Combining Anatomy, Measurements and Manipulation of Neuronal Activity to Interrogate Circuit Function in Drosophila

  • Yvette E. Fisher
  • Thomas R. ClandininEmail author


In this chapter we will discuss the application of genetics to the interrogation of neuronal function in fruit flies from a historical and modern perspective. We will review the current state-of-the-art tool kit for circuit dissection including neuronal measurements, manipulation and quantitative behavioral assessment. We will then discuss how these approaches can be productively applied to the interrogation of circuit computation by discussing recent discoveries in visual circuitry. Due to dramatic progress in recent years, these new tools have greatly expanded our understanding of the cell types and algorithmic transformations that underpin the detection of visual motion.


  1. Adelson EH, Bergen JR (1985) Spatiotemporal energy models for the perception of motion. J Opt Soc Am 2:284–299CrossRefGoogle Scholar
  2. Akerboom J, Rivera JDV, Guilbe MMR, Malavé ECA, Hernandez HH, Tian L, Hires SA, Marvin JS, Looger LL, Schreiter ER (2009) Crystal structures of the GCaMP calcium sensor reveal the mechanism of fluorescence signal change and aid rational design. J Biol Chem 284:6455–6464CrossRefPubMedPubMedCentralGoogle Scholar
  3. Akerboom J, Chen T-W, Wardill TJ, Tian L, Marvin JS, Mutlu S, Calderón NC, Esposti F, Borghuis BG, Sun XR et al (2012) Optimization of a GCaMP calcium indicator for neural activity imaging. J Neurosci 32:13819–13840CrossRefPubMedPubMedCentralGoogle Scholar
  4. Akerboom J, Carreras Calderón N, Tian L, Wabnig S, Prigge M, Tolö J, Gordus A, Orger MB, Severi KE, Macklin JJ et al (2013) Genetically encoded calcium indicators for multi-color neural activity imaging and combination with optogenetics. Front Mol Neurosci 6:2CrossRefPubMedPubMedCentralGoogle Scholar
  5. Albert JT, Gopfert MC (2015) Hearing in Drosophila. Curr Opin Neurobiol 34:79–85CrossRefPubMedPubMedCentralGoogle Scholar
  6. Ammer G, Leonhardt A, Bahl A, Dickson BJ, Borst A (2015) Functional specialization of neural input elements to the Drosophila ON motion detector. Curr Biol 1–7Google Scholar
  7. Bahl A, Ammer G, Schilling T, Borst A (2013) Object tracking in motion-blind flies. Nat Neurosci 1–11Google Scholar
  8. Barlow HB, Levick WR (1965) The mechanism of directionally selective units in the rabbit retina. J Physiol 178:477–504CrossRefPubMedPubMedCentralGoogle Scholar
  9. Behnia R, Clark DA, Carter AG, Clandinin TR, Desplan C (2014) Processing properties of ON and OFF pathways for Drosophila motion detection. Nature 512:427–430CrossRefPubMedPubMedCentralGoogle Scholar
  10. Benzer S (1967) Behavioral mutants of Drosophila isolated by countercurrent distribution. Proc Natl Acad Sci 58:1112–1119CrossRefPubMedPubMedCentralGoogle Scholar
  11. Bhandawat V, Olsen SR, Gouwens NW, Schlief ML, Wilson RI (2007) Sensory processing in the Drosophila antennal lobe increases reliability and separability of ensemble odor representations. Nat Neurosci 10:1474–1482CrossRefPubMedPubMedCentralGoogle Scholar
  12. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415PubMedGoogle Scholar
  13. Branson K, Robie AA, Bender J, Perona P, Dickinson MH (2009) High-throughput ethomics in large groups of Drosophila. Nat Methods 6:451–457CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cao G, Platisa J, Pieribone VA, Raccuglia D, Kunst M, Nitabach MN (2013) Genetically targeted optical electrophysiology in intact neural circuits. Cell 154:904–913Google Scholar
  15. Catterall WA (2011) Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 1–23Google Scholar
  16. Chen T-W, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, Kerr RA, Orger MB, Jayaraman V et al (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:295–300Google Scholar
  17. Chiang A-S, Lin C-Y, Chuang C-C, Chang H-M, Hsieh C-H, Yeh C-W, Shih C-T, Wu J-J, Wang G-T, Chen Y-C et al (2011) Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr Biol 21:1–11CrossRefPubMedGoogle Scholar
  18. Chiappe ME, Seelig JD, Reiser MB, Jayaraman V (2010) Walking modulates speed sensitivity in Drosophila motion vision. Curr Biol 20:1470–1475CrossRefPubMedPubMedCentralGoogle Scholar
  19. Clark DA, Bursztyn L, Horowitz M, Schnitzer MJ, Clandinin TR (2011) Defining the computational structure of the motion detector in Drosophila. Neuron 70:1165–1177CrossRefPubMedPubMedCentralGoogle Scholar
  20. Crocker A, Guan X-J, Murphy CT, Murthy M (2016) Cell-type-specific transcriptome analysis in the Drosophila mushroom body reveals memory-related changes in gene expression. Cell Rep 15:1–17CrossRefGoogle Scholar
  21. Dankert H, Wang L, Hoopfer ED, Anderson DJ, Perona P (2009) Automated monitoring and analysis of social behavior in Drosophila. Nat Methods 6:297–303CrossRefPubMedPubMedCentralGoogle Scholar
  22. de Vries SEJ, Clandinin TR (2012) Loom-sensitive neurons link computation to action in the Drosophila visual system. Curr Biol 22:353–362CrossRefPubMedPubMedCentralGoogle Scholar
  23. Dickinson MH (2014) Death valley, Drosophila, and the Devonian toolkit. Annu Rev Entomol 59:51–72CrossRefPubMedGoogle Scholar
  24. Dietzl G, Chen D, Schnorrer F, Su K, Barinova Y, Fellner M, Gasser B, Kinsey K, Oppel S, Scheiblauer S et al (2007) A genome-wide transgenic RNAilibrary for conditional gene inactivation in Drosophila. Nature 448Google Scholar
  25. Dobritsa AA, Der Goes Van, Van Naters W, Warr CG, Steinbrecht RA, Carlson JR (2003) Integrating the molecular and cellular basis of odor coding in the Drosophila antenna. Neuron 37:827–841CrossRefPubMedGoogle Scholar
  26. Dudai Y, Jan Y (1976) dunce, a mutant of Drosophila deficient in learning. Proc Natl Acad Sci 73:1684–1688CrossRefPubMedPubMedCentralGoogle Scholar
  27. Dvorak DR, Bishop LG, Eckert HE (1975) On the identification of movement detectors in the fly optic lobe. J Comp Physiol A 100:5–23CrossRefGoogle Scholar
  28. Egelhaaf M, Borst A, Pilz B (1990) The role of GABA in detecting visual motion. Brain Res 509:156–160CrossRefPubMedGoogle Scholar
  29. Erlenmeyer-Kimling L, Hirsch J (1961) Measurement of the relations between chromosomes and behavior. Science (80-) 134:1068–1069Google Scholar
  30. Fischbach K-F, Dittrich APM (1989) The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res 258:442–475CrossRefGoogle Scholar
  31. Fisher YE, Silies M, Clandinin TR (2015a) Orientation selectivity sharpens motion detection in Drosophila. Neuron 88:1–14CrossRefGoogle Scholar
  32. Fisher YE, Leong JCS, Sporar K, Ketkar MD, Gohl DM, Clandinin TR, Silies M (2015b) A class of visual neurons with wide-field properties is required for local motion detection. Curr Biol 25:3178–3189CrossRefPubMedGoogle Scholar
  33. Freifeld L, Clark DA, Schnitzer MJ, Horowitz MA, Clandinin TR (2013) GABAergic lateral interactions tune the early stages of visual processing in Drosophila. Neuron 78:1075–1089CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gohl DM, Silies MA, Gao XJ, Bhalerao S, Luongo FJ, Lin C, Potter CJ, Clandinin TR (2011) A versatile in vivo system for directed dissection of gene expression patterns. Nat Methods 8:231–237CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gong Y, Huang C, Li JZ, Grewe BF, Zhang Y, Eismann S, Schnitzer MJ (2015) High-speed recording of neural spikes in awake mice and flies with a fluorescent voltage sensor. Science (80-) 350:1361–1366Google Scholar
  36. Gonzalez-Bellido PT, Wardill TJ, Kostyleva R, Meinertzhagen IA, Juusola M (2009) Overexpressing temperature-sensitive dynamin decelerates phototransduction and bundles microtubules in Drosophila photoreceptors. J Neurosci 29:14199–14210Google Scholar
  37. Gordon MD, Scott K (2009) Motor control in a Drosophila taste circuit. Neuron 61:373–384CrossRefPubMedPubMedCentralGoogle Scholar
  38. Götz K (1964) Optomotorische untersuchung des visuellen systems einiger augenmutanten der fruchtfliege Drosophila. Biol CybernGoogle Scholar
  39. Gruntman E, Turner GC (2013) Integration of the olfactory code across dendritic claws of single mushroom body neurons. Nat Neurosci 16:1821–1829CrossRefPubMedPubMedCentralGoogle Scholar
  40. Guven-Ozkan T, Davis RL (2014) Functional neuroanatomy of Drosophila olfactory memory formation. Learn Mem 21:519–526CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hall JC (1978) Courtship among males due to a male-sterile mutation in Drosophila melanogaster. Behav Genet 8:125–141CrossRefPubMedGoogle Scholar
  42. Hallem EA, Ho GM, Carlson JR (2004) The molecular basis of odor coding in the Drosophila antenna. Cell 117:965–979Google Scholar
  43. Hamada FN, Rosenzweig M, Kang K, Pulver SR, Ghezzi A, Jegla TJ, Garrity PA (2008) An internal thermal sensor controlling temperature preference in Drosophila. Nature 454:217–220Google Scholar
  44. Han DD, Stein D, Stevens LM (2000) Investigating the function of follicular subpopulations during Drosophila oogenesis through hormone-dependent enhancer-targeted cell ablation. Development 127:573–583PubMedGoogle Scholar
  45. Hassenstein V, Reichardt W (1956) System theoretical analysis of time, sequence and sign analysis of the motion perception of the snout-beetle Chlorophanus. German Z Naturforsch 11:513–524Google Scholar
  46. Hausen K (1976) Functional characterization and anatomical identification of motion sensitive neurons in the lobula plate of the blowfly Calliphora erythrocephala. Zeitschrift Fur Naturforsch Sect C J Biosci 31:629–634Google Scholar
  47. Heisenberg M, Götz KG (1975) The use of mutations for the partial degradation of vision in Drosophila melanogaster. J Comp Physiol Series A 98:217–241Google Scholar
  48. Heisenberg M, Wonneberger R, Wolf R (1978) Optomotor-blindH31-a Drosophila mutant of the lobula plate giant neurons. J Comp Physiol  Series A 124:287–296Google Scholar
  49. Helassa N, Zhang XH, Conte I, Scaringi J, Esposito E, Bradley J, Carter T, Ogden D, Morad M, Torok K (2015) Fast-response calmodulin-based fluorescent indicators reveal rapid intracellular calcium dynamics. Sci Rep 5:15978CrossRefPubMedPubMedCentralGoogle Scholar
  50. Hiesinger PR, Reiter C, Schau H, Fischbach KF (1999) Neuropil pattern formation and regulation of cell adhesion molecules in Drosophila optic lobe development depend on synaptobrevin. J Neurosci 19:7548–7556PubMedGoogle Scholar
  51. Inada K, Kohsaka H, Takasu E, Matsunaga T, Nose A (2011) Optical dissection of neural circuits responsible for Drosophila larval locomotion with halorhodopsin. PLoS ONE 6:e29019CrossRefPubMedPubMedCentralGoogle Scholar
  52. Jeanne JM, Wilson RI (2015) Convergence, divergence, and reconvergence in a feedforward network improves neural speed and accuracy. Neuron 88:1014–1026CrossRefPubMedPubMedCentralGoogle Scholar
  53. Jenett A, Rubin GM, Ngo TTB, Shepherd D, Murphy C, Dionne H, Pfeiffer BD, Cavallaro A, Hall D, Jeter J et al (2012) A GAL4-driver line resource for Drosophila neurobiology. Cell Rep 2:991–1001CrossRefPubMedPubMedCentralGoogle Scholar
  54. Joesch M, Plett J, Borst A, Reiff DF (2008) Response properties of motion-sensitive visual interneurons in the lobula plate of Drosophila melanogaster. Curr Biol 18:368–374CrossRefPubMedGoogle Scholar
  55. Joesch M, Schnell B, Raghu SV, Reiff DF, Borst A (2010) ON and OFF pathways in Drosophila motion vision. Nature 468:300–304CrossRefPubMedGoogle Scholar
  56. Kalko EKV, Dukas R, Ratcliffe JM, Teeling EC, Haven N, Fattu JM, Bates ME, Simmons JA, Riquimaroux H, Surlykke A et al (2011) An expanded palette of genetically encoded Ca2+ indicators. Science (80-) 333:1888–1891Google Scholar
  57. Katsov AY, Clandinin TR (2008) Motion processing streams in Drosophila are behaviorally specialized. Neuron 59:322–335CrossRefPubMedPubMedCentralGoogle Scholar
  58. Kitamoto T, Xie X, Wu CF, Salvaterra PM (2000) Isolation and characterization of mutants for the vesicular acetylcholine transporter gene in Drosophila melanogaster. J NeurobiolGoogle Scholar
  59. Konopka RJ, Benzer S (1971) Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci 68:2112–2116CrossRefPubMedPubMedCentralGoogle Scholar
  60. Kvon EZ, Kazmar T, Stampfel G, Yáñez-Cuna JO, Pagani M, Schernhuber K, Dickson BJ, Stark A (2014) Genome-scale functional characterization of Drosophila developmental enhancers in vivo. Nature 512:91–95PubMedGoogle Scholar
  61. Leong JCS, Esch JJ, Poole B, Ganguli S, Clandinin TR (2016) Direction selectivity in Drosophila emerges from preferred-direction enhancement and null-direction suppression. J Neurosci 36:8078–8092CrossRefPubMedPubMedCentralGoogle Scholar
  62. Liu WW, Wilson RI (2013) Glutamate is an inhibitory neurotransmitter in the Drosophila olfactory system. Proc Natl Acad Sci 110:10294–10299CrossRefPubMedPubMedCentralGoogle Scholar
  63. Looger LL, Griesbeck O (2012) Genetically encoded neural activity indicators. Curr Opin Neurobiol 22:18–23CrossRefPubMedGoogle Scholar
  64. Luan H, Peabody NC, Vinson CR, White BH (2006) Refined spatial manipulation of neuronal function by combinatorial restriction of transgene expression. Neuron 52:425–436CrossRefPubMedPubMedCentralGoogle Scholar
  65. Maimon G, Straw AD, Dickinson MH (2010) Active flight increases the gain of visual motion processing in Drosophila. Nat Neurosci 13:393–399CrossRefPubMedGoogle Scholar
  66. Maisak MS, Haag J, Ammer G, Serbe E, Meier M, Leonhardt A, Schilling T, Bahl A, Rubin GM, Nern A et al (2013) A directional tuning map of Drosophila elementary motion detectors. Nature 500:212–216CrossRefPubMedGoogle Scholar
  67. Mauss AS, Meier M, Serbe E, Borst A (2014) Optogenetic and pharmacologic dissection of feedforward inhibition in Drosophila motion vision. J Neurosci 34:2254–2263CrossRefPubMedGoogle Scholar
  68. Mauss AS, Pankova K, Arenz A, Nern A, Rubin GM, Borst A (2015) Neural circuit to integrate opposing motions in the visual field. Cell 162:351–362CrossRefPubMedGoogle Scholar
  69. McKenna M, Monte P, Helfand SL, Woodard C, Carlson J (1989) A simple chemosensory response in Drosophila and the isolation of acj mutants in which it is affected. Proc Natl Acad Sci 86:8118–8122CrossRefPubMedPubMedCentralGoogle Scholar
  70. Meier M, Serbe E, Maisak MS, Haag J, Dickson BJ, Borst A (2014) Neural circuit components of the Drosophila OFF motion vision pathway. Curr Biol 24:385–392CrossRefPubMedGoogle Scholar
  71. Meinertzhagen IA, O’Neil SD (1991) Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster. J Comp Neurol 305:232–263Google Scholar
  72. Meinertzhagen IA, Sorra KE (2001) Synaptic organization in the fly’s optic lamina: few cells, many synapses and divergent microcircuits. Prog Brain Res 131:53–69Google Scholar
  73. Muijres FT, Elzinga MJ, Iwasaki NA, Dickinson MH (2015) Body saccades of Drosophila consist of stereotyped banked turns. J Exp Biol 218:864–875CrossRefPubMedGoogle Scholar
  74. Nagel KI, Wilson RI (2011) Biophysical mechanisms underlying olfactory receptor neuron dynamics. Nat Neurosci 14:208–216CrossRefPubMedPubMedCentralGoogle Scholar
  75. Nern A, Pfeiffer BD, Rubin GM (2015) Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system. Proc Natl Acad Sci 112:E2967–E2976CrossRefPubMedPubMedCentralGoogle Scholar
  76. Ni J-Q, Liu L-P, Binari R, Hardy R, Shim H-S, Cavallaro A, Booker M, Pfeiffer BD, Markstein M, Wang H et al (2009) A Drosophila resource of transgenic RNAi lines for neurogenetics. Genetics 182:1089–1100CrossRefPubMedPubMedCentralGoogle Scholar
  77. Pak WL, Grossfield J, Arnold KS (1970) Mutants in the visual pathway of Drosophila melanogaster. Nature 222:351–354CrossRefGoogle Scholar
  78. Pavlou HJ, Goodwin SF (2013) Courtship behavior in Drosophila melanogaster: towards a “courtship connectome”. Curr Opin Neurobiol 23:76–83CrossRefPubMedPubMedCentralGoogle Scholar
  79. Pfeiffer BD, Jenett A, Hammonds AS, Ngo T-TB, Misra S, Murphy C, Scully A, Carlson JW, Wan KH, Laverty TR et al (2008) Tools for neuroanatomy and neurogenetics in Drosophila. Proc Natl Acad Sci 105:9715–9720CrossRefPubMedPubMedCentralGoogle Scholar
  80. Pfeiffer BD, Ngo T-TB, Hibbard KL, Murphy C, Jenett A, Truman JW, Rubin GM (2010) Refinement of tools for targeted gene expression in Drosophila. Genetics 186:735–755CrossRefPubMedPubMedCentralGoogle Scholar
  81. Reiff DF, Plett J, Mank M, Griesbeck O, Borst A (2010) Visualizing retinotopic half-wave rectified input to the motion detection circuitry of Drosophila. Nat Neurosci 13:973–978CrossRefPubMedGoogle Scholar
  82. Riehle A, Franceschini N (1984) Motion detection in flies: parametric control over ON-OFF pathways. Exp Brain Res 390–394Google Scholar
  83. Rister J, Pauls D, Schnell B, Ting C-Y, Lee C-H, Sinakevitch I, Morante J, Strausfeld NJ, Ito K, Heisenberg M (2007) Dissection of the peripheral motion channel in the visual system of Drosophila melanogaster. Neuron 56:155–170CrossRefPubMedGoogle Scholar
  84. Rivera-Alba M, Vitaladevuni SN, Mischenko Y, Lu Z, Takemura S, Scheffer L, Meinertzhagen IA, Chklovskii DB, de Polavieja GG (2011) Wiring economy and volume exclusion determine neuronal placement in the Drosophila Brain. Curr Biol 1–6Google Scholar
  85. Rohrbough J, Rohrbough J, Broadie K, Broadie K (2002) Electrophysiological analysis of synaptic transmission in central neurons of Drosophila larvae. J Neurophysiol 88:847–860PubMedGoogle Scholar
  86. Root CM, Masuyama K, Green DS, Enell LE, Nässel DR, Lee C-H, Wang JW (2008) A presynaptic gain control mechanism fine-tunes olfactory behavior. Neuron 59:311–321CrossRefPubMedPubMedCentralGoogle Scholar
  87. Schnell B, Raghu S, Nern A, Borst A (2012) Columnar cells necessary for motion responses of wide-field visual interneurons in Drosophila. J Comp Physiol AGoogle Scholar
  88. Schnell B, Weir PT, Roth E, Fairhall AL, Dickinson MH (2014) Cellular mechanisms for integral feedback in visually guided behavior. Proc Natl Acad Sci 2014:1–8Google Scholar
  89. Scott EK, Raabe T, Luo L (2002) Structure of the vertical and horizontal system neurons of the lobula plate in Drosophila. J. Comp. Neurol. 454:470–481CrossRefPubMedGoogle Scholar
  90. Seelig JD, Jayaraman V (2015) Neural dynamics for landmark orientation and angular path integration. Nature 521:186–191CrossRefPubMedPubMedCentralGoogle Scholar
  91. Serbe E, Meier M, Leonhardt A, Borst A (2016) Comprehensive characterization of the major presynaptic elements to the Drosophila OFF motion detector. Neuron 1–13Google Scholar
  92. Shinomiya K, Karuppudurai T, Lin T-Y, Lu Z, Lee C-H, Meinertzhagen IA (2014) Candidate neural substrates for off-edge motion detection in Drosophila. Curr Biol 24:1062–1070CrossRefPubMedPubMedCentralGoogle Scholar
  93. Siddiqi O, Benzer S (1976) Neurophysiological defects in temperature-sensitive paralytic mutants of Drosophila melanogaster. PNAS 73:3253–3257Google Scholar
  94. Silies M, Gohl DM, Fisher YE, Freifeld L, Clark DA, Clandinin TR (2013) Modular use of peripheral input channels tunes motion-detecting circuitry. Neuron 79:111–127CrossRefPubMedPubMedCentralGoogle Scholar
  95. Silies M, Gohl DM, Clandinin TR (2014) Motion-detecting circuits in flies: coming into view. Annu Rev Neurosci 37:307–327CrossRefPubMedGoogle Scholar
  96. Single S, Haag J, Borst A (1997) Dendritic computation of direction selectivity and gain control in visual interneurons. J Neurosci 17:6023–6030PubMedGoogle Scholar
  97. Stocker R, Lienhard M, Borst A, Fischbach K-F (1990) Neuronal architecture of the antennal lobe in Drosophila melanogaster. Cell Tissue Res 262:9–34CrossRefPubMedGoogle Scholar
  98. Strausfeld NJ (1976) Atlas of an insect brain. Springer, BerlinGoogle Scholar
  99. Straw AD, Lee S, Dickinson MH (2010) Visual control of altitude in flying Drosophila. Curr Biol 20:1550–1556CrossRefPubMedGoogle Scholar
  100. Straw AD, Branson K, Neumann TR, Dickinson MH (2011) Multi-camera real-time three-dimensional tracking of multiple flying animals. J R Soc Interface 8:395–409CrossRefPubMedGoogle Scholar
  101. Strother JA, Nern A, Reiser MB (2014) Direct observation of ON and OFF pathways in the Drosophila visual system. Curr Biol 24:976–983CrossRefPubMedGoogle Scholar
  102. Suster ML, Seugnet L, Bate M, Sokolowski MB (2004) Refining GAL4-driven transgene expression in Drosophila with a GAL80 enhancer-trap. Genesis 39:240–245CrossRefPubMedGoogle Scholar
  103. Suzuki DT, Grigliatti T, Williamson R (1971) A mutation (parats) causing reversible adult paralysis. PNAS 68:890–893Google Scholar
  104. Sweeney ST, Broadie K, Keane J, Niemann H, O’Kane CJ (1995) Targeted expression of tetanus toxin light chain in Drosophila specifically eliminates synaptic transmission and causes behavioral defects. Neuron 14:341–351CrossRefPubMedGoogle Scholar
  105. Takemura S-Y, Lu Z, Meinertzhagen IA (2008) Synaptic circuits of the Drosophila optic lobe: the input terminals to the medulla. J Comp Neurol 509:493–513Google Scholar
  106. Takemura S, Bharioke A, Lu Z, Nern A, Vitaladevuni S, Rivlin PK, Katz WT, Olbris DJ, Plaza SM, Winston P et al (2013) A visual motion detection circuit suggested by Drosophila connectomics. Nature 500:175–181CrossRefPubMedPubMedCentralGoogle Scholar
  107. Tan L, Zhang KX, Pecot MY, Nagarkar-Jaiswal S, Lee PT, Takemura SY, McEwen JM, Nern A, Xu S, Tadros W et al (2015) Ig superfamily ligand and receptor pairs expressed in synaptic partners in Drosophila. Cell 163:1756–1769CrossRefPubMedPubMedCentralGoogle Scholar
  108. Tuthill JC, Nern A, Holtz SL, Rubin GM, Reiser MB (2013) Contributions of the 12 neuron classes in the fly lamina to motion vision. Neuron 79:128–140CrossRefPubMedPubMedCentralGoogle Scholar
  109. von Reyn CR, Breads P, Peek MY, Zheng GZ, Williamson WR, Yee AL, Leonardo A, Card GM (2014) A spike-timing mechanism for action selection. Nat Neurosci 17:1–12CrossRefGoogle Scholar
  110. Wardill TJ, List O, Li X, Dongre S, McCulloch M, Ting C-Y, O’Kane CJ, Tang S, Lee C-H, Hardie RC et al (2012) Multiple spectral inputs improve motion discrimination in the Drosophila visual system. Science (80-) 336:925–931Google Scholar
  111. Wasserman SM, Aptekar JW, Lu P, Nguyen J, Wang AL, Keles MF, Grygoruk A, Krantz DE, Larsen C, Frye MA (2015) Olfactory neuromodulation of motion vision circuitry in Drosophila. Curr Biol 25:467–472CrossRefPubMedPubMedCentralGoogle Scholar
  112. Wilson RI (2013) Early olfactory processing in Drosophila: mechanisms and principles. Annu Rev Neurosci 36:217–241CrossRefPubMedPubMedCentralGoogle Scholar
  113. Wilson RI, Laurent G (2005) Role of GABAergic inhibition in shaping odor-evoked spatiotemporal patterns in the Drosophila antennal lobe. J Neurosci 25:9069–9079CrossRefPubMedGoogle Scholar
  114. Wilson RI, Turner GC, Laurent G (2004) Transformation of olfactory representations in the Drosophila antennal lobe. Science (80-) 303:366–370Google Scholar
  115. Yaksi E, Wilson RI (2010) Electrical coupling between olfactory glomeruli. Neuron 67:1034–1047CrossRefPubMedPubMedCentralGoogle Scholar
  116. Yang HH, Sun X, Ding X, Lin MZ, Clandinin TR, Yang HH (2016) Subcellular imaging of voltage and calcium signals reveals neural processing in vivo. Cell 1–13Google Scholar
  117. Zheng L, de Polavieja GG, Wolfram V, Asyali MH, Hardie RC, Juusola M (2006) Feedback network controls photoreceptor output at the layer of first visual synapses in Drosophila. J Gen Physiol 127:495–510CrossRefPubMedPubMedCentralGoogle Scholar
  118. Zhu Y, Nern A, Zipursky SL, Frye MA (2009) Peripheral visual circuits functionally segregate motion and phototaxis behaviors in the fly. Curr Biol 19:613–619Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of NeurobiologyHarvard Medical SchoolBostonUSA
  2. 2.Department of NeurobiologyStanford UniversityStanfordUSA

Personalised recommendations