The Developmental Origin of Cell Type Diversity in the Drosophila Visual System

  • Claire BertetEmail author


The Drosophila visual system is composed of complex neural circuits involving an incredible variety of neurons, making it an excellent model system to study how cell type diversity is generated during development. Recent studies using new genetic tools and cellular markers have shown that this diversity is generated by at least four neurogenesis modes involving four different types of progenitors localized in distinct regions of the developing optic lobes. In this chapter, I will first describe the anatomical organization of the visual system and then review the different neurogenesis modes generating cell diversity in the four optic lobe neuropils.


  1. Apitz H, Salecker I (2014) A challenge of numbers and diversity: neurogenesis in the Drosophila optic lobe. J Neurogenet 28(3–4):233–249CrossRefPubMedGoogle Scholar
  2. Apitz H, Salecker I (2015) A region-specific neurogenesis mode requires migratory progenitors in the Drosophila visual system. Nat Neurosci 18(1):46–55CrossRefPubMedGoogle Scholar
  3. Behnia R, Desplan C (2015) Visual circuits in flies: beginning to see the whole picture. Curr Opin Neurobiol 34:125–132CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bertet C et al (2014) Temporal patterning of neuroblasts controls Notch-mediated cell survival through regulation of Hid or Reaper. Cell 158(5):1173–1186CrossRefPubMedPubMedCentralGoogle Scholar
  5. Borst A, Helmstaedter M (2015) Common circuit design in fly and mammalian motion vision. Nat Neurosci 18(8):1067–1076CrossRefPubMedGoogle Scholar
  6. Borst A, Haag J, Reiff DF (2010) Fly motion vision. Annu Rev Neurosci 33:49–70CrossRefPubMedGoogle Scholar
  7. Brand AH, Livesey FJ (2011) Neural stem cell biology in vertebrates and invertebrates: more alike than different? Neuron 70(4):719–729CrossRefPubMedGoogle Scholar
  8. Buescher M et al (1998) Binary sibling neuronal cell fate decisions in the Drosophila embryonic central nervous system are nonstochastic and require inscuteable-mediated asymmetry of ganglion mother cells. Genes Dev 12(12):1858–1870CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chen Z et al (2016) A unique class of neural progenitors in the Drosophila optic lobe generates both migrating neurons and glia. Cell RepGoogle Scholar
  10. Chotard C, Salecker I (2007) Glial cell development and function in the Drosophila visual system. Neuron Glia Biol 3(1):17–25CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chotard C, Leung W, Salecker I (2005) glial cells missing and gcm2 cell autonomously regulate both glial and neuronal development in the visual system of Drosophila. Neuron 48(2):237–251CrossRefPubMedGoogle Scholar
  12. Clandinin TR, Feldheim DA (2009) Making a visual map: mechanisms and molecules. Curr Opin Neurobiol 19(2):174–180CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dearborn R Jr, Kunes S (2004) An axon scaffold induced by retinal axons directs glia to destinations in the Drosophila optic lobe. Development 131(10):2291–2303CrossRefPubMedGoogle Scholar
  14. de Vries S.E, Clandinin T(2013) Optogenetic stimulation of escape behavior in Drosophila melanogaster. J Vis Exp (71)Google Scholar
  15. Douglass JK, Strausfeld NJ (1995) Visual motion detection circuits in flies: peripheral motion computation by identified small-field retinotopic neurons. J Neurosci 15(8):5596–5611PubMedGoogle Scholar
  16. Egger B et al (2007) Regulation of spindle orientation and neural stem cell fate in the Drosophila optic lobe. Neural Dev 2:1CrossRefPubMedPubMedCentralGoogle Scholar
  17. Egger B, Gold KS, Brand AH (2010) Notch regulates the switch from symmetric to asymmetric neural stem cell division in the Drosophila optic lobe. Development 137(18):2981–2987CrossRefPubMedPubMedCentralGoogle Scholar
  18. Erclik T et al (2008) Conserved role of the Vsx genes supports a monophyletic origin for bilaterian visual systems. Curr Biol 18(17):1278–1287CrossRefPubMedGoogle Scholar
  19. Erclik T et al  (2017) Integration of temporal and spatial patterning generates neural diversity. Nature 541(7637):365–370Google Scholar
  20. Evans CJ et al (2009) G-TRACE: rapid Gal4-based cell lineage analysis in Drosophila. Nat Methods 6(8):603–605CrossRefPubMedPubMedCentralGoogle Scholar
  21. Fischbach KF, Dittrich AP (1989) The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res 258:441–475Google Scholar
  22. Gold KS, Brand AH (2014) Optix defines a neuroepithelial compartment in the optic lobe of the Drosophila brain. Neural Dev 9:18CrossRefPubMedPubMedCentralGoogle Scholar
  23. Green P, Hartenstein AY, Hartenstein V (1993) The embryonic development of the Drosophila visual system. Cell Tissue Res 273(3):583–598CrossRefPubMedGoogle Scholar
  24. Guillermin O et al (2015) Characterization of tailless functions during Drosophila optic lobe formation. Dev Biol 405(2):202–213CrossRefPubMedGoogle Scholar
  25. Hasegawa E et al (2011) Concentric zones, cell migration and neuronal circuits in the Drosophila visual center. Development 138(5):983–993CrossRefPubMedGoogle Scholar
  26. Heisenberg M, Buchner E (1977) The role of retinula cell types in visual behavior of Drosophila melanogaster. J Comp Physiol 117:127–162Google Scholar
  27. Hiesinger PR, Meinertzhagen IA (2009) Visual system development: invertebrates. In: Squire LR (ed) Encyclopedia of neuroscience, vol 10. Academic Press, Oxford, pp 313–322Google Scholar
  28. Hofbauer A, Campos-Ortega JA (1990) Proliferation and early differentiation of the optic lobes in Drosophila melanogaster. Roux’s Arch Dev Biol 198:264–274CrossRefGoogle Scholar
  29. Homberg U et al (2011) Central neural coding of sky polarization in insects. Philos Trans R Soc Lond B Biol Sci 366(1565):680–687CrossRefPubMedPubMedCentralGoogle Scholar
  30. Huang Z, Kunes S (1996) Hedgehog, transmitted along retinal axons, triggers neurogenesis in the developing visual centers of the Drosophila brain. Cell 86(3):411–422CrossRefPubMedGoogle Scholar
  31. Huang Z, Kunes S (1998) Signals transmitted along retinal axons in Drosophila: hedgehog signal reception and the cell circuitry of lamina cartridge assembly. Development 125(19):3753–3764PubMedGoogle Scholar
  32. Huang Z, Shilo BZ, Kunes S (1998) A retinal axon fascicle uses spitz, an EGF receptor ligand, to construct a synaptic cartridge in the brain of Drosophila. Cell 95(5):693–703CrossRefPubMedGoogle Scholar
  33. Kaphingst K, Kunes S (1994) Pattern formation in the visual centers of the Drosophila brain: wingless acts via decapentaplegic to specify the dorsoventral axis. Cell 78(3):437–448CrossRefPubMedGoogle Scholar
  34. Karcavich R, Doe CQ (2005) Drosophila neuroblast 7-3 cell lineage: a model system for studying programmed cell death, Notch/Numb signaling, and sequential specification of ganglion mother cell identity. J Comp Neurol 481(3):240–251CrossRefPubMedGoogle Scholar
  35. Karuppudurai T et al (2014) A hard-wired glutamatergic circuit pools and relays UV signals to mediate spectral preference in Drosophila. Neuron 81(3):603–615CrossRefPubMedPubMedCentralGoogle Scholar
  36. Kumar JP (2012) Building an ommatidium one cell at a time. Dev Dyn 241(1):136–149CrossRefPubMedPubMedCentralGoogle Scholar
  37. Li X et al (2013) Temporal patterning of Drosophila medulla neuroblasts controls neural fates. Nature 498(7455):456–462CrossRefPubMedPubMedCentralGoogle Scholar
  38. Maisak MS et al (2013) A directional tuning map of Drosophila elementary motion detectors. Nature 500(7461):212–216CrossRefPubMedGoogle Scholar
  39. Mauss AS et al (2015) Neural Circuit to Integrate Opposing Motions in the Visual Field. Cell 162(2):351–362CrossRefPubMedGoogle Scholar
  40. Meinertzhagen IA (2014) The anatomical organization of the compound eye’s visual system. In: Josh Dubnau (ed) Behavioral genetics of the fly (Drosophila Melanogaster). Cold Spring Harbour LaboratoryGoogle Scholar
  41. Meinertzhagen IA, Hanson TE (1993) The development of the optic lobe. In: Bate M, Martinez Arias A (eds) The development of Drosophila melanogaster, vol II. Cold Spring Harbor Laboratory Press, pp 1363–1491Google Scholar
  42. Meinertzhagen IA, Sorra KE (2001) Synaptic organization in the fly’s optic lamina: few cells, many synapses and divergent microcircuits. Prog Brain Res 131:53–69CrossRefPubMedGoogle Scholar
  43. Morante J, Desplan C (2004) Building a projection map for photoreceptor neurons in the Drosophila optic lobes. Semin Cell Dev Biol 15(1):137–143CrossRefPubMedGoogle Scholar
  44. Morante J, Desplan C (2008) The color-vision circuit in the medulla of Drosophila. Curr Biol 18(8):553–565CrossRefPubMedPubMedCentralGoogle Scholar
  45. Morante J, Erclik T, Desplan C (2011) Cell migration in Drosophila optic lobe neurons is controlled by eyeless/Pax6. Development 138(4):687–693CrossRefPubMedPubMedCentralGoogle Scholar
  46. Nassif C, Noveen A and Hartenstein V (2003) Early development of the Drosophila brain: III. The pattern of neuropile founder tracts during the larval period. J Comp Neurol 455(4):417–434Google Scholar
  47. Neriec N, Desplan C (2016) From the Eye to the Brain: development of the Drosophila Visual System. Curr Top Dev Biol 116:247–271CrossRefPubMedPubMedCentralGoogle Scholar
  48. Ngo KT et al (2010) Concomitant requirement for Notch and Jak/Stat signaling during neuro-epithelial differentiation in the Drosophila optic lobe. Dev Biol 346(2):284–295CrossRefPubMedPubMedCentralGoogle Scholar
  49. Oliva C et al (2014) Proper connectivity of Drosophila motion detector neurons requires Atonal function in progenitor cells. Neural Dev 9:4CrossRefPubMedPubMedCentralGoogle Scholar
  50. Otsuna H, Ito K (2006) Systematic analysis of the visual projection neurons of Drosophila melanogaster. I. Lobula-specific pathways. J Comp Neurol 497(6):928–958CrossRefPubMedGoogle Scholar
  51. Perez SE, Steller H (1996) Migration of glial cells into retinal axon target field in Drosophila melanogaster. J Neurobiol 30(3):359–373CrossRefPubMedGoogle Scholar
  52. Poeck B et al (2001) Glial cells mediate target layer selection of retinal axons in the developing visual system of Drosophila. Neuron 29(1):99–113CrossRefPubMedGoogle Scholar
  53. Raghu SV, Borst A (2011) Candidate glutamatergic neurons in the visual system of Drosophila. PLoS ONE 6(5):e19472CrossRefPubMedPubMedCentralGoogle Scholar
  54. Raghu SV, Claussen J, Borst A (2013) Neurons with GABAergic phenotype in the visual system of Drosophila. J Comp Neurol 521(1):252–265CrossRefPubMedGoogle Scholar
  55. Reddy BV, Rauskolb C, Irvine KD (2010) Influence of fat-hippo and notch signaling on the proliferation and differentiation of Drosophila optic neuroepithelia. Development 137(14):2397–2408CrossRefPubMedPubMedCentralGoogle Scholar
  56. Rowitch DH, Kriegstein AR (2010) Developmental genetics of vertebrate glial-cell specification. Nature 468(7321):214–222CrossRefPubMedGoogle Scholar
  57. Selleck SB, Steller H (1991) The influence of retinal innervation on neurogenesis in the first optic ganglion of Drosophila. Neuron 6(1):83–99CrossRefPubMedGoogle Scholar
  58. Selleck SB et al (1992) Regulation of the G1-S transition in postembryonic neuronal precursors by axon ingrowth. Nature 355(6357):253–255CrossRefPubMedGoogle Scholar
  59. Song Y, Chung S, Kunes S (2000) Combgap relays wingless signal reception to the determination of cortical cell fate in the Drosophila visual system. Mol Cell 6(5):1143–1154CrossRefPubMedGoogle Scholar
  60. Suzuki T et al (2013) A temporal mechanism that produces neuronal diversity in the Drosophila visual center. Dev Biol 380(1):12–24CrossRefPubMedGoogle Scholar
  61. Suzuki T et al (2016) Formation of neuronal circuits by interactions between neuronal populations derived from different origins in the Drosophila visual center. Cell Rep 15(3):499–509CrossRefPubMedGoogle Scholar
  62. Takemura SY, Lu Z, Meinertzhagen IA (2008) Synaptic circuits of the Drosophila optic lobe: the input terminals to the medulla. J Comp Neurol 509(5):493–513CrossRefPubMedPubMedCentralGoogle Scholar
  63. Takemura SY et al (2013) A visual motion detection circuit suggested by Drosophila connectomics. Nature 500(7461):175–181CrossRefPubMedPubMedCentralGoogle Scholar
  64. Tuthill JC et al (2013) Contributions of the 12 neuron classes in the fly lamina to motion vision. Neuron 79(1):128–140CrossRefPubMedPubMedCentralGoogle Scholar
  65. Tuthill JC et al (2014) Wide-field feedback neurons dynamically tune early visual processing. Neuron 82(4):887–895CrossRefPubMedGoogle Scholar
  66. Ulvklo C et al (2012) Control of neuronal cell fate and number by integration of distinct daughter cell proliferation modes with temporal progression. Development 139(4):678–689CrossRefPubMedGoogle Scholar
  67. Urbach R, Technau GM (2003) Molecular markers for identified neuroblasts in the developing brain of Drosophila. Development 130(16):3621–3637CrossRefPubMedGoogle Scholar
  68. Urbach R, Technau GM (2004) Neuroblast formation and patterning during early brain development in Drosophila. BioEssays 26(7):739–751CrossRefPubMedGoogle Scholar
  69. Varija Raghu S, Reiff DF, Borst A (2011) Neurons with cholinergic phenotype in the visual system of Drosophila. J Comp Neurol 519(1):162–176CrossRefPubMedGoogle Scholar
  70. Wasserman SM et al (2015) Olfactory neuromodulation of motion vision circuitry in Drosophila. Curr Biol 25(4):467–472CrossRefPubMedPubMedCentralGoogle Scholar
  71. White K, Kankel DR (1978) Patterns of cell division and cell movement in the formation of the imaginal nervous system in Drosophila melanogaster. Dev Biol 65(2):296–321CrossRefPubMedGoogle Scholar
  72. Winberg ML, Perez SE, Steller H (1992) Generation and early differentiation of glial cells in the first optic ganglion of Drosophila melanogaster. Development 115(4):903–911PubMedGoogle Scholar
  73. Yamaguchi S et al (2008) Motion vision is independent of color in Drosophila. Proc Natl Acad Sci U S A 105(12):4910–4915CrossRefPubMedPubMedCentralGoogle Scholar
  74. Yasugi T et al (2008) Drosophila optic lobe neuroblasts triggered by a wave of proneural gene expression that is negatively regulated by JAK/STAT. Development 135(8):1471–1480CrossRefPubMedGoogle Scholar
  75. Yasugi T et al (2010) Coordinated sequential action of EGFR and Notch signaling pathways regulates proneural wave progression in the Drosophila optic lobe. Development 137(19):3193–3203CrossRefPubMedGoogle Scholar
  76. Zhu Y (2013) The Drosophila visual system: from neural circuits to behavior. Cell Adh Migr 7(4):333–344CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Aix Marseille Univ, CNRSIBDMMarseilleFrance

Personalised recommendations