Visualization of Synapses and Synaptic Plasticity in the Drosophila Brain

  • Thomas RiemenspergerEmail author
  • Florian Bilz
  • André FialaEmail author


Drosophila represents a favorable model organism to analyze neuronal circuits underlying behavior. This is mainly due to the versatile genetic tools by which transgene expression can be targeted to virtually any neuronal population in the brain. Fluorescent sensor proteins enable one to monitor the physiological parameters correlating with the function of neurons, and a number of actuator proteins exist that can be used to selectively manipulate distinct neurons. However, the mode of operation of neuronal circuits for determining behavior is not only based on a static connectivity between neurons, but also on the physiological properties of synaptic transmission and their plasticity. Techniques to detect many synapses at high resolution across many neurons in vivo and to access their physiology and plasticity are required. Here, we summarize recent genetic approaches to visualize synapses and to analyze synaptic plasticity in the Drosophila brain.


Drosophila Synapses Synaptic plasticity GRASP Optical imaging Neuronal circuits Behavioral analysis 



This work was supported by the Deutsche Forschungsgemeinschaft (SFB 889/B04) and the German Ministry of Research and Education via the Bernstein Center for Computational Neuroscience Göttingen (01GQ1005A). We are grateful to Robert J. Kittel for helpful comments on the manuscript.


  1. Abbott LF, Regehr WG (2004) Synaptic computation. Nature 431:796–803CrossRefPubMedGoogle Scholar
  2. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S, Bonifacino JS, Davidson MW, Lippincott-Schwartz J, Hess HF (2006) Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:1642–1645CrossRefPubMedGoogle Scholar
  3. Briggman KL, Denk W (2006) Towrads neural circuit reconstruction with volume electron microscopy techniques. Curr Opin Neurobiol 16:562–570CrossRefPubMedGoogle Scholar
  4. Bushey D, Cirelli C (2011) From genetics to structure to function: exploring sleep in Drosophila. Int Rev Neurobiol 99:213–244CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cabantous S, Terwilliger TC, Waldo GS (2005) Protein tagging and detection with engineered self-assembling fragments of green fluorescent protein. Nat Biotechnol 23:102–107CrossRefPubMedGoogle Scholar
  6. Chen Y, Akin O, Nern A, Tsui CYK, Pecot MY, Zipursky SL (2014) Cell-type-specific labeling of synapses in vivo through synaptic tagging with recombination. Neuron 81:280–293CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chiang AS, Lin CY, Chuang CC, Chang HM, Hsieh CH, Yeh CW, Shih CT, Wu JJ, Wang GT, Chen YC, Wu CC, Chen GY, Ching YT, Lee PC, Lin CY, Lin HH, Wu CC, Hsu HW, Huang YA, Chen JY, Chiang HJ, Lu CF, Ni RF, Yeh CY, Hwang JK (2011) Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr Biol 21:1–11CrossRefPubMedGoogle Scholar
  8. Cohn R, Morantte I, Ruta V (2015) Coordinated and compartmentalized neuromodulation shapes sensory processing in Drosophila. Cell 163:1742–1755CrossRefPubMedPubMedCentralGoogle Scholar
  9. Diagana TT, Thomas U, Prokopenko SN, Xiao B, Worley PF, Thomas JB (2002) Mutation of Drosophila homer disrupts control of locomotor activity and behavioral plasticity. J Neurosci 22:428–436PubMedGoogle Scholar
  10. Dipt S, Riemensperger T, Fiala A (2014) Optical calcium imaging using DNA-encoded fluorescence sensors in transgenic fruit flies, Drosophila melanogaster. Methods Mol Biol 1071:195–206CrossRefPubMedGoogle Scholar
  11. Donlea JM, Ramanan N, Silverman N, Shaw PJ (2014) Genetic rescue of functional senescence in synaptic and behavioral plasticity. Sleep 37:1427–1437CrossRefPubMedPubMedCentralGoogle Scholar
  12. Dreosti E, Odermatt B, Dorostkar MM, Lagnado L (2009) A genetically encoded reporter of synaptic activity in vivo. Nat Methods 6:883–889CrossRefPubMedPubMedCentralGoogle Scholar
  13. Estes PS, Ho GL, Narayanan R, Ramaswami M (2000) Synaptic localization and restricted diffusion of a Drosophila neuronal synaptobrevin—green fluorescent protein chimera in vivo. J Neurogenet 13:233–255CrossRefPubMedGoogle Scholar
  14. Feinberg EH, Vanhoven MK, Bendesky A, Wang G, Fetter RD, Shen K, Bargmann CI (2008) GFP Reconstitution Across Synaptic Partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57:353–363CrossRefPubMedGoogