Advertisement

Connectivity and Circuit Architecture Using Transsynaptic Tracing in Vertebrates

  • Kazunari MiyamichiEmail author
  • Lindsay A. Schwarz
Chapter

Abstract

The functions of the brain—such as sensory perception, memory formation, and behavioral responses—are based on the activity patterns of large numbers of interconnected neurons that form information-processing neuronal circuits. Most brain areas contain diverse types of neurons with specific morphology, gene expression profiles, input/output connectivity, and physiological response profiles. One major goal of neuroscience is to decipher connection patterns among different brain regions and cell types at the scale of the entire brain while keeping synaptic resolution. In this chapter, we first review various circuit tracing methods, and then introduce rabies virus (RV)-mediated transsynaptic tracing methods, which allow one to identify presynaptic neurons of genetically, anatomically, or functionally defined target neurons in a given brain area. This is achieved by genetic control of ‘starter’ cells, from which retrograde transsynaptic spread of RV occurs for only a single synaptic step. We will detail diverse methods that have been developed to restrict starter cells to a unique neuronal type. Following an introduction of RV transsynaptic tracing, the applications of these tools to three diverse biological systems in mice will be discussed: olfaction, neuromodulation, and motor control. From these examples, we will review how RV-mediated transsynaptic tracing has begun to decipher complex circuit architectures throughout the brain and spinal cord, and provides an important link between neuronal connections and circuit function.

References

  1. Adelson JD, Sapp RW, Brott BK, Lee H, Miyamichi K, Luo L, Cheng S, Djurisic M, Shatz CJ (2016) Developmental sculpting of intracortical circuits by MHC Class I H2-Db and H2-Kb. Cereb Cortex 26(4):1453–1463. doi: 10.1093/cercor/bhu243
  2. Aghajanian GK, Wang RY (1977) Habenular and other midbrain raphe afferents demonstrated by a modified retrograde tracing technique. Brain Res 122(2):229–242PubMedCrossRefGoogle Scholar
  3. Aponte Y, Atasoy D, Sternson SM (2011) AGRP neurons are sufficient to orchestrate feeding behavior rapidly and without training. Nat Neurosci 14(3):351–355. doi: 10.1038/nn.2739 PubMedCrossRefGoogle Scholar
  4. Arber S (2012) Motor circuits in action: specification, connectivity, and function. Neuron 74(6):975–989. doi: 10.1016/j.neuron.2012.05.011 PubMedCrossRefGoogle Scholar
  5. Arenkiel BR, Hasegawa H, Yi JJ, Larsen RS, Wallace ML, Philpot BD, Wang F, Ehlers MD (2011) Activity-induced remodeling of olfactory bulb microcircuits revealed by monosynaptic tracing. PLoS ONE 6(12):e29423. doi: 10.1371/journal.pone.0029423 PubMedPubMedCentralCrossRefGoogle Scholar
  6. Astic L, Saucier D, Coulon P, Lafay F, Flamand A (1993) The CVS strain of rabies virus as transneuronal tracer in the olfactory system of mice. Brain Res 619(1–2):146–156PubMedCrossRefGoogle Scholar
  7. Aston-Jones G, Ennis M, Pieribone VA, Nickell WT, Shipley MT (1986) The brain nucleus locus coeruleus: restricted afferent control of a broad efferent network. Science 234(4777):734–737PubMedCrossRefGoogle Scholar
  8. Atasoy D, Betley JN, Su HH, Sternson SM (2012) Deconstruction of a neural circuit for hunger. Nature 488(7410):172–177. doi: 10.1038/nature11270 PubMedPubMedCentralCrossRefGoogle Scholar
  9. Azim E, Jiang J, Alstermark B, Jessell TM (2014) Skilled reaching relies on a V2a propriospinal internal copy circuit. Nature 508(7496):357–363. doi: 10.1038/nature13021 PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bang SJ, Commons KG (2012) Forebrain GABAergic projections from the dorsal raphe nucleus identified by using GAD67-GFP knock-in mice. J Comp Neurol 520(18):4157–4167. doi: 10.1002/cne.23146 PubMedPubMedCentralCrossRefGoogle Scholar
  11. Basaldella E, Takeoka A, Sigrist M, Arber S (2015) Multisensory signaling shapes vestibulo-motor circuit specificity. Cell 163(2):301–312. doi: 10.1016/j.cell.2015.09.023 PubMedCrossRefGoogle Scholar
  12. Bassareo V, Tanda G, Petromilli P, Giua C, Di Chiara G (1996) Non-psychostimulant drugs of abuse and anxiogenic drugs activate with differential selectivity dopamine transmission in the nucleus accumbens and in the medial prefrontal cortex of the rat. Psychopharmacology 124(4):293–299PubMedCrossRefGoogle Scholar
  13. Bates P, Young JAT, Varmus HE (1993) A receptor for subgroup-a rous-sarcoma virus is related to the low-density-lipoprotein receptor. Cell 74(6):1043–1051. doi: 10.1016/0092-8674(93)90726-7 PubMedCrossRefGoogle Scholar
  14. Beckstead RM, Domesick VB, Nauta WJ (1979) Efferent connections of the substantia nigra and ventral tegmental area in the rat. Brain Res 175(2):191–217PubMedCrossRefGoogle Scholar
  15. Beier KT, Saunders A, Oldenburg IA, Miyamichi K, Akhtar N, Luo L, Whelan SP, Sabatini B, Cepko CL (2011) Anterograde or retrograde transsynaptic labeling of CNS neurons with vesicular stomatitis virus vectors. Proc Natl Acad Sci USA 108(37):15414–15419. doi: 10.1073/pnas.1110854108 PubMedPubMedCentralCrossRefGoogle Scholar
  16. Beier KT, Steinberg EE, DeLoach KE, Xie S, Miyamichi K, Schwarz L, Gao XJ, Kremer EJ, Malenka RC, Luo L (2015) Circuit architecture of VTA dopamine Neurons revealed by systematic input-output mapping. Cell 162(3):622–634. doi: 10.1016/j.cell.2015.07.015 PubMedPubMedCentralCrossRefGoogle Scholar
  17. Berridge CW, Waterhouse BD (2003) The locus coeruleus-noradrenergic system: modulation of behavioral state and state-dependent cognitive processes. Brain Res Brain Res Rev 42(1):33–84PubMedCrossRefGoogle Scholar
  18. Betley JN, Cao ZF, Ritola KD, Sternson SM (2013) Parallel, redundant circuit organization for homeostatic control of feeding behavior. Cell 155(6):1337–1350. doi: 10.1016/j.cell.2013.11.002 PubMedPubMedCentralCrossRefGoogle Scholar
  19. Bromberg-Martin ES, Matsumoto M, Hikosaka O (2010) Dopamine in motivational control: rewarding, aversive, and alerting. Neuron 68(5):815–834. doi: 10.1016/j.neuron.2010.11.022 PubMedPubMedCentralCrossRefGoogle Scholar
  20. Callaway EM, Luo L (2015) Monosynaptic circuit tracing with glycoprotein-deleted rabies viruses. J Neurosci Off J Soc Neurosci 35(24):8979–8985. doi: 10.1523/JNEUROSCI.0409-15.2015 CrossRefGoogle Scholar
  21. Card JP, Whealy ME, Robbins AK, Enquist LW (1992) Pseudorabies virus envelope glycoprotein gI influences both neurotropism and virulence during infection of the rat visual system. J Virol 66(5):3032–3041PubMedPubMedCentralGoogle Scholar
  22. Cedarbaum JM, Aghajanian GK (1978) Afferent projections to the rat locus coeruleus as determined by a retrograde tracing technique. J Comp Neurol 178(1):1–16. doi: 10.1002/cne.901780102 PubMedCrossRefGoogle Scholar
  23. Chuhma N, Tanaka KF, Hen R, Rayport S (2011) Functional connectome of the striatal medium spiny neuron. J Neurosci Off J Soc Neurosci 31(4):1183–1192. doi: 10.1523/JNEUROSCI.3833-10.2011 CrossRefGoogle Scholar
  24. Cowan WM, Gottlieb DI, Hendrickson AE, Price JL, Woolsey TA (1972) The autoradiographic demonstration of axonal connections in the central nervous system. Brain Res 37(1):21–51PubMedCrossRefGoogle Scholar
  25. Cowley MA, Smart JL, Rubinstein M, Cerdan MG, Diano S, Horvath TL, Cone RD, Low MJ (2001) Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature 411(6836):480–484. doi: 10.1038/35078085 PubMedCrossRefGoogle Scholar
  26. Darvas M, Palmiter RD (2009) Restriction of dopamine signaling to the dorsolateral striatum is sufficient for many cognitive behaviors. Proc Natl Acad Sci USA 106(34):14664–14669. doi: 10.1073/pnas.0907299106 PubMedPubMedCentralCrossRefGoogle Scholar
  27. Darvas M, Palmiter RD (2010) Restricting dopaminergic signaling to either dorsolateral or medial striatum facilitates cognition. J Neurosci Off J Soc Neurosci 30(3):1158–1165. doi: 10.1523/JNEUROSCI.4576-09.2010 CrossRefGoogle Scholar
  28. DeFalco J, Tomishima M, Liu H, Zhao C, Cai X, Marth JD, Enquist L, Friedman JM (2001) Virus-assisted mapping of neural inputs to a feeding center in the hypothalamus. Science 291(5513):2608–2613. doi: 10.1126/science.1056602 PubMedCrossRefGoogle Scholar
  29. Deisseroth K (2015) Optogenetics: 10 years of microbial opsins in neuroscience. Nat Neurosci 18(9):1213–1225. doi: 10.1038/nn.4091 PubMedPubMedCentralCrossRefGoogle Scholar
  30. DeNardo LA, Berns DS, DeLoach K, Luo L (2015) Connectivity of mouse somatosensory and prefrontal cortex examined with trans-synaptic tracing. Nat Neurosci 18(11):1687–1697. doi: 10.1038/nn.4131 PubMedPubMedCentralCrossRefGoogle Scholar
  31. Deshpande A, Bergami M, Ghanem A, Conzelmann KK, Lepier A, Gotz M, Berninger B (2013) Retrograde monosynaptic tracing reveals the temporal evolution of inputs onto new neurons in the adult dentate gyrus and olfactory bulb. Proc Natl Acad Sci USA 110(12):E1152–E1161. doi: 10.1073/pnas.1218991110 PubMedPubMedCentralCrossRefGoogle Scholar
  32. Esposito MS, Capelli P, Arber S (2014) Brainstem nucleus MdV mediates skilled forelimb motor tasks. Nature 508(7496):351–356. doi: 10.1038/nature13023 PubMedCrossRefGoogle Scholar
  33. Etessami R, Conzelmann KK, Fadai-Ghotbi B, Natelson B, Tsiang H, Ceccaldi PE (2000) Spread and pathogenic characteristics of a G-deficient rabies virus recombinant: an in vitro and in vivo study. J Gen Virol 81:2147–2153PubMedCrossRefGoogle Scholar
  34. Fink AJ, Croce KR, Huang ZJ, Abbott LF, Jessell TM, Azim E (2014) Presynaptic inhibition of spinal sensory feedback ensures smooth movement. Nature 509(7498):43–48. doi: 10.1038/nature13276 PubMedPubMedCentralCrossRefGoogle Scholar
  35. Frank E, Westerfield M (1983) Development of sensory-motor synapses in the spinal cord of the frog. J Physiol 343:593–610PubMedPubMedCentralCrossRefGoogle Scholar
  36. Franks KM, Russo MJ, Sosulski DL, Mulligan AA, Siegelbaum SA, Axel R (2011) Recurrent circuitry dynamically shapes the activation of piriform cortex. Neuron 72(1):49–56. doi: 10.1016/j.neuron.2011.08.020 PubMedPubMedCentralCrossRefGoogle Scholar
  37. Fu Y, Tucciarone JM, Espinosa JS, Sheng N, Darcy DP, Nicoll RA, Huang ZJ, Stryker MP (2014) A cortical circuit for gain control by behavioral state. Cell 156(6):1139–1152. doi: 10.1016/j.cell.2014.01.050 PubMedPubMedCentralCrossRefGoogle Scholar
  38. Garcia I, Quast KB, Huang L, Herman AM, Selever J, Deussing JM, Justice NJ, Arenkiel BR (2014) Local CRH signaling promotes synaptogenesis and circuit integration of adult-born neurons. Dev Cell 30(6):645–659. doi: 10.1016/j.devcel.2014.07.001 PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gerfen CR, Paletzki R, Heintz N (2013) GENSAT BAC cre-recombinase driver lines to study the functional organization of cerebral cortical and basal ganglia circuits. Neuron 80(6):1368–1383. doi: 10.1016/j.neuron.2013.10.016 PubMedCrossRefGoogle Scholar
  40. Goetz C, Pivetta C, Arber S (2015) Distinct limb and trunk premotor circuits establish laterality in the spinal cord. Neuron 85(1):131–144. doi: 10.1016/j.neuron.2014.11.024 PubMedCrossRefGoogle Scholar
  41. Goodpasture EW, Teague O (1923) Transmission of the virus of herpes febrilis along nerves in experimentally infected rabbits. J Med Res 44(2):139–184 (137)Google Scholar
  42. Goulding M (2009) Circuits controlling vertebrate locomotion: moving in a new direction. Nat Rev Neurosci 10(7):507–518. doi: 10.1038/nrn2608 PubMedPubMedCentralCrossRefGoogle Scholar
  43. Greig LC, Woodworth MB, Galazo MJ, Padmanabhan H, Macklis JD (2013) Molecular logic of neocortical projection neuron specification, development and diversity. Nat Rev Neurosci 14(11):755–769. doi: 10.1038/nrn3586 CrossRefGoogle Scholar
  44. Haubensak W, Kunwar PS, Cai H, Ciocchi S, Wall NR, Ponnusamy R, Biag J, Dong HW, Deisseroth K, Callaway EM, Fanselow MS, Luthi A, Anderson DJ (2010) Genetic dissection of an amygdala microcircuit that gates conditioned fear. Nature 468(7321):270–276. doi: 10.1038/nature09553 PubMedPubMedCentralCrossRefGoogle Scholar
  45. Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W (2013) Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500(7461):168–174. doi: 10.1038/nature12346 PubMedCrossRefGoogle Scholar
  46. Hioki H, Nakamura H, Ma YF, Konno M, Hayakawa T, Nakamura KC, Fujiyama F, Kaneko T (2010) Vesicular glutamate transporter 3-expressing nonserotonergic projection neurons constitute a subregion in the rat midbrain raphe nuclei. J Comp Neurol 518(5):668–686. doi: 10.1002/cne.22237 PubMedCrossRefGoogle Scholar
  47. Hnasko TS, Perez FA, Scouras AD, Stoll EA, Gale SD, Luquet S, Phillips PE, Kremer EJ, Palmiter RD (2006) Cre recombinase-mediated restoration of nigrostriatal dopamine in dopamine-deficient mice reverses hypophagia and bradykinesia. Proc Natl Acad Sci USA 103(23):8858–8863. doi: 10.1073/pnas.0603081103 PubMedPubMedCentralCrossRefGoogle Scholar
  48. Hnasko TS, Chuhma N, Zhang H, Goh GY, Sulzer D, Palmiter RD, Rayport S, Edwards RH (2010) Vesicular glutamate transport promotes dopamine storage and glutamate corelease in vivo. Neuron 65(5):643–656. doi: 10.1016/j.neuron.2010.02.012 PubMedPubMedCentralCrossRefGoogle Scholar
  49. Hnasko TS, Hjelmstad GO, Fields HL, Edwards RH (2012) Ventral tegmental area glutamate neurons: electrophysiological properties and projections. J Neurosci Off J Soc Neurosci 32(43):15076–15085. doi: 10.1523/JNEUROSCI.3128-12.2012 CrossRefGoogle Scholar
  50. Igarashi KM, Ieki N, An M, Yamaguchi Y, Nagayama S, Kobayakawa K, Kobayakawa R, Tanifuji M, Sakano H, Chen WR, Mori K (2012) Parallel mitral and tufted cell pathways route distinct odor information to different targets in the olfactory cortex. J Neurosci Off J Soc Neurosci 32(23):7970–7985. doi: 10.1523/JNEUROSCI.0154-12.2012 CrossRefGoogle Scholar
  51. Kanning KC, Kaplan A, Henderson CE (2010) Motor neuron diversity in development and disease. Annu Rev Neurosci 33:409–440. doi: 10.1146/annurev.neuro.051508.135722 PubMedCrossRefGoogle Scholar
  52. Kasthuri N, Hayworth KJ, Berger DR, Schalek RL, Conchello JA, Knowles-Barley S, Lee D, Vazquez-Reina A, Kaynig V, Jones TR, Roberts M, Morgan JL, Tapia JC, Seung HS, Roncal WG, Vogelstein JT, Burns R, Sussman DL, Priebe CE, Pfister H, Lichtman JW (2015) Saturated reconstruction of a volume of neocortex. Cell 162(3):648–661. doi: 10.1016/j.cell.2015.06.054 PubMedCrossRefGoogle Scholar
  53. Kato HK, Chu MW, Isaacson JS, Komiyama T (2012) Dynamic sensory representations in the olfactory bulb: modulation by wakefulness and experience. Neuron 76(5):962–975. doi: 10.1016/j.neuron.2012.09.037 PubMedPubMedCentralCrossRefGoogle Scholar
  54. Kato HK, Gillet SN, Peters AJ, Isaacson JS, Komiyama T (2013) Parvalbumin-expressing interneurons linearly control olfactory bulb output. Neuron 80(5):1218–1231. doi: 10.1016/j.neuron.2013.08.036 PubMedCrossRefGoogle Scholar
  55. Kim EJ, Juavinett AL, Kyubwa EM, Jacobs MW, Callaway EM (2015) Three types of cortical layer 5 neurons that differ in brain-wide connectivity and function. Neuron 88(6):1253–1267. doi: 10.1016/j.neuron.2015.11.002 PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kiritani T, Wickersham IR, Seung HS, Shepherd GM (2012) Hierarchical connectivity and connection-specific dynamics in the corticospinal-corticostriatal microcircuit in mouse motor cortex. J Neurosci Off J Soc Neurosci 32(14):4992–5001. doi: 10.1523/JNEUROSCI.4759-11.2012 CrossRefGoogle Scholar
  57. Kobayakawa K, Kobayakawa R, Matsumoto H, Oka Y, Imai T, Ikawa M, Okabe M, Ikeda T, Itohara S, Kikusui T, Mori K, Sakano H (2007) Innate versus learned odour processing in the mouse olfactory bulb. Nature 450(7169):503–508. doi: 10.1038/nature06281 PubMedCrossRefGoogle Scholar
  58. Kohara K, Pignatelli M, Rivest AJ, Jung HY, Kitamura T, Suh J, Frank D, Kajikawa K, Mise N, Obata Y, Wickersham IR, Tonegawa S (2014) Cell type-specific genetic and optogenetic tools reveal hippocampal CA2 circuits. Nat Neurosci 17(2):269–279. doi: 10.1038/nn.3614 PubMedCrossRefGoogle Scholar
  59. Krashes MJ, Koda S, Ye C, Rogan SC, Adams AC, Cusher DS, Maratos-Flier E, Roth BL, Lowell BB (2011) Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J Clin Investig 121(4):1424–1428. doi: 10.1172/JCI46229 PubMedPubMedCentralCrossRefGoogle Scholar
  60. Krashes MJ, Shah BP, Madara JC, Olson DP, Strochlic DE, Garfield AS, Vong L, Pei H, Watabe-Uchida M, Uchida N, Liberles SD, Lowell BB (2014) An excitatory paraventricular nucleus to AgRP neuron circuit that drives hunger. Nature 507(7491):238–242. doi: 10.1038/nature12956 PubMedPubMedCentralCrossRefGoogle Scholar
  61. Lafon M (2005) Rabies virus receptors. J Neurovirol 11(1):82–87. doi: 10.1080/13550280590900427 PubMedCrossRefGoogle Scholar
  62. Lammel S, Hetzel A, Hackel O, Jones I, Liss B, Roeper J (2008) Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron 57(5):760–773. doi: 10.1016/j.neuron.2008.01.022 PubMedCrossRefGoogle Scholar
  63. Lammel S, Ion DI, Roeper J, Malenka RC (2011) Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron 70(5):855–862. doi: 10.1016/j.neuron.2011.03.025 PubMedPubMedCentralCrossRefGoogle Scholar
  64. Lammel S, Lim BK, Ran C, Huang KW, Betley MJ, Tye KM, Deisseroth K, Malenka RC (2012) Input-specific control of reward and aversion in the ventral tegmental area. Nature 491(7423):212–217. doi: 10.1038/nature11527 PubMedPubMedCentralCrossRefGoogle Scholar
  65. Lanuza GM, Gosgnach S, Pierani A, Jessell TM, Goulding M (2004) Genetic identification of spinal interneurons that coordinate left-right locomotor activity necessary for walking movements. Neuron 42(3):375–386PubMedCrossRefGoogle Scholar
  66. Lerner TN, Shilyansky C, Davidson TJ, Evans KE, Beier KT, Zalocusky KA, Crow AK, Malenka RC, Luo L, Tomer R, Deisseroth K (2015) Intact-brain analyses reveal distinct information carried by SNc dopamine subcircuits. Cell 162(3):635–647. doi: 10.1016/j.cell.2015.07.014 PubMedPubMedCentralCrossRefGoogle Scholar
  67. Levine AJ, Hinckley CA, Hilde KL, Driscoll SP, Poon TH, Montgomery JM, Pfaff SL (2014) Identification of a cellular node for motor control pathways. Nat Neurosci 17(4):586–593. doi: 10.1038/nn.3675 PubMedPubMedCentralCrossRefGoogle Scholar
  68. Li Y, Stam FJ, Aimone JB, Goulding M, Callaway EM, Gage FH (2013) Molecular layer perforant path-associated cells contribute to feed-forward inhibition in the adult dentate gyrus. Proc Natl Acad Sci USA 110(22):9106–9111. doi: 10.1073/pnas.1306912110 PubMedPubMedCentralCrossRefGoogle Scholar
  69. Liu S, Plachez C, Shao Z, Puche A, Shipley MT (2013) Olfactory bulb short axon cell release of GABA and dopamine produces a temporally biphasic inhibition-excitation response in external tufted cells. J Neurosci Off J Soc Neurosci 33(7):2916–2926. doi: 10.1523/JNEUROSCI.3607-12.2013 CrossRefGoogle Scholar
  70. Lo L, Anderson DJ (2011) A cre-dependent, anterograde transsynaptic viral tracer for mapping output pathways of genetically marked neurons. Neuron 72(6):938–950. doi: 10.1016/j.neuron.2011.12.002 PubMedPubMedCentralCrossRefGoogle Scholar
  71. Magnus CJ, Lee PH, Atasoy D, Su HH, Looger LL, Sternson SM (2011) Chemical and genetic engineering of selective ion channel-ligand interactions. Science 333(6047):1292–1296. doi: 10.1126/science.1206606 PubMedPubMedCentralCrossRefGoogle Scholar
  72. Marder E (2012) Neuromodulation of neuronal circuits: back to the future. Neuron 76(1):1–11. doi: 10.1016/j.neuron.2012.09.010 PubMedPubMedCentralCrossRefGoogle Scholar
  73. Margolis EB, Mitchell JM, Ishikawa J, Hjelmstad GO, Fields HL (2008) Midbrain dopamine neurons: projection target determines action potential duration and dopamine D(2) receptor inhibition. J Neurosci Off J Soc Neurosci 28(36):8908–8913. doi: 10.1523/JNEUROSCI.1526-08.2008 CrossRefGoogle Scholar
  74. Margolis EB, Toy B, Himmels P, Morales M, Fields HL (2012) Identification of rat ventral tegmental area GABAergic neurons. PLoS ONE 7(7):e42365. doi: 10.1371/journal.pone.0042365 PubMedPubMedCentralCrossRefGoogle Scholar
  75. Mebatsion T, Schnell MJ, Cox JH, Finke S, Conzelmann KK (1996a) Highly stable expression of a foreign gene from rabies virus vectors. Proc Natl Acad Sci USA 93(14):7310–7314. doi: 10.1073/pnas.93.14.7310 PubMedPubMedCentralCrossRefGoogle Scholar
  76. Mebatsion T, Konig M, Conzelmann KK (1996b) Budding of rabies virus particles in the absence of the spike glycoprotein. Cell 84(6):941–951. doi: 10.1016/S0092-8674(00)81072-7 PubMedCrossRefGoogle Scholar
  77. Menegas W, Bergan JF, Ogawa SK, Isogai Y, Umadevi Venkataraju K, Osten P, Uchida N, Watabe-Uchida M (2015) Dopamine neurons projecting to the posterior striatum form an anatomically distinct subclass. eLife 4:e10032. doi: 10.7554/eLife.10032
  78. Mirenowicz J, Schultz W (1996) Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature 379(6564):449–451. doi: 10.1038/379449a0 PubMedCrossRefGoogle Scholar
  79. Miyamichi K, Amat F, Moussavi F, Wang C, Wickersham I, Wall NR, Taniguchi H, Tasic B, Huang ZJ, He Z, Callaway EM, Horowitz MA, Luo L (2011) Cortical representations of olfactory input by trans-synaptic tracing. Nature 472(7342):191–196. doi: 10.1038/nature09714 PubMedCrossRefGoogle Scholar
  80. Miyamichi K, Shlomai-Fuchs Y, Shu M, Weissbourd BC, Luo L, Mizrahi A (2013) Dissecting local circuits: parvalbumin interneurons underlie broad feedback control of olfactory bulb output. Neuron 80(5):1232–1245. doi: 10.1016/j.neuron.2013.08.027 PubMedPubMedCentralCrossRefGoogle Scholar
  81. Mori K, Sakano H (2011) How is the olfactory map formed and interpreted in the mammalian brain? Annu Rev Neurosci 34:467–499. doi: 10.1146/annurev-neuro-112210-112917 PubMedCrossRefGoogle Scholar
  82. Müller CP, Jacobs BL (2010) Handbook of the behavioral neurobiology of serotonin. Elsevier, AmsterdamGoogle Scholar
  83. Mundell NA, Beier KT, Pan YA, Lapan SW, Goz Ayturk D, Berezovskii VK, Wark AR, Drokhlyansky E, Bielecki J, Born RT, Schier AF, Cepko CL (2015) Vesicular stomatitis virus enables gene transfer and transsynaptic tracing in a wide range of organisms. J Comp Neurol 523(11):1639–1663. doi: 10.1002/cne.23761 PubMedPubMedCentralCrossRefGoogle Scholar
  84. Nagai T, Satoh K, Imamoto K, Maeda T (1981) Divergent projections of catecholamine neurons of the locus coeruleus as revealed by fluorescent retrograde double labeling technique. Neurosci Lett 23(2):117–123PubMedCrossRefGoogle Scholar
  85. Nakashiba T, Cushman JD, Pelkey KA, Renaudineau S, Buhl DL, McHugh TJ, Barrera VR, Chittajallu R, Iwamoto KS, McBain CJ, Fanselow MS, Tonegawa S (2012) Young dentate granule cells mediate pattern separation, whereas old granule cells facilitate pattern completion. Cell 149(1):188–201. doi: 10.1016/j.cell.2012.01.046 PubMedPubMedCentralCrossRefGoogle Scholar
  86. Namburi P, Beyeler A, Yorozu S, Calhoon GG, Halbert SA, Wichmann R, Holden SS, Mertens KL, Anahtar M, Felix-Ortiz AC, Wickersham IR, Gray JM, Tye KM (2015) A circuit mechanism for differentiating positive and negative associations. Nature 520(7549):675–678. doi: 10.1038/nature14366 PubMedPubMedCentralCrossRefGoogle Scholar
  87. Nassi JJ, Cepko CL, Born RT, Beier KT (2015) Neuroanatomy goes viral! Front Neuroanat 9:80. doi: 10.3389/fnana.2015.00080 PubMedPubMedCentralCrossRefGoogle Scholar
  88. Ni Y, Nawabi H, Liu X, Yang L, Miyamichi K, Tedeschi A, Xu B, Wall NR, Callaway EM, He Z (2014) Characterization of long descending premotor propriospinal neurons in the spinal cord. J Neurosci Off J Soc Neurosci 34(28):9404–9417. doi: 10.1523/JNEUROSCI.1771-14.2014 CrossRefGoogle Scholar
  89. Niedworok CJ, Schwarz I, Ledderose J, Giese G, Conzelmann KK, Schwarz MK (2012) Charting monosynaptic connectivity maps by two-color light-sheet fluorescence microscopy. Cell reports 2(5):1375–1386. doi: 10.1016/j.celrep.2012.10.008 PubMedCrossRefGoogle Scholar
  90. Ogawa SK, Cohen JY, Hwang D, Uchida N, Watabe-Uchida M (2014) Organization of monosynaptic inputs to the serotonin and dopamine neuromodulatory systems. Cell Rep 8(4):1105–1118. doi: 10.1016/j.celrep.2014.06.042 PubMedPubMedCentralCrossRefGoogle Scholar
  91. Oh SW, Harris JA, Ng L, Winslow B, Cain N, Mihalas S, Wang Q, Lau C, Kuan L, Henry AM, Mortrud MT, Ouellette B, Nguyen TN, Sorensen SA, Slaughterbeck CR, Wakeman W, Li Y, Feng D, Ho A, Nicholas E, Hirokawa KE, Bohn P, Joines KM, Peng H, Hawrylycz MJ, Phillips JW, Hohmann JG, Wohnoutka P, Gerfen CR, Koch C, Bernard A, Dang C, Jones AR, Zeng H (2014) A mesoscale connectome of the mouse brain. Nature 508(7495):207–214. doi: 10.1038/nature13186 PubMedPubMedCentralCrossRefGoogle Scholar
  92. Osakada F, Mori T, Cetin AH, Marshel JH, Virgen B, Callaway EM (2011) New rabies virus variants for monitoring and manipulating activity and gene expression in defined neural circuits. Neuron 71(4):617–631. doi: 10.1016/j.neuron.2011.07.005 PubMedPubMedCentralCrossRefGoogle Scholar
  93. Oyibo HK, Znamenskiy P, Oviedo HV, Enquist LW, Zador AM (2014) Long-term Cre-mediated retrograde tagging of neurons using a novel recombinant pseudorabies virus. Front Neuroanat 8:86. doi: 10.3389/fnana.2014.00086 PubMedPubMedCentralCrossRefGoogle Scholar
  94. Petreanu L, Huber D, Sobczyk A, Svoboda K (2007) Channelrhodopsin-2-assisted circuit mapping of long-range callosal projections. Nat Neurosci 10(5):663–668. doi: 10.1038/nn1891 PubMedCrossRefGoogle Scholar
  95. Pivetta C, Esposito MS, Sigrist M, Arber S (2014) Motor-circuit communication matrix from spinal cord to brainstem neurons revealed by developmental origin. Cell 156(3):537–548. doi: 10.1016/j.cell.2013.12.014 PubMedCrossRefGoogle Scholar
  96. Pollak Dorocic I, Furth D, Xuan Y, Johansson Y, Pozzi L, Silberberg G, Carlen M, Meletis K (2014) A whole-brain atlas of inputs to serotonergic neurons of the dorsal and median raphe nuclei. Neuron 83(3):663–678. doi: 10.1016/j.neuron.2014.07.002 PubMedCrossRefGoogle Scholar
  97. Poo C, Isaacson JS (2009) Odor representations in olfactory cortex: “sparse” coding, global inhibition, and oscillations. Neuron 62(6):850–861. doi: 10.1016/j.neuron.2009.05.022 PubMedPubMedCentralCrossRefGoogle Scholar
  98. Rancz EA, Franks KM, Schwarz MK, Pichler B, Schaefer AT, Margrie TW (2011) Transfection via whole-cell recording in vivo: bridging single-cell physiology, genetics and connectomics. Nat Neurosci 14(4):527–532. doi: 10.1038/nn.2765 PubMedPubMedCentralCrossRefGoogle Scholar
  99. Reardon TR, Murray AJ, Turi GF, Wirblich C, Croce KR, Schnell MJ, Jessell TM, Losonczy A (2016) Rabies virus CVS-N2c strain enhances retrograde synaptic transfer and neuronal viability. Neuron 89:1–14. doi: 10.1016/j.neuron.2016.01.004 CrossRefGoogle Scholar
  100. Rong L, Gendron K, Strohl B, Shenoy R, Wool-Lewis RJ, Bates P (1998) Characterization of determinants for envelope binding and infection in Tva, the subgroup A avian sarcoma and leukosis virus receptor. J Virol 72(6):4552–4559PubMedPubMedCentralGoogle Scholar
  101. Room P, Postema F, Korf J (1981) Divergent axon collaterals of rat locus coeruleus neurons: demonstration by a fluorescent double labeling technique. Brain Res 221(2):219–230PubMedCrossRefGoogle Scholar
  102. Roth BL (2016) DREADDs for neuroscientists. Neuron 89(4):683–694. doi: 10.1016/j.neuron.2016.01.040 PubMedPubMedCentralCrossRefGoogle Scholar
  103. Satoh D, Pudenz C, Arber S (2016) Context-dependent gait choice elicited by EphA4 Mutation in Lbx1 spinal interneurons. Neuron 89:1–13CrossRefGoogle Scholar
  104. Saunders A, Granger AJ, Sabatini BL (2015) Corelease of acetylcholine and GABA from cholinergic forebrain neurons. eLife 4. doi: 10.7554/eLife.06412
  105. Schiemann J, Schlaudraff F, Klose V, Bingmer M, Seino S, Magill PJ, Zaghloul KA, Schneider G, Liss B, Roeper J (2012) K-ATP channels in dopamine substantia nigra neurons control bursting and novelty-induced exploration. Nat Neurosci 15(9):1272–1280. doi: 10.1038/nn.3185 PubMedPubMedCentralCrossRefGoogle Scholar
  106. Schmued LC, Fallon JH (1986) Fluoro-Gold: a new fluorescent retrograde axonal tracer with numerous unique properties. Brain Res 377(1):147–154PubMedCrossRefGoogle Scholar
  107. Schnell MJ, Mebatsion T, Conzelmann KK (1994) Infectious rabies viruses from cloned cDNA. EMBO J 13(18):4195–4203PubMedPubMedCentralGoogle Scholar
  108. Schnutgen F, Doerflinger N, Calleja C, Wendling O, Chambon P, Ghyselinck NB (2003) A directional strategy for monitoring Cre-mediated recombination at the cellular level in the mouse. Nat Biotechnol 21(5):562–565. doi: 10.1038/nbt811 PubMedCrossRefGoogle Scholar
  109. Schwab ME, Javoy-Agid F, Agid Y (1978) Labeled wheat germ agglutinin (WGA) as a new, highly sensitive retrograde tracer in the rat brain hippocampal system. Brain Res 152(1):145–150PubMedCrossRefGoogle Scholar
  110. Schwarz LA, Miyamichi K, Gao XJ, Beier KT, Weissbourd B, DeLoach KE, Ren J, Ibanes S, Malenka RC, Kremer EJ, Luo L (2015) Viral-genetic tracing of the input-output organization of a central noradrenaline circuit. Nature 524(7563):88–92. doi: 10.1038/nature14600 PubMedPubMedCentralCrossRefGoogle Scholar
  111. Shepherd GM (2004) The synaptic organization of the brain, 5th edition, 5th edn. Oxford University Press, OxfordCrossRefGoogle Scholar
  112. Sosulski DL, Bloom ML, Cutforth T, Axel R, Datta SR (2011) Distinct representations of olfactory information in different cortical centres. Nature 472(7342):213–216. doi: 10.1038/nature09868 PubMedPubMedCentralCrossRefGoogle Scholar
  113. Soudais C, Laplace-Builhe C, Kissa K, Kremer EJ (2001) Preferential transduction of neurons by canine adenovirus vectors and their efficient retrograde transport in vivo. FASEB J Off Publ Federation Am Soc Exp Biol 15(12):2283–2285. doi: 10.1096/fj.01-0321fje Google Scholar
  114. Spaete RR, Frenkel N (1982) The herpes simplex virus amplicon: a new eucaryotic defective-virus cloning-amplifying vector. Cell 30(1):295–304PubMedCrossRefGoogle Scholar
  115. Steinbusch HW, van der Kooy D, Verhofstad AA, Pellegrino A (1980) Serotonergic and non-serotonergic projections from the nucleus raphe dorsalis to the caudate-putamen complex in the rat, studied by a combined immunofluorescence and fluorescent retrograde axonal labeling technique. Neurosci Lett 19(2):137–142PubMedCrossRefGoogle Scholar
  116. Stepien AE, Tripodi M, Arber S (2010) Monosynaptic rabies virus reveals premotor network organization and synaptic specificity of cholinergic partition cells. Neuron 68(3):456–472. doi: 10.1016/j.neuron.2010.10.019 PubMedCrossRefGoogle Scholar
  117. Stettler DD, Axel R (2009) Representations of odor in the piriform cortex. Neuron 63(6):854–864. doi: 10.1016/j.neuron.2009.09.005 PubMedCrossRefGoogle Scholar
  118. Stokes CC, Isaacson JS (2010) From dendrite to soma: dynamic routing of inhibition by complementary interneuron microcircuits in olfactory cortex. Neuron 67(3):452–465. doi: 10.1016/j.neuron.2010.06.029 PubMedPubMedCentralCrossRefGoogle Scholar
  119. Stuber GD, Hnasko TS, Britt JP, Edwards RH, Bonci A (2010) Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate. J Neurosci Off J Soc Neurosci 30(24):8229–8233. doi: 10.1523/JNEUROSCI.1754-10.2010 CrossRefGoogle Scholar
  120. Sun N, Cassell MD, Perlman S (1996) Anterograde, transneuronal transport of herpes simplex virus type 1 strain H129 in the murine visual system. J Virol 70(8):5405–5413PubMedPubMedCentralGoogle Scholar
  121. Sun Y, Nguyen AQ, Nguyen JP, Le L, Saur D, Choi J, Callaway EM, Xu X (2014) Cell-type-specific circuit connectivity of hippocampal CA1 revealed through Cre-dependent rabies tracing. Cell reports 7(1):269–280. doi: 10.1016/j.celrep.2014.02.030 PubMedPubMedCentralCrossRefGoogle Scholar
  122. Swanson LW, Hartman BK (1975) The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-beta-hydroxylase as a marker. J Comp Neurol 163(4):467–505. doi: 10.1002/cne.901630406 PubMedCrossRefGoogle Scholar
  123. Takatoh J, Nelson A, Zhou X, Bolton MM, Ehlers MD, Arenkiel BR, Mooney R, Wang F (2013) New modules are added to vibrissal premotor circuitry with the emergence of exploratory whisking. Neuron 77(2):346–360. doi: 10.1016/j.neuron.2012.11.010 PubMedPubMedCentralCrossRefGoogle Scholar
  124. Talpalar AE, Bouvier J, Borgius L, Fortin G, Pierani A, Kiehn O (2013) Dual-mode operation of neuronal networks involved in left-right alternation. Nature 500(7460):85–88. doi: 10.1038/nature12286 PubMedCrossRefGoogle Scholar
  125. Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J, Obata K, Kaneko T (2003) Green fluorescent protein expression and colocalization with calretinin, parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp Neurol 467(1):60–79. doi: 10.1002/cne.10905 PubMedCrossRefGoogle Scholar
  126. Tripodi M, Stepien AE, Arber S (2011) Motor antagonism exposed by spatial segregation and timing of neurogenesis. Nature 479(7371):61–66. doi: 10.1038/nature10538 PubMedCrossRefGoogle Scholar
  127. Tsiang H, Lycke E, Ceccaldi PE, Ermine A, Hirardot X (1989) The anterograde transport of rabies virus in rat sensory dorsal root ganglia neurons. J Gen Virol 70(Pt 8):2075–2085. doi: 10.1099/0022-1317-70-8-2075 PubMedCrossRefGoogle Scholar
  128. Ugolini G (1995) Specificity of rabies virus as a transneuronal tracer of motor networks: transfer from hypoglossal motoneurons to connected second-order and higher order central nervous system cell groups. J Comp Neurol 356(3):457–480. doi: 10.1002/cne.903560312 PubMedCrossRefGoogle Scholar
  129. Ugolini G (2011) Rabies virus as a transneuronal tracer of neuronal connections. Adv Virus Res 79:165–202. doi: 10.1016/B978-0-12-387040-7.00010-X PubMedCrossRefGoogle Scholar
  130. Ugolini G, Kuypers HG, Simmons A (1987) Retrograde transneuronal transfer of herpes simplex virus type 1 (HSV 1) from motoneurones. Brain Res 422(2):242–256PubMedCrossRefGoogle Scholar
  131. Veenman CL, Reiner A, Honig MG (1992) Biotinylated dextran amine as an anterograde tracer for single- and double-labeling studies. J Neurosci Methods 41(3):239–254PubMedCrossRefGoogle Scholar
  132. Velez-Fort M, Rousseau CV, Niedworok CJ, Wickersham IR, Rancz EA, Brown AP, Strom M, Margrie TW (2014) The stimulus selectivity and connectivity of layer six principal cells reveals cortical microcircuits underlying visual processing. Neuron 83(6):1431–1443. doi: 10.1016/j.neuron.2014.08.001 PubMedPubMedCentralCrossRefGoogle Scholar
  133. Vercelli A, Repici M, Garbossa D, Grimaldi A (2000) Recent techniques for tracing pathways in the central nervous system of developing and adult mammals. Brain Res Bull 51(1):11–28PubMedCrossRefGoogle Scholar
  134. Vivar C, Potter MC, Choi J, Lee JY, Stringer TP, Callaway EM, Gage FH, Suh H, van Praag H (2012) Monosynaptic inputs to new neurons in the dentate gyrus. Nat Commun 3:1107. doi: 10.1038/ncomms2101 PubMedPubMedCentralCrossRefGoogle Scholar
  135. Wall NR, Wickersham IR, Cetin A, De La Parra M, Callaway EM (2010) Monosynaptic circuit tracing in vivo through Cre-dependent targeting and complementation of modified rabies virus. Proc Natl Acad Sci USA 107(50):21848–21853. doi: 10.1073/pnas.1011756107 PubMedPubMedCentralCrossRefGoogle Scholar
  136. Wall NR, De La Parra M, Callaway EM, Kreitzer AC (2013) Differential innervation of direct- and indirect-pathway striatal projection neurons. Neuron 79(2):347–360. doi: 10.1016/j.neuron.2013.05.014 PubMedPubMedCentralCrossRefGoogle Scholar
  137. Waller A (1850) Experiments on the section of the glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibres. Phil Trans R Soc Lond 140:423–429CrossRefGoogle Scholar
  138. Wang D, He X, Zhao Z, Feng Q, Lin R, Sun Y, Ding T, Xu F, Luo M, Zhan C (2015) Whole-brain mapping of the direct inputs and axonal projections of POMC and AgRP neurons. Front Neuroanat 9:40. doi: 10.3389/fnana.2015.00040 PubMedPubMedCentralGoogle Scholar
  139. Waselus M, Galvez JP, Valentino RJ, Van Bockstaele EJ (2006) Differential projections of dorsal raphe nucleus neurons to the lateral septum and striatum. J Chem Neuroanat 31(4):233–242. doi: 10.1016/j.jchemneu.2006.01.007 PubMedCrossRefGoogle Scholar
  140. Watabe-Uchida M, Zhu L, Ogawa SK, Vamanrao A, Uchida N (2012) Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 74(5):858–873. doi: 10.1016/j.neuron.2012.03.017 PubMedCrossRefGoogle Scholar
  141. Weissbourd B, Ren J, DeLoach KE, Guenthner CJ, Miyamichi K, Luo L (2014) Presynaptic partners of dorsal raphe serotonergic and GABAergic neurons. Neuron 83(3):645–662. doi: 10.1016/j.neuron.2014.06.024 PubMedPubMedCentralCrossRefGoogle Scholar
  142. Wertz A, Trenholm S, Yonehara K, Hillier D, Raics Z, Leinweber M, Szalay G, Ghanem A, Keller G, Rozsa B, Conzelmann KK, Roska B (2015) PRESYNAPTIC NETWORKS. Single-cell-initiated monosynaptic tracing reveals layer-specific cortical network modules. Science 349(6243):70–74. doi: 10.1126/science.aab1687
  143. White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314(1165):1–340PubMedCrossRefGoogle Scholar
  144. Wickersham IR, Lyon DC, Barnard RJ, Mori T, Finke S, Conzelmann KK, Young JA, Callaway EM (2007a) Monosynaptic restriction of transsynaptic tracing from single, genetically targeted neurons. Neuron 53(5):639–647. doi: 10.1016/j.neuron.2007.01.033 PubMedPubMedCentralCrossRefGoogle Scholar
  145. Wickersham IR, Finke S, Conzelmann KK, Callaway EM (2007b) Retrograde neuronal tracing with a deletion-mutant rabies virus. Nat Methods 4(1):47–49. doi: 10.1038/nmeth999 PubMedCrossRefGoogle Scholar
  146. Xia Y, Driscoll JR, Wilbrecht L, Margolis EB, Fields HL, Hjelmstad GO (2011) Nucleus accumbens medium spiny neurons target non-dopaminergic neurons in the ventral tegmental area. J Neurosci Off J Soc Neurosci 31(21):7811–7816. doi: 10.1523/JNEUROSCI.1504-11.2011 CrossRefGoogle Scholar
  147. Yamawaki N, Shepherd GM (2015) Synaptic circuit organization of motor corticothalamic neurons. J Neurosci Off J Soc Neurosci 35(5):2293–2307. doi: 10.1523/JNEUROSCI.4023-14.2015 CrossRefGoogle Scholar
  148. Yonehara K, Balint K, Noda M, Nagel G, Bamberg E, Roska B (2011) Spatially asymmetric reorganization of inhibition establishes a motion-sensitive circuit. Nature 469(7330):407–410. doi: 10.1038/nature09711 PubMedCrossRefGoogle Scholar
  149. Yonehara K, Farrow K, Ghanem A, Hillier D, Balint K, Teixeira M, Juttner J, Noda M, Neve RL, Conzelmann KK, Roska B (2013) The first stage of cardinal direction selectivity is localized to the dendrites of retinal ganglion cells. Neuron 79(6):1078–1085. doi: 10.1016/j.neuron.2013.08.005 PubMedCrossRefGoogle Scholar
  150. Yoshihara Y, Mizuno T, Nakahira M, Kawasaki M, Watanabe Y, Kagamiyama H, Jishage K, Ueda O, Suzuki H, Tabuchi K, Sawamoto K, Okano H, Noda T, Mori K (1999) A genetic approach to visualization of multisynaptic neural pathways using plant lectin transgene. Neuron 22(1):33–41PubMedCrossRefGoogle Scholar
  151. Young JA, Bates P, Varmus HE (1993) Isolation of a chicken gene that confers susceptibility to infection by subgroup A avian leukosis and sarcoma viruses. J Virol 67(4):1811–1816PubMedPubMedCentralGoogle Scholar
  152. Zampieri N, Jessell TM, Murray AJ (2014) Mapping sensory circuits by anterograde transsynaptic transfer of recombinant rabies virus. Neuron 81(4):766–778. doi: 10.1016/j.neuron.2013.12.033 PubMedPubMedCentralCrossRefGoogle Scholar
  153. Zemanick MC, Strick PL, Dix RD (1991) Direction of transneuronal transport of herpes simplex virus 1 in the primate motor system is strain-dependent. Proc Natl Acad Sci USA 88(18):8048–8051PubMedPubMedCentralCrossRefGoogle Scholar
  154. Zhan C, Zhou J, Feng Q, Zhang JE, Lin S, Bao J, Wu P, Luo M (2013) Acute and long-term suppression of feeding behavior by POMC neurons in the brainstem and hypothalamus, respectively. J Neurosci Off J Soc Neurosci 33(8):3624–3632. doi: 10.1523/JNEUROSCI.2742-12.2013 CrossRefGoogle Scholar
  155. Zhang S, Xu M, Kamigaki T, Hoang Do JP, Chang WC, Jenvay S, Miyamichi K, Luo L, Dan Y (2014) Selective attention. Long-range and local circuits for top-down modulation of visual cortex processing. Science 345(6197):660–665. doi: 10.1126/science.1254126
  156. Zhao C, Deng W, Gage FH (2008) Mechanisms and functional implications of adult neurogenesis. Cell 132(4):645–660. doi: 10.1016/j.cell.2008.01.033 PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.ERATO Touhara Chemosensory Signal Project GroupThe University of TokyoTokyoJapan
  2. 2.Department of Developmental NeurobiologySt. Jude Children’s Research HospitalMemphisUSA

Personalised recommendations