    Article  CAS  PubMed  Google Scholar 

  • Lerit DA, Plevock KM, Rusan NM (2014) Live imaging of Drosophila larval neuroblasts. J Vis Exp 89

    Google Scholar 

  • Li J, Erisir A, Cline H (2011) In vivo time-lapse imaging and serial section electron microscopy reveal developmental synaptic rearrangements. Neuron 69:273–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lichtman JW, Fraser SE (2001) The neuronal naturalist: watching neurons in their native habitat. Nat Neurosci 4(Suppl):1215–1220

    Article  CAS  PubMed  Google Scholar 

  • Manitt C, Nikolakopoulou AM, Almario DR, Nguyen SA, Cohen-Cory S (2009) Netrin participates in the development of retinotectal synaptic connectivity by modulating axon arborization and synapse formation in the developing brain. J Neurosci Off J Soc Neurosci 29:11065–11077

    Article  CAS  Google Scholar 

  • Mason C, Erskine L (2000) Growth cone form, behavior, and interactions in vivo: retinal axon pathfinding as a model. J Neurobiol 44:260–270

    Article  CAS  PubMed  Google Scholar 

  • Meyer MP, Smith SJ (2006) Evidence from in vivo imaging that synaptogenesis guides the growth and branching of axonal arbors by two distinct mechanisms. J Neurosci Off J Soc Neurosci 26:3604–3614

    Article  CAS  Google Scholar 

  • Mohler W, White J (1998) Multiphoton laser scanning microscopy for four-dimensional analysis of Caenorhabditis elegans embryonic development. Opt Express 3:325–331

    Article  CAS  PubMed  Google Scholar 

  • Morgan JL, Dhingra A, Vardi N, Wong RO (2006) Axons and dendrites originate from neuroepithelial-like processes of retinal bipolar cells. Nat Neurosci 9:85–92

    Article  CAS  PubMed  Google Scholar 

  • Murray MJ, Merritt DJ, Brand AH, Whitington PM (1998) In vivo dynamics of axon pathfinding in the Drosophilia CNS: a time-lapse study of an identified motorneuron. J Neurobiol 37:607–621

    Article  CAS  PubMed  Google Scholar 

  • Niell CM, Meyer MP, Smith SJ (2004) In vivo imaging of synapse formation on a growing dendritic arbor. Nat Neurosci 7:254–260

    Article  CAS  PubMed  Google Scholar 

  • O’Connor TP, Duerr JS, Bentley D (1990) Pioneer growth cone steering decisions mediated by single filopodial contacts in situ. J Neurosci Off J Soc Neurosci 10:3935–3946

    Google Scholar 

  • Ortega F, Costa MR (2016) Live imaging of adult neural stem cells in rodents. Front Neurosci 10:78

    Article  PubMed  PubMed Central  Google Scholar 

  • Ozel MN, Langen M, Hassan BA, Hiesinger PR (2015) Filopodial dynamics and growth cone stabilization in Drosophila visual circuit development. eLIFE 4

    Google Scholar 

  • Paul Bainbridge S, Bownes M (1988) Ecdysteroid titers during Drosophila metamorphosis. Insect Biochem 18:185–197

    Article  Google Scholar 

  • Prasher DC, Eckenrode VK, Ward WW, Prendergast FG, Cormier MJ (1992) Primary structure of the Aequorea victoria green-fluorescent protein. Gene 111:229–233

    Article  CAS  PubMed  Google Scholar 

  • Pyrgaki C, Trainor P, Hadjantonakis AK, Niswander L (2010) Dynamic imaging of mammalian neural tube closure. Dev biol 344:941–947

    Article  CAS  PubMed  Google Scholar 

  • Rabinovich D, Mayseless O, Schuldiner O (2015) Long term ex vivo culturing of Drosophila brain as a method to live image pupal brains: insights into the cellular mechanisms of neuronal remodeling. Front Cell Neurosci 9:327

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajnicek AM, Foubister LE, McCaig CD (2006) Growth cone steering by a physiological electric field requires dynamic microtubules, microfilaments and Rac-mediated filopodial asymmetry. J Cell Sci 119:1736–1745

    Article  CAS  PubMed  Google Scholar 

  • Ramón y Cajal S (1890) A quelle epoque apparaissent les expansions des cellule nerveuses de la moelle epinere du poulet. Anat Anzerger 5:609–613

    Google Scholar 

  • Raper J, Mason C (2010) Cellular strategies of axonal pathfinding. Cold Spring Harb Perspect Biol 2:a001933

    Article  PubMed  PubMed Central  Google Scholar 

  • Reed BH, McMillan SC, Chaudhary R (2009) The preparation of Drosophila embryos for live-imaging using the hanging drop protocol. J Vis Exp 25

    Google Scholar 

  • Sanes JR, Zipursky SL (2010) Design principles of insect and vertebrate visual systems. Neuron 66:15–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid A, Sigrist SJ (2008) Analysis of neuromuscular junctions: histology and in vivo imaging. Methods Mol Biol 420:239–251

    Article  CAS  PubMed  Google Scholar 

  • Shcherbo D, Murphy CS, Ermakova GV, Solovieva EA, Chepurnykh TV, Shcheglov AS, Verkhusha VV, Pletnev VZ, Hazelwood KL, Roche PM et al (2009) Far-red fluorescent tags for protein imaging in living tissues. Biochem J 418:567–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperry RW (1943) Effect of 180 degree rotation of the retinal field on visuomotor coordination. J Exp Zool 92:263–279

    Article  Google Scholar 

  • Vaughn JE (1989) Fine structure of synaptogenesis in the vertebrate central nervous system. Synapse 3:255–285

    Article  CAS  PubMed  Google Scholar 

  • Vitriol EA, Zheng JQ (2012) Growth cone travel in space and time: the cellular ensemble of cytoskeleton, adhesion, and membrane. Neuron 73:1068–1081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Webb RH (1996) Confocal optical microscopy. Rep Prog Phys 59:427

    Article  Google Scholar 

  • Williams PR, Morgan JL, Kerschensteiner D, Wong RO (2013) In vitro imaging of retinal whole mounts. Cold Spring Harb Protoc 2013

    Google Scholar 

  • Williamson WR, Hiesinger PR (2010) Preparation of developing and adult Drosophila brains and retinae for live imaging. J Vis Exp

    Google Scholar 

  • Yogev S, Shen K (2014) Cellular and molecular mechanisms of synaptic specificity. Annu Rev Cell Dev Biol 30:417–437

    Article  CAS  PubMed  Google Scholar 

  • Zheng JQ, Wan JJ, Poo MM (1996) Essential role of filopodia in chemotropic turning of nerve growth cone induced by a glutamate gradient. J Neurosci Off J Soc Neurosci 16:1140–1149

    CAS  Google Scholar 

  • Zschatzsch M, Oliva C, Langen M, De Geest N, Ozel MN, Williamson WR, Lemon WC, Soldano A, Munck S, Hiesinger PR et al (2014) Regulation of branching dynamics by axon-intrinsic asymmetries in tyrosine kinase receptor signaling. eLIFE 3:e01699

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Robin Hiesinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Özel, M.N., Hiesinger, P.R. (2017). Live Imaging of Connectivity in Developing Neural Circuits in Drosophila . In: Çelik, A., Wernet, M. (eds) Decoding Neural Circuit Structure and Function. Springer, Cham. https://doi.org/10.1007/978-3-319-57363-2_5

Download citation

Publish with us

Policies and ethics