Skip to main content

The Developmental Origin of Cell Type Diversity in the Drosophila Visual System

  • Chapter
  • First Online:
Decoding Neural Circuit Structure and Function

Abstract

The Drosophila visual system is composed of complex neural circuits involving an incredible variety of neurons, making it an excellent model system to study how cell type diversity is generated during development. Recent studies using new genetic tools and cellular markers have shown that this diversity is generated by at least four neurogenesis modes involving four different types of progenitors localized in distinct regions of the developing optic lobes. In this chapter, I will first describe the anatomical organization of the visual system and then review the different neurogenesis modes generating cell diversity in the four optic lobe neuropils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Apitz H, Salecker I (2014) A challenge of numbers and diversity: neurogenesis in the Drosophila optic lobe. J Neurogenet 28(3–4):233–249

    Article  CAS  PubMed  Google Scholar 

  • Apitz H, Salecker I (2015) A region-specific neurogenesis mode requires migratory progenitors in the Drosophila visual system. Nat Neurosci 18(1):46–55

    Article  CAS  PubMed  Google Scholar 

  • Behnia R, Desplan C (2015) Visual circuits in flies: beginning to see the whole picture. Curr Opin Neurobiol 34:125–132

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bertet C et al (2014) Temporal patterning of neuroblasts controls Notch-mediated cell survival through regulation of Hid or Reaper. Cell 158(5):1173–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borst A, Helmstaedter M (2015) Common circuit design in fly and mammalian motion vision. Nat Neurosci 18(8):1067–1076

    Article  CAS  PubMed  Google Scholar 

  • Borst A, Haag J, Reiff DF (2010) Fly motion vision. Annu Rev Neurosci 33:49–70

    Article  CAS  PubMed  Google Scholar 

  • Brand AH, Livesey FJ (2011) Neural stem cell biology in vertebrates and invertebrates: more alike than different? Neuron 70(4):719–729

    Article  CAS  PubMed  Google Scholar 

  • Buescher M et al (1998) Binary sibling neuronal cell fate decisions in the Drosophila embryonic central nervous system are nonstochastic and require inscuteable-mediated asymmetry of ganglion mother cells. Genes Dev 12(12):1858–1870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z et al (2016) A unique class of neural progenitors in the Drosophila optic lobe generates both migrating neurons and glia. Cell Rep

    Google Scholar 

  • Chotard C, Salecker I (2007) Glial cell development and function in the Drosophila visual system. Neuron Glia Biol 3(1):17–25

    Article  PubMed  PubMed Central  Google Scholar 

  • Chotard C, Leung W, Salecker I (2005) glial cells missing and gcm2 cell autonomously regulate both glial and neuronal development in the visual system of Drosophila. Neuron 48(2):237–251

    Article  CAS  PubMed  Google Scholar 

  • Clandinin TR, Feldheim DA (2009) Making a visual map: mechanisms and molecules. Curr Opin Neurobiol 19(2):174–180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dearborn R Jr, Kunes S (2004) An axon scaffold induced by retinal axons directs glia to destinations in the Drosophila optic lobe. Development 131(10):2291–2303

    Article  CAS  PubMed  Google Scholar 

  • de Vries S.E, Clandinin T(2013) Optogenetic stimulation of escape behavior in Drosophila melanogaster. J Vis Exp (71)

    Google Scholar 

  • Douglass JK, Strausfeld NJ (1995) Visual motion detection circuits in flies: peripheral motion computation by identified small-field retinotopic neurons. J Neurosci 15(8):5596–5611

    CAS  PubMed  Google Scholar 

  • Egger B et al (2007) Regulation of spindle orientation and neural stem cell fate in the Drosophila optic lobe. Neural Dev 2:1

    Article  PubMed  PubMed Central  Google Scholar 

  • Egger B, Gold KS, Brand AH (2010) Notch regulates the switch from symmetric to asymmetric neural stem cell division in the Drosophila optic lobe. Development 137(18):2981–2987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Erclik T et al (2008) Conserved role of the Vsx genes supports a monophyletic origin for bilaterian visual systems. Curr Biol 18(17):1278–1287

    Article  CAS  PubMed  Google Scholar 

  • Erclik T et al  (2017) Integration of temporal and spatial patterning generates neural diversity. Nature 541(7637):365–370

    Google Scholar 

  • Evans CJ et al (2009) G-TRACE: rapid Gal4-based cell lineage analysis in Drosophila. Nat Methods 6(8):603–605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischbach KF, Dittrich AP (1989) The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res 258:441–475

    Google Scholar 

  • Gold KS, Brand AH (2014) Optix defines a neuroepithelial compartment in the optic lobe of the Drosophila brain. Neural Dev 9:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Green P, Hartenstein AY, Hartenstein V (1993) The embryonic development of the Drosophila visual system. Cell Tissue Res 273(3):583–598

    Article  CAS  PubMed  Google Scholar 

  • Guillermin O et al (2015) Characterization of tailless functions during Drosophila optic lobe formation. Dev Biol 405(2):202–213

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa E et al (2011) Concentric zones, cell migration and neuronal circuits in the Drosophila visual center. Development 138(5):983–993

    Article  CAS  PubMed  Google Scholar 

  • Heisenberg M, Buchner E (1977) The role of retinula cell types in visual behavior of Drosophila melanogaster. J Comp Physiol 117:127–162

    Google Scholar 

  • Hiesinger PR, Meinertzhagen IA (2009) Visual system development: invertebrates. In: Squire LR (ed) Encyclopedia of neuroscience, vol 10. Academic Press, Oxford, pp 313–322

    Google Scholar 

  • Hofbauer A, Campos-Ortega JA (1990) Proliferation and early differentiation of the optic lobes in Drosophila melanogaster. Roux’s Arch Dev Biol 198:264–274

    Article  Google Scholar 

  • Homberg U et al (2011) Central neural coding of sky polarization in insects. Philos Trans R Soc Lond B Biol Sci 366(1565):680–687

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang Z, Kunes S (1996) Hedgehog, transmitted along retinal axons, triggers neurogenesis in the developing visual centers of the Drosophila brain. Cell 86(3):411–422

    Article  CAS  PubMed  Google Scholar 

  • Huang Z, Kunes S (1998) Signals transmitted along retinal axons in Drosophila: hedgehog signal reception and the cell circuitry of lamina cartridge assembly. Development 125(19):3753–3764

    CAS  PubMed  Google Scholar 

  • Huang Z, Shilo BZ, Kunes S (1998) A retinal axon fascicle uses spitz, an EGF receptor ligand, to construct a synaptic cartridge in the brain of Drosophila. Cell 95(5):693–703

    Article  CAS  PubMed  Google Scholar 

  • Kaphingst K, Kunes S (1994) Pattern formation in the visual centers of the Drosophila brain: wingless acts via decapentaplegic to specify the dorsoventral axis. Cell 78(3):437–448

    Article  CAS  PubMed  Google Scholar 

  • Karcavich R, Doe CQ (2005) Drosophila neuroblast 7-3 cell lineage: a model system for studying programmed cell death, Notch/Numb signaling, and sequential specification of ganglion mother cell identity. J Comp Neurol 481(3):240–251

    Article  PubMed  Google Scholar 

  • Karuppudurai T et al (2014) A hard-wired glutamatergic circuit pools and relays UV signals to mediate spectral preference in Drosophila. Neuron 81(3):603–615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar JP (2012) Building an ommatidium one cell at a time. Dev Dyn 241(1):136–149

    Article  PubMed  PubMed Central  Google Scholar 

  • Li X et al (2013) Temporal patterning of Drosophila medulla neuroblasts controls neural fates. Nature 498(7455):456–462

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maisak MS et al (2013) A directional tuning map of Drosophila elementary motion detectors. Nature 500(7461):212–216

    Article  CAS  PubMed  Google Scholar 

  • Mauss AS et al (2015) Neural Circuit to Integrate Opposing Motions in the Visual Field. Cell 162(2):351–362

    Article  CAS  PubMed  Google Scholar 

  • Meinertzhagen IA (2014) The anatomical organization of the compound eye’s visual system. In: Josh Dubnau (ed) Behavioral genetics of the fly (Drosophila Melanogaster). Cold Spring Harbour Laboratory

    Google Scholar 

  • Meinertzhagen IA, Hanson TE (1993) The development of the optic lobe. In: Bate M, Martinez Arias A (eds) The development of Drosophila melanogaster, vol II. Cold Spring Harbor Laboratory Press, pp 1363–1491

    Google Scholar 

  • Meinertzhagen IA, Sorra KE (2001) Synaptic organization in the fly’s optic lamina: few cells, many synapses and divergent microcircuits. Prog Brain Res 131:53–69

    Article  CAS  PubMed  Google Scholar 

  • Morante J, Desplan C (2004) Building a projection map for photoreceptor neurons in the Drosophila optic lobes. Semin Cell Dev Biol 15(1):137–143

    Article  PubMed  Google Scholar 

  • Morante J, Desplan C (2008) The color-vision circuit in the medulla of Drosophila. Curr Biol 18(8):553–565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morante J, Erclik T, Desplan C (2011) Cell migration in Drosophila optic lobe neurons is controlled by eyeless/Pax6. Development 138(4):687–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nassif C, Noveen A and Hartenstein V (2003) Early development of the Drosophila brain: III. The pattern of neuropile founder tracts during the larval period. J Comp Neurol 455(4):417–434

    Google Scholar 

  • Neriec N, Desplan C (2016) From the Eye to the Brain: development of the Drosophila Visual System. Curr Top Dev Biol 116:247–271

    Article  PubMed  PubMed Central  Google Scholar 

  • Ngo KT et al (2010) Concomitant requirement for Notch and Jak/Stat signaling during neuro-epithelial differentiation in the Drosophila optic lobe. Dev Biol 346(2):284–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oliva C et al (2014) Proper connectivity of Drosophila motion detector neurons requires Atonal function in progenitor cells. Neural Dev 9:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Otsuna H, Ito K (2006) Systematic analysis of the visual projection neurons of Drosophila melanogaster. I. Lobula-specific pathways. J Comp Neurol 497(6):928–958

    Article  PubMed  Google Scholar 

  • Perez SE, Steller H (1996) Migration of glial cells into retinal axon target field in Drosophila melanogaster. J Neurobiol 30(3):359–373

    Article  CAS  PubMed  Google Scholar 

  • Poeck B et al (2001) Glial cells mediate target layer selection of retinal axons in the developing visual system of Drosophila. Neuron 29(1):99–113

    Article  CAS  PubMed  Google Scholar 

  • Raghu SV, Borst A (2011) Candidate glutamatergic neurons in the visual system of Drosophila. PLoS ONE 6(5):e19472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raghu SV, Claussen J, Borst A (2013) Neurons with GABAergic phenotype in the visual system of Drosophila. J Comp Neurol 521(1):252–265

    Article  CAS  PubMed  Google Scholar 

  • Reddy BV, Rauskolb C, Irvine KD (2010) Influence of fat-hippo and notch signaling on the proliferation and differentiation of Drosophila optic neuroepithelia. Development 137(14):2397–2408

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rowitch DH, Kriegstein AR (2010) Developmental genetics of vertebrate glial-cell specification. Nature 468(7321):214–222

    Article  CAS  PubMed  Google Scholar 

  • Selleck SB, Steller H (1991) The influence of retinal innervation on neurogenesis in the first optic ganglion of Drosophila. Neuron 6(1):83–99

    Article  CAS  PubMed  Google Scholar 

  • Selleck SB et al (1992) Regulation of the G1-S transition in postembryonic neuronal precursors by axon ingrowth. Nature 355(6357):253–255

    Article  CAS  PubMed  Google Scholar 

  • Song Y, Chung S, Kunes S (2000) Combgap relays wingless signal reception to the determination of cortical cell fate in the Drosophila visual system. Mol Cell 6(5):1143–1154

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T et al (2013) A temporal mechanism that produces neuronal diversity in the Drosophila visual center. Dev Biol 380(1):12–24

    Article  CAS  PubMed  Google Scholar 

  • Suzuki T et al (2016) Formation of neuronal circuits by interactions between neuronal populations derived from different origins in the Drosophila visual center. Cell Rep 15(3):499–509

    Article  CAS  PubMed  Google Scholar 

  • Takemura SY, Lu Z, Meinertzhagen IA (2008) Synaptic circuits of the Drosophila optic lobe: the input terminals to the medulla. J Comp Neurol 509(5):493–513

    Article  PubMed  PubMed Central  Google Scholar 

  • Takemura SY et al (2013) A visual motion detection circuit suggested by Drosophila connectomics. Nature 500(7461):175–181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuthill JC et al (2013) Contributions of the 12 neuron classes in the fly lamina to motion vision. Neuron 79(1):128–140

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tuthill JC et al (2014) Wide-field feedback neurons dynamically tune early visual processing. Neuron 82(4):887–895

    Article  CAS  PubMed  Google Scholar 

  • Ulvklo C et al (2012) Control of neuronal cell fate and number by integration of distinct daughter cell proliferation modes with temporal progression. Development 139(4):678–689

    Article  CAS  PubMed  Google Scholar 

  • Urbach R, Technau GM (2003) Molecular markers for identified neuroblasts in the developing brain of Drosophila. Development 130(16):3621–3637

    Article  CAS  PubMed  Google Scholar 

  • Urbach R, Technau GM (2004) Neuroblast formation and patterning during early brain development in Drosophila. BioEssays 26(7):739–751

    Article  CAS  PubMed  Google Scholar 

  • Varija Raghu S, Reiff DF, Borst A (2011) Neurons with cholinergic phenotype in the visual system of Drosophila. J Comp Neurol 519(1):162–176

    Article  PubMed  Google Scholar 

  • Wasserman SM et al (2015) Olfactory neuromodulation of motion vision circuitry in Drosophila. Curr Biol 25(4):467–472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White K, Kankel DR (1978) Patterns of cell division and cell movement in the formation of the imaginal nervous system in Drosophila melanogaster. Dev Biol 65(2):296–321

    Article  CAS  PubMed  Google Scholar 

  • Winberg ML, Perez SE, Steller H (1992) Generation and early differentiation of glial cells in the first optic ganglion of Drosophila melanogaster. Development 115(4):903–911

    CAS  PubMed  Google Scholar 

  • Yamaguchi S et al (2008) Motion vision is independent of color in Drosophila. Proc Natl Acad Sci U S A 105(12):4910–4915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yasugi T et al (2008) Drosophila optic lobe neuroblasts triggered by a wave of proneural gene expression that is negatively regulated by JAK/STAT. Development 135(8):1471–1480

    Article  CAS  PubMed  Google Scholar 

  • Yasugi T et al (2010) Coordinated sequential action of EGFR and Notch signaling pathways regulates proneural wave progression in the Drosophila optic lobe. Development 137(19):3193–3203

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y (2013) The Drosophila visual system: from neural circuits to behavior. Cell Adh Migr 7(4):333–344

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claire Bertet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Bertet, C. (2017). The Developmental Origin of Cell Type Diversity in the Drosophila Visual System. In: Çelik, A., Wernet, M. (eds) Decoding Neural Circuit Structure and Function. Springer, Cham. https://doi.org/10.1007/978-3-319-57363-2_17

Download citation

Publish with us

Policies and ethics