Advertisement

Transcriptional Profiling of Identified Circuit Elements in Invertebrates

  • Marta MoreyEmail author
Chapter
  • 899 Downloads

Abstract

One approach to understand how neural circuits contribute to behavior is to dissect the function of discrete neuronal components of the network. The transcriptional profile of a neuron is a starting point to infer morphological, biochemical, and physiological properties that determine its functionality. This chapter aims to provide an overview on the challenges and advances to gain genetic access to distinct neuronal cell types, and the transcriptional profiling methods used to query their gene expression. In addition, it also surveys the contribution of transcriptional profiling experiments to our knowledge on aspects of circuit structure and function, which include dendritic morphology, wiring specificity, synaptogenesis, remodeling, and physiological states and functional properties of neurons. Based on the limitations of the current transcriptional profiling approaches, this chapter also addresses the perspectives and new developments that are expected to push cell type-specific gene expression profiling to new frontiers.

Notes

Acknowledgements

The author apologizes to those whose work was not cited due to space constraints, and thanks A. Ferrús, T. Southall, L. Broday, and A. Sapir for critical reading, thoughtful comments, and insightful suggestions on this manuscript. M. Morey is supported by a Ramón y Cajal contract (RYC-2011-09479) and a Ministerio de Economía y Competitividad grant (BFU2015-69689-P).

References

  1. Abruzzi K, Chen X, Nagoshi E, Zadina A, Rosbash M (2015) RNA-seq profiling of small numbers of Drosophila neurons. Methods Enzymol 551:369–386PubMedCrossRefGoogle Scholar
  2. Abruzzi KC, Zadina A, Luo W, Wiyanto E, Rahman R, Guo F, Shafer O, Rosbash M (2017) RNA-seq analysis of Drosophila clock and non-clock neurons reveals neuron-specific cycling and novel candidate neuropeptides. PLoS Genet 13(2):e1006613. doi:  10.1371/journal.pgen.1006613 (eCollection 2017 Feb)
  3. Aughey GN, Southall TD (2016) Dam it’s good! DamID profiling of protein-DNA interactions. Wiley Interdiscip Rev Dev Biol 5:25–37PubMedCrossRefGoogle Scholar
  4. Bacaj T, Shaham S (2007) Temporal control of cell-specific transgene expression in Caenorhabditis elegans. Genetics 176:2651–2655PubMedPubMedCentralCrossRefGoogle Scholar
  5. Barthelson RA, Lambert GM, Vanier C, Lynch RM, Galbraith DW (2007) Comparison of the contributions of the nuclear and cytoplasmic compartments to global gene expression in human cells. BMC Genom 8:340CrossRefGoogle Scholar
  6. Bateman JR, Lee AM, Wu C (2006) Site-specific transformation of Drosophila via phiC31 integrase-mediated cassette exchange. Genetics 173:769–777PubMedPubMedCentralCrossRefGoogle Scholar
  7. Blacque OE, Perens EA, Boroevich KA, Inglis PN, Li C, Warner A, Khattra J, Holt RA, Ou G, Mah AK et al (2005) Functional genomics of the cilium, a sensory organelle. Curr Biol 15:935–941PubMedCrossRefGoogle Scholar
  8. Bonn S, Zinzen RP, Perez-Gonzalez A, Riddell A, Gavin A-C, Furlong EEM (2012a) Cell type-specific chromatin immunoprecipitation from multicellular complex samples using BiTS-ChIP. Nat Protoc 7:978–994PubMedCrossRefGoogle Scholar
  9. Bonn S, Zinzen RP, Girardot C, Gustafson EH, Perez-Gonzalez A, Delhomme N, Ghavi-Helm Y, Wilczyński B, Riddell A, Furlong EEM (2012b) Tissue-specific analysis of chromatin state identifies temporal signatures of enhancer activity during embryonic development. Nat Genet 44:148–156PubMedCrossRefGoogle Scholar
  10. Bossing T, Barros CS, Fischer B, Russell S, Shepherd D (2012) Disruption of microtubule integrity initiates mitosis during CNS repair. Dev Cell 23:433–440PubMedPubMedCentralCrossRefGoogle Scholar
  11. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415PubMedGoogle Scholar
  12. Brennecke P, Anders S, Kim JK, Kołodziejczyk AA, Zhang X, Proserpio V, Baying B, Benes V, Teichmann SA, Marioni JC et al (2013) Accounting for technical noise in single-cell RNA-seq experiments. Nat Methods 10:1093–1095PubMedCrossRefGoogle Scholar
  13. Cadwell CR, Palasantza A, Jiang X, Berens P, Deng Q, Yilmaz M, Reimer J, Shen S, Bethge M, Tolias KF, Sandberg R, Tolias AS (2016) Electrophysiological, transcriptomic and morphologic profiling of single neurons using Patch-seq. Nat Biotechnol 34:199–203. doi:  10.1038/nbt.3445
  14. Cao J, Ni J, Ma W, Shiu V, Milla LA, Park S, Spletter ML, Tang S, Zhang J, Wei X et al (2014) Insight into insulin secretion from transcriptome and genetic analysis of insulin-producing cells of Drosophila. Genetics 197:175–192PubMedPubMedCentralCrossRefGoogle Scholar
  15. Carrillo RA, Özkan E, Menon KP, Nagarkar-Jaiswal S, Lee P-T, Jeon M, Birnbaum ME, Bellen HJ, Garcia KC, Zinn K (2015) Control of synaptic connectivity by a network of Drosophila IgSF cell surface proteins. Cell 163:1770–1782PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chatzigeorgiou M, Yoo S, Watson JD, Lee W-H, Spencer WC, Kindt KS, Hwang SW, Miller DM, Treinin M, Driscoll M et al (2010) Specific roles for DEG/ENaC and TRP channels in touch and thermosensation in C. elegans nociceptors. Nat Neurosci 13:861–868PubMedPubMedCentralCrossRefGoogle Scholar
  17. Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X (2015) RNA imaging. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348:aaa6090Google Scholar
  18. Cinar H, Keles S, Jin Y (2005) Expression profiling of GABAergic motor neurons in Caenorhabditis elegans. Curr Biol 15:340–346PubMedCrossRefGoogle Scholar
  19. Cleary MD, Meiering CD, Jan E, Guymon R, Boothroyd JC (2005) Biosynthetic labeling of RNA with uracil phosphoribosyltransferase allows cell-specific microarray analysis of mRNA synthesis and decay. Nat Biotechnol 23:232–237PubMedCrossRefGoogle Scholar
  20. Colosimo ME, Brown A, Mukhopadhyay S, Gabel C, Lanjuin AE, Samuel ADT, Sengupta P (2004) Identification of thermosensory and olfactory neuron-specific genes via expression profiling of single neuron types. Curr Biol 14:2245–2251PubMedCrossRefGoogle Scholar
  21. Couto A, Alenius M, Dickson BJ (2005) Molecular, anatomical, and functional organization of the Drosophila olfactory system. Curr Biol 15:1535–1547PubMedCrossRefGoogle Scholar
  22. Crocker A, Guan X-J, Murphy CT, Murthy M (2016) Cell-type-specific transcriptome analysis in the Drosophila mushroom body reveals memory-related changes in gene expression. Cell Rep 1–17Google Scholar
  23. Davis MW, Morton JJ, Carroll D, Jorgensen EM (2008) Gene activation using FLP recombinase in C. elegans. PLoS Genet 4:e1000028PubMedPubMedCentralCrossRefGoogle Scholar
  24. Deal RB, Henikoff S (2010) A simple method for gene expression and chromatin profiling of individual cell types within a tissue. Dev Cell 18:1030–1040PubMedPubMedCentralCrossRefGoogle Scholar
  25. del Valle Rodríguez A, Didiano D, Desplan C (2012) Power tools for gene expression and clonal analysis in Drosophila. Nat Methods 9:47–55CrossRefGoogle Scholar
  26. Deng Q, Ramsköld D, Reinius B, Sandberg R (2014) Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343:193–196PubMedCrossRefGoogle Scholar
  27. Ding B, Zheng L, Zhu Y, Li N, Jia H, Ai R, Wildberg A, Wang W (2015) Normalization and noise reduction for single cell RNA-seq experiments. Bioinformatics 31:2225–2227PubMedPubMedCentralCrossRefGoogle Scholar
  28. Dupuy D, Li Q-R, Deplancke B, Boxem M, Hao T, Lamesch P, Sequerra R, Bosak S, Doucette-Stamm L, Hope IA et al (2004) A first version of the Caenorhabditis elegans promoterome. Genome Res 14:2169–2175PubMedPubMedCentralCrossRefGoogle Scholar
  29. Dupuy D, Bertin N, Hidalgo CA, Venkatesan K, Tu D, Lee D, Rosenberg J, Svrzikapa N, Blanc A, Carnec A et al (2007) Genome-scale analysis of in vivo spatiotemporal promoter activity in Caenorhabditis elegans. Nat Biotechnol 25:663–668PubMedCrossRefGoogle Scholar
  30. Dusenbery DB (1974) Analysis of chemotaxis in the nematode Caenorhabditis elegans by countercurrent separation. J Exp Zool 188:41–47PubMedCrossRefGoogle Scholar
  31. Dusenbery DB, Sheridan RE, Russell RL (1975) Chemotaxis-defective mutants of the nematode Caenorhabditis elegans. Genetics 80:297–309PubMedPubMedCentralGoogle Scholar
  32. Easow G, Teleman AA, Cohen SM (2007) Isolation of microRNA targets by miRNP immunopurification. RNA 13:1198–1204PubMedPubMedCentralCrossRefGoogle Scholar
  33. Etchberger JF, Lorch A, Sleumer MC, Zapf R, Jones SJ, Marra MA, Holt RA, Moerman DG, Hobert O (2007) The molecular signature and cis-regulatory architecture of a C. elegans gustatory neuron. Genes Dev 21:1653–1674PubMedPubMedCentralCrossRefGoogle Scholar
  34. Fischbach K-F, Dittrich AP (1989) The optic lobe of Drosophila melanogaster. I: A. Golgi analysis of wild-type structure. Cell Tissue Res 258:441–475Google Scholar
  35. Fischer JA, Giniger E, Maniatis T, Ptashne M (1988) GAL4 activates transcription in Drosophila. Nature 332:853–856PubMedCrossRefGoogle Scholar
  36. Flourakis M, Allada R (2015) Patch-clamp electrophysiology in Drosophila circadian pacemaker neurons. Methods Enzymol 552:23–44. doi:  10.1016/bs.mie.2014.10.005
  37. Fortini ME, Rubin GM (1990) Analysis of cis-acting requirements of the Rh3 and Rh4 genes reveals a bipartite organization to rhodopsin promoters in Drosophila melanogaster. Genes Dev 4:444–463PubMedCrossRefGoogle Scholar
  38. Fox RM, Von Stetina SE, Barlow SJ, Shaffer C, Olszewski KL, Moore JH, Dupuy D, Vidal M, Miller DM (2005) A gene expression fingerprint of C. elegans embryonic motor neurons. BMC Genom 6:42CrossRefGoogle Scholar
  39. Fuzik J, Zeisel A, Máté Z, Calvigioni D, Yanagawa Y, Szabó G, Linnarsson S, Harkany T (2016) Integration of electrophysiological recordings with single-cell RNA-seq data identifies neuronal subtypes. Nat Biotechnol 34:175–183. doi:  10.1038/nbt.3443
  40. Gerstein MB, Lu ZJ, Van Nostrand EL, Cheng C, Arshinoff BI, Liu T, Yip KY, Robilotto R, Rechtsteiner A, Ikegami K et al (2010) Integrative analysis of the Caenorhabditis elegans genome by the modENCODE project. Science 330:1775–1787PubMedPubMedCentralCrossRefGoogle Scholar
  41. Gohl DM, Silies MA, Gao XJ, Bhalerao S, Luongo FJ, Lin C-C, Potter CJ, Clandinin TR (2011) A versatile in vivo system for directed dissection of gene expression patterns. Nat Methods 8:231–237PubMedPubMedCentralCrossRefGoogle Scholar
  42. Grün D, Kester L, van Oudenaarden A (2014) Validation of noise models for single-cell transcriptomics. Nat Methods 11:637–640PubMedCrossRefGoogle Scholar
  43. Hadjieconomou D, Rotkopf S, Alexandre C, Bell DM, Dickson BJ, Salecker I (2011) Flybow: genetic multicolor cell labeling for neural circuit analysis in Drosophila melanogaster. Nat Methods 8:260–266PubMedCrossRefGoogle Scholar
  44. Haenni S, Ji Z, Hoque M, Rust N, Sharpe H, Eberhard R, Browne C, Hengartner MO, Mellor J, Tian B et al (2012) Analysis of C. elegans intestinal gene expression and polyadenylation by fluorescence-activated nuclei sorting and 3′-end-seq. Nucleic Acids Res 40:6304–6318PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hallem EA, Spencer WC, McWhirter RD, Zeller G, Henz SR, Rätsch G, Miller DM, Horvitz HR, Sternberg PW, Ringstad N (2011) Receptor-type guanylate cyclase is required for carbon dioxide sensation by Caenorhabditis elegans. Proc Natl Acad Sci U S A 108:254–259PubMedCrossRefGoogle Scholar
  46. Hattori Y, Usui T, Satoh D, Moriyama S, Shimono K, Itoh T, Shirahige K, Uemura T (2013) Sensory-neuron subtype-specific transcriptional programs controlling dendrite morphogenesis: genome-wide analysis of Abrupt and Knot/Collier. Dev Cell 27:530–544PubMedCrossRefGoogle Scholar
  47. Hayashi S, Ito K, Sado Y, Taniguchi M, Akimoto A, Takeuchi H, Aigaki T, Matsuzaki F, Nakagoshi H, Tanimura T et al (2002) GETDB, a database compiling expression patterns and molecular locations of a collection of Gal4 enhancer traps. Genesis 34:58–61Google Scholar
  48. He M, Liu Y, Wang X, Zhang MQ, Hannon GJ, Huang ZJ (2012) Cell-type-based analysis of microRNA profiles in the mouse brain. Neuron 73:35–48PubMedPubMedCentralCrossRefGoogle Scholar
  49. Heiman M, Schaefer A, Gong S, Peterson JD, Day M, Ramsey KE, Suárez-Fariñas M, Schwarz C, Stephan DA, Surmeier DJ et al (2008) A translational profiling approach for the molecular characterization of CNS cell types. Cell 135:738–748PubMedPubMedCentralCrossRefGoogle Scholar
  50. Henry GL, Davis FP, Picard S, Eddy SR (2012) Cell type-specific genomics of Drosophila neurons. Nucleic Acids Res 40:9691–9704PubMedPubMedCentralCrossRefGoogle Scholar
  51. Hoopfer ED, Penton A, Watts RJ, Luo L (2008) Genomic analysis of Drosophila neuronal remodeling: a role for the RNA-binding protein Boule as a negative regulator of axon pruning. J Neurosci 28:6092–6103PubMedPubMedCentralCrossRefGoogle Scholar
  52. Hope IA (1991) “Promoter trapping” in Caenorhabditis elegans. Development 113:399–408PubMedGoogle Scholar
  53. Huang Y, Ainsley JA, Reijmers LG, Jackson FR (2013) Translational profiling of clock cells reveals circadianly synchronized protein synthesis. PLoS Biol 11:e1001703PubMedPubMedCentralCrossRefGoogle Scholar
  54. Hunt-Newbury R, Viveiros R, Johnsen R, Mah A, Anastas D, Fang L, Halfnight E, Lee D, Lin J, Lorch A et al (2007) High-throughput in vivo analysis of gene expression in Caenorhabditis elegans. PLoS Biol 5:e237PubMedPubMedCentralCrossRefGoogle Scholar
  55. Hutter H (2003) Extracellular cues and pioneers act together to guide axons in the ventral cord of C. elegans. Development 130:5307–5318PubMedCrossRefGoogle Scholar
  56. Isik M, Korswagen HC, Berezikov E (2010) Expression patterns of intronic microRNAs in Caenorhabditis elegans. Silence 1:5PubMedPubMedCentralCrossRefGoogle Scholar
  57. Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, Lönnerberg P, Linnarsson S (2014) Quantitative single-cell RNA-seq with unique molecular identifiers. Nat Methods 11:163–166PubMedCrossRefGoogle Scholar
  58. Iyer EPR, Cox DN (2010) Laser capture microdissection of Drosophila peripheral neurons. J Vis ExpGoogle Scholar
  59. Iyer EPR, Iyer SC, Cox DN (2013a) Application of cell-specific isolation to the study of dopamine signaling in Drosophila. Methods Mol Biol 964:215–225PubMedPubMedCentralCrossRefGoogle Scholar
  60. Iyer EPR, Iyer SC, Sullivan L, Wang D, Meduri R, Graybeal LL, Cox DN (2013b) Functional genomic analyses of two morphologically distinct classes of Drosophila sensory neurons: post-mitotic roles of transcription factors in dendritic patterning. PLoS ONE 8:e72434PubMedPubMedCentralCrossRefGoogle Scholar
  61. Jasper H, Benes V, Atzberger A, Sauer S, Ansorge W, Bohmann D (2002) A genomic switch at the transition from cell proliferation to terminal differentiation in the Drosophila eye. Dev Cell 3:511–521PubMedCrossRefGoogle Scholar
  62. Jenett A, Rubin GM, Ngo TTB, Shepherd D, Murphy C, Dionne H, Pfeiffer BD, Cavallaro A, Hall D, Jeter J et al (2012) A GAL4-driver line resource for Drosophila neurobiology. Cell Rep 2:991–1001PubMedPubMedCentralCrossRefGoogle Scholar
  63. Jin Y, Ha N, Forés M, Xiang J, Gläßer C, Maldera J, Jiménez G, Edgar BA (2015) EGFR/Ras signaling controls Drosophila intestinal stem cell proliferation via capicua-regulated genes. PLoS Genet 11:e1005634PubMedPubMedCentralCrossRefGoogle Scholar
  64. Johnson MB, Walsh CA (2017) Cerebral cortical neuron diversity and development at single-cell resolution. Curr Opin Neurobiol 42:9–16. doi:  10.1016/j.conb.2016.11.001
  65. Kitamoto T, Ikeda K, Salvaterra PM (1992) Analysis of cis-regulatory elements in the 5′ flanking region of the Drosophila melanogaster choline acetyltransferase gene. J Neurosci 12:1628–1639PubMedGoogle Scholar
  66. Kudlow BA, Zhang L, Han M (2012) Systematic analysis of tissue-restricted miRISCs reveals a broad role for microRNAs in suppressing basal activity of the C. elegans pathogen response. Mol Cell 46:530–541PubMedPubMedCentralCrossRefGoogle Scholar
  67. Kula-Eversole E, Nagoshi E, Shang Y, Rodriguez J, Allada R, Rosbash M (2010) Surprising gene expression patterns within and between PDF-containing circadian neurons in Drosophila. Proc Natl Acad Sci U S A 107:13497–13502PubMedPubMedCentralCrossRefGoogle Scholar
  68. Kunitomo H, Uesugi H, Kohara Y, Iino Y (2005) Identification of ciliated sensory neuron-expressed genes in Caenorhabditis elegans using targeted pull-down of poly(A) tails. Genome Biol 6:R17PubMedPubMedCentralCrossRefGoogle Scholar
  69. Kvon EZ, Stampfel G, Yáñez-Cuna JO, Dickson BJ, Stark A (2012) HOT regions function as patterned developmental enhancers and have a distinct cis-regulatory signature. Genes Dev 26:908–913PubMedPubMedCentralCrossRefGoogle Scholar
  70. Kvon EZ, Kazmar T, Stampfel G, Yáñez-Cuna JO, Pagani M, Schernhuber K, Dickson BJ, Stark A (2014) Genome-scale functional characterization of Drosophila developmental enhancers in vivo. NatureGoogle Scholar
  71. Lai S-L, Lee T (2006) Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat Neurosci 9:703–709PubMedCrossRefGoogle Scholar
  72. Lai S-L, Miller MR, Robinson KJ, Doe CQ (2012) The Snail family member Worniu is continuously required in neuroblasts to prevent Elav-induced premature differentiation. Dev Cell 23:849–857PubMedPubMedCentralCrossRefGoogle Scholar
  73. Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22:451–461PubMedCrossRefGoogle Scholar
  74. Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Yang JL, Ferrante TC, Terry R, Jeanty SSF, Li C, Amamoto R et al (2014) Highly multiplexed subcellular RNA sequencing in situ. Science (80-) 343:1360–1363Google Scholar
  75. Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Ferrante TC, Terry R, Turczyk BM, Yang JL, Lee HS, Aach J et al (2015) Fluorescent in situ sequencing (FISSEQ) of RNA for gene expression profiling in intact cells and tissues. Nat Protoc 10:442–458PubMedPubMedCentralCrossRefGoogle Scholar
  76. Li W, Ou G (2016) The application of somatic CRISPR-Cas9 to conditional genome editing in Caenorhabditis elegans. Genesis 54:170–181PubMedCrossRefGoogle Scholar
  77. Liu S, Trapnell C (2016) Single-cell transcriptome sequencing: recent advances and remaining challenges. F1000Research 5Google Scholar
  78. Luan H, Peabody NC, Vinson CR, White BH (2006) Refined spatial manipulation of neuronal function by combinatorial restriction of transgene expression. Neuron 52:425–436PubMedPubMedCentralCrossRefGoogle Scholar
  79. Lynch AS, Briggs D, Hope IA (1995) Developmental expression pattern screen for genes predicted in the C. elegans genome sequencing project. Nat Genet 11:309–313PubMedCrossRefGoogle Scholar
  80. Ma J, Ptashne M (1987) The carboxy-terminal 30 amino acids of GAL4 are recognized by GAL80. Cell 50:137–142PubMedCrossRefGoogle Scholar
  81. Ma J, Weake VM (2014) Affinity-based isolation of tagged nuclei from Drosophila tissues for gene expression analysis. J Vis ExpGoogle Scholar
  82. Marinov GK, Williams BA, McCue K, Schroth GP, Gertz J, Myers RM, Wold BJ (2014) From single-cell to cell-pool transcriptomes: stochasticity in gene expression and RNA splicing. Genome Res 24:496–510PubMedPubMedCentralCrossRefGoogle Scholar
  83. Marshall OJ, Southall TD, Cheetham SW, Brand AH (2016) Cell-type-specific profiling of protein-DNA interactions without cell isolation using targeted DamID with next-generation sequencing. Nat Protoc 11:1586–1598. doi:  10.1038/nprot.2016.084
  84. Martinez NJ, Ow MC, Reece-Hoyes JS, Barrasa MI, Ambros VR, Walhout AJM (2008) Genome-scale spatiotemporal analysis of Caenorhabditis elegans microRNA promoter activity. Genome Res 18:2005–2015PubMedPubMedCentralCrossRefGoogle Scholar
  85. McClure CD, Southall TD (2015) Getting down to specifics: profiling gene expression and protein-DNA interactions in a cell type-specific manner. Adv Genet 91:103–151PubMedPubMedCentralGoogle Scholar
  86. McGuire SE, Le PT, Davis RL (2001) The role of Drosophila mushroom body signaling in olfactory memory. Science 293:1330–1333PubMedCrossRefGoogle Scholar
  87. Miller MR, Robinson KJ, Cleary MD, Doe CQ (2009) TU-tagging: cell type-specific RNA isolation from intact complex tissues. Nat Methods 6:439–441PubMedPubMedCentralCrossRefGoogle Scholar
  88. Miyazaki T, Ito K (2010) Neural architecture of the primary gustatory center of Drosophila melanogaster visualized with GAL4 and LexA enhancer-trap systems. J Comp Neurol 518:4147–4181PubMedCrossRefGoogle Scholar
  89. Mizrak D, Ruben M, Myers GN, Rhrissorrakrai K, Gunsalus KC, Blau J (2012) Electrical activity can impose time of day on the circadian transcriptome of pacemaker neurons. Curr Biol 22:1871–1880PubMedPubMedCentralCrossRefGoogle Scholar
  90. modENCODE Consortium, Roy S, Ernst J, Kharchenko PV, Kheradpour P, Negre N, Eaton ML, Landolin JM, Bristow CA, Ma L et al (2010). Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science 330:1787–1797Google Scholar
  91. Moor AE, Itzkovitz S (2017) Spatial transcriptomics: paving the way for tissuelevel systems biology. Curr Opin Biotechnol 46:126–133. doi:  10.1016/j.copbio.2017.02.004
  92. Nagoshi E, Sugino K, Kula E, Okazaki E, Tachibana T, Nelson S, Rosbash M (2010) Dissecting differential gene expression within the circadian neuronal circuit of Drosophila. Nat Neurosci 13:60–68PubMedCrossRefGoogle Scholar
  93. Nègre N, Brown CD, Ma L, Bristow CA, Miller SW, Wagner U, Kheradpour P, Eaton ML, Loriaux P, Sealfon R et al (2011) A cis-regulatory map of the Drosophila genome. Nature 471:527–531PubMedPubMedCentralCrossRefGoogle Scholar
  94. Nern A, Pfeiffer BD, Svoboda K, Rubin GM (2011) Multiple new site-specific recombinases for use in manipulating animal genomes. Proc Natl Acad Sci U S A 108:14198–14203PubMedPubMedCentralCrossRefGoogle Scholar
  95. Nilsson H, Krawczyk KM, Johansson ME (2014) High salt buffer improves integrity of RNA after fluorescence-activated cell sorting of intracellular labeled cells. J Biotechnol 192 Pt A:62–65Google Scholar
  96. O’Kane CJ, Gehring WJ (1987) Detection in situ of genomic regulatory elements in Drosophila. Proc Natl Acad Sci U S A 84:9123–9127PubMedPubMedCentralCrossRefGoogle Scholar
  97. Otsuki L, Cheetham SW, Brand AH (2014) Freedom of expression: cell-type-specific gene profiling. Wiley Interdiscip Rev Dev Biol 3:429–443PubMedCrossRefGoogle Scholar
  98. Paix A, Folkmann A, Rasoloson D, Seydoux G (2015) High efficiency, homology-directed genome editing in Caenorhabditis elegans using CRISPR-Cas9 ribonucleoprotein complexes. Genetics 201:47–54PubMedPubMedCentralCrossRefGoogle Scholar
  99. Parrish JZ, Kim MD, Jan LY, Jan YN (2006) Genome-wide analyses identify transcription factors required for proper morphogenesis of Drosophila sensory neuron dendrites. Genes Dev 20:820–835PubMedPubMedCentralCrossRefGoogle Scholar
  100. Parrish JZ, Kim CC, Tang L, Bergquist S, Wang T, Derisi JL, Jan LY, Jan YN, Davis GW (2014) Krüppel mediates the selective rebalancing of ion channel expression. Neuron 82:537–544PubMedPubMedCentralCrossRefGoogle Scholar
  101. Petersen SC, Watson JD, Richmond JE, Sarov M, Walthall WW, Miller DM (2011) A transcriptional program promotes remodeling of GABAergic synapses in Caenorhabditis elegans. J Neurosci 31:15362–15375PubMedPubMedCentralCrossRefGoogle Scholar
  102. Pfeiffer BD, Jenett A, Hammonds AS, Ngo T-TB, Misra S, Murphy C, Scully A, Carlson JW, Wan KH, Laverty TR et al (2008) Tools for neuroanatomy and neurogenetics in Drosophila. Proc Natl Acad Sci U S A 105:9715–9720PubMedPubMedCentralCrossRefGoogle Scholar
  103. Pfeiffer BD, Ngo T-TB, Hibbard KL, Murphy C, Jenett A, Truman JW, Rubin GM (2010) Refinement of tools for targeted gene expression in Drosophila. Genetics 186:735–755PubMedPubMedCentralCrossRefGoogle Scholar
  104. Pfeiffer BD, Truman JW, Rubin GM (2012) Using translational enhancers to increase transgene expression in Drosophila. Proc Natl Acad Sci U S A 109:6626–6631PubMedPubMedCentralCrossRefGoogle Scholar
  105. Potter CJ, Tasic B, Russler EV, Liang L, Luo L (2010) The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 141:536–548PubMedPubMedCentralCrossRefGoogle Scholar
  106. Poulin J-F, Tasic B, Hjerling-Leffler J, Trimarchi JM, Awatramani R (2016) Disentangling neural cell diversity using single-cell transcriptomics. Nat Neurosci 19:1131–1141. doi:  10.1038/nn.4366
  107. Raj A, van den Bogaard P, Rifkin SA, van Oudenaarden A, Tyagi S (2008) Imaging individual mRNA molecules using multiple singly labeled probes. Nat Methods 5:877–879PubMedPubMedCentralCrossRefGoogle Scholar
  108. Reece-Hoyes JS, Shingles J, Dupuy D, Grove CA, Walhout AJM, Vidal M, Hope IA (2007) Insight into transcription factor gene duplication from Caenorhabditis elegans Promoterome-driven expression patterns. BMC Genom 8:27CrossRefGoogle Scholar
  109. Riabinina O, Luginbuhl D, Marr E, Liu S, Wu MN, Luo L, Potter CJ (2015) Improved and expanded Q-system reagents for genetic manipulations. Nat Methods 12:219–222, 5 p following 222Google Scholar
  110. Roy PJ, Stuart JM, Lund J, Kim SK (2002) Chromosomal clustering of muscle-expressed genes in Caenorhabditis elegans. Nature 418:975–979PubMedCrossRefGoogle Scholar
  111. Ruben M, Drapeau MD, Mizrak D, Blau J (2012) A mechanism for circadian control of pacemaker neuron excitability. J Biol Rhythms 27:353–364PubMedPubMedCentralCrossRefGoogle Scholar
  112. Russell JN, Clements JE, Gama L (2013) Quantitation of gene expression in formaldehyde-fixed and fluorescence-activated sorted cells. PLoS ONE 8:e73849PubMedPubMedCentralCrossRefGoogle Scholar
  113. Saliba A-E, Westermann AJ, Gorski SA, Vogel J (2014) Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res 42:8845–8860PubMedPubMedCentralCrossRefGoogle Scholar
  114. Sanz E, Yang L, Su T, Morris DR, McKnight GS, Amieux PS (2009) Cell-type-specific isolation of ribosome-associated mRNA from complex tissues. Proc Natl Acad Sci U S A 106:13939–13944PubMedPubMedCentralCrossRefGoogle Scholar
  115. Shi B, Guo X, Wu T, Sheng S, Wang J, Skogerbø G, Zhu X, Chen R (2009) Genome-scale identification of Caenorhabditis elegans regulatory elements by tiling-array mapping of DNase I hypersensitive sites. BMC Genom 10:92CrossRefGoogle Scholar
  116. Smith CJ, Watson JD, Spencer WC, O’Brien T, Cha B, Albeg A, Treinin M, Miller DM (2010) Time-lapse imaging and cell-specific expression profiling reveal dynamic branching and molecular determinants of a multi-dendritic nociceptor in C. elegans. Dev Biol 345:18–33PubMedPubMedCentralCrossRefGoogle Scholar
  117. Smith CJ, O’Brien T, Chatzigeorgiou M, Spencer WC, Feingold-Link E, Husson SJ, Hori S, Mitani S, Gottschalk A, Schafer WR et al (2013) Sensory neuron fates are distinguished by a transcriptional switch that regulates dendrite branch stabilization. Neuron 79:266–280PubMedPubMedCentralCrossRefGoogle Scholar
  118. Southall TD, Gold KS, Egger B, Davidson CM, Caygill EE, Marshall OJ, Brand AH (2013) Cell-type-specific profiling of gene expression and chromatin binding without cell isolation: assaying RNA Pol II occupancy in neural stem cells. Dev Cell 26:101–112PubMedPubMedCentralCrossRefGoogle Scholar
  119. Spencer WC, McWhirter R, Miller T, Strasbourger P, Thompson O, Hillier LW, Waterston RH, Miller DM (2014) Isolation of specific neurons from C. elegans larvae for gene expression profiling. PLoS ONE 9:e112102PubMedPubMedCentralCrossRefGoogle Scholar
  120. Steiner FA, Talbert PB, Kasinathan S, Deal RB, Henikoff S (2012) Cell-type-specific nuclei purification from whole animals for genome-wide expression and chromatin profiling. Genome Res 22:766–777PubMedPubMedCentralCrossRefGoogle Scholar
  121. Suster ML, Seugnet L, Bate M, Sokolowski MB (2004) Refining GAL4-driven transgene expression in Drosophila with a GAL80 enhancer-trap. Genesis 39:240–245PubMedCrossRefGoogle Scholar
  122. Swoboda P, Adler HT, Thomas JH (2000) The RFX-type transcription factor DAF-19 regulates sensory neuron cilium formation in C. elegans. Mol Cell 5:411–421PubMedCrossRefGoogle Scholar
  123. Szüts D, Bienz M (2000) LexA chimeras reveal the function of Drosophila Fos as a context-dependent transcriptional activator. Proc Natl Acad Sci U S A 97:5351–5356PubMedPubMedCentralCrossRefGoogle Scholar
  124. Tahayato A, Sonneville R, Pichaud F, Wernet MF, Papatsenko D, Beaufils P, Cook T, Desplan C (2003) Otd/Crx, a dual regulator for the specification of ommatidia subtypes in the Drosophila retina. Dev Cell 5:391–402PubMedCrossRefGoogle Scholar
  125. Takayama J, Faumont S, Kunitomo H, Lockery SR, Iino Y (2010) Single-cell transcriptional analysis of taste sensory neuron pair in Caenorhabditis elegans. Nucleic Acids Res 38:131–142PubMedCrossRefGoogle Scholar
  126. Tan L, Zhang KX, Pecot MY, Nagarkar-Jaiswal S, Lee P-T, Takemura S-Y, McEwen JM, Nern A, Xu S, Tadros W et al (2015) Ig superfamily ligand and receptor pairs expressed in synaptic partners in Drosophila. Cell 163:1756–1769PubMedPubMedCentralCrossRefGoogle Scholar
  127. Tang F, Barbacioru C, Wang Y, Nordman E, Lee C, Xu N, Wang X, Bodeau J, Tuch BB, Siddiqui A et al (2009) mRNA-Seq whole-transcriptome analysis of a single cell. Nat Methods 6:377–382PubMedCrossRefGoogle Scholar
  128. Thomas A, Lee P-J, Dalton JE, Nomie KJ, Stoica L, Costa-Mattioli M, Chang P, Nuzhdin S, Arbeitman MN, Dierick HA (2012) A versatile method for cell-specific profiling of translated mRNAs in Drosophila. PLoS ONE 7:e40276PubMedPubMedCentralCrossRefGoogle Scholar
  129. Ting C-Y, Gu S, Guttikonda S, Lin T-Y, White BH, Lee C-H (2011) Focusing transgene expression in Drosophila by coupling Gal4 with a novel split-LexA expression system. Genetics 188:229–233PubMedPubMedCentralCrossRefGoogle Scholar
  130. van Steensel B, Henikoff S (2000) Identification of in vivo DNA targets of chromatin proteins using tethered dam methyltransferase. Nat Biotechnol 18:424–428PubMedCrossRefGoogle Scholar
  131. van Steensel B, Delrow J, Henikoff S (2001) Chromatin profiling using targeted DNA adenine methyltransferase. Nat Genet 27:304–308PubMedCrossRefGoogle Scholar
  132. Venken KJT, Schulze KL, Haelterman NA, Pan H, He Y, Evans-Holm M, Carlson JW, Levis RW, Spradling AC, Hoskins RA et al (2011) MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes. Nat Methods 8:737–743PubMedPubMedCentralCrossRefGoogle Scholar
  133. Von Stetina SE, Fox RM, Watkins KL, Starich TA, Shaw JE, Miller DM (2007a) UNC-4 represses CEH-12/HB9 to specify synaptic inputs to VA motor neurons in C. elegans. Genes Dev 21:332–346CrossRefGoogle Scholar
  134. Von Stetina SE, Watson JD, Fox RM, Olszewski KL, Spencer WC, Roy PJ, Miller DM (2007b) Cell-specific microarray profiling experiments reveal a comprehensive picture of gene expression in the C. elegans nervous system. Genome Biol 8:R135CrossRefGoogle Scholar
  135. Voutev R, Hubbard EJA (2008) A “FLP-Out” system for controlled gene expression in Caenorhabditis elegans. Genetics 180:103–119PubMedPubMedCentralCrossRefGoogle Scholar
  136. Wang H, Liu J, Gharib S, Chai CM, Schwarz EM, Pokala N, Sternberg PW (2017) cGAL, a temperature-robust GAL4-UAS system for Caenorhabditis elegans. Nat Methods 14:145–148. doi: 10.1038/nmeth.4109 (Epub 2016 Dec 19)
  137. Ward S (1973) Chemotaxis by the nematode Caenorhabditis elegans: identification of attractants and analysis of the response by use of mutants. Proc Natl Acad Sci U S A 70:817–821PubMedPubMedCentralCrossRefGoogle Scholar
  138. Wei X, Potter CJ, Luo L, Shen K (2012) Controlling gene expression with the Q repressible binary expression system in Caenorhabditis elegans. Nat Methods 9:391–395PubMedPubMedCentralCrossRefGoogle Scholar
  139. White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314:1–340PubMedCrossRefGoogle Scholar
  140. Williams CR, Baccarella A, Parrish JZ, Kim CC (2016) Trimming of sequence reads alters RNA-Seq gene expression estimates. BMC Bioinformatics 17:103PubMedPubMedCentralCrossRefGoogle Scholar
  141. Wu AR, Neff NF, Kalisky T, Dalerba P, Treutlein B, Rothenberg ME, Mburu FM, Mantalas GL, Sim S, Clarke MF et al (2014) Quantitative assessment of single-cell RNA-sequencing methods. Nat Methods 11:41–46PubMedCrossRefGoogle Scholar
  142. Xu J, Ren X, Sun J, Wang X, Qiao HH, Xu BW, Liu LP, Ni JQ (2015) A toolkit of CRISPR-based genome editing systems in Drosophila. J Genet Genomics 42:141–149PubMedCrossRefGoogle Scholar
  143. Yagi R, Mayer F, Basler K (2010) Refined LexA transactivators and their use in combination with the Drosophila Gal4 system. Proc Natl Acad Sci U S A 107:16166–16171PubMedPubMedCentralCrossRefGoogle Scholar
  144. Yang Z, Edenberg HJ, Davis RL (2005) Isolation of mRNA from specific tissues of Drosophila by mRNA tagging. Nucleic Acids Res 33:e148PubMedPubMedCentralCrossRefGoogle Scholar
  145. Zaslaver A, Liani I, Shtangel O, Ginzburg S, Yee L, Sternberg PW (2015) Hierarchical sparse coding in the sensory system of Caenorhabditis elegans. Proc Natl Acad Sci U S A 112:1185–1189PubMedPubMedCentralCrossRefGoogle Scholar
  146. Zhang Y, Ma C, Delohery T, Nasipak B, Foat BC, Bounoutas A, Bussemaker HJ, Kim SK, Chalfie M (2002) Identification of genes expressed in C. elegans touch receptor neurons. Nature 418:331–335PubMedCrossRefGoogle Scholar
  147. Zhang S, Ma C, Chalfie M (2004) Combinatorial marking of cells and organelles with reconstituted fluorescent proteins. Cell 119:137–144PubMedCrossRefGoogle Scholar
  148. Zhang L, Ding L, Cheung TH, Dong M-Q, Chen J, Sewell AK, Liu X, Yates JR, Han M (2007) Systematic identification of C. elegans miRISC proteins, miRNAs, and mRNA targets by their interactions with GW182 proteins AIN-1 and AIN-2. Mol Cell 28:598–613PubMedPubMedCentralCrossRefGoogle Scholar
  149. Zhang C, Barthelson RA, Lambert GM, Galbraith DW (2008) Global characterization of cell-specific gene expression through fluorescence-activated sorting of nuclei. Plant Physiol 147:30–40PubMedPubMedCentralCrossRefGoogle Scholar
  150. Zhang KX, Tan L, Pellegrini M, Zipursky SL, McEwen JM (2016) Rapid changes in the translatome during the conversion of growth cones to synaptic terminals. Cell Rep 14:1258–1271PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.School of Biology, Department of Genetics, Institute of Biomedicine (IBUB)University of BarcelonaBarcelonaSpain

Personalised recommendations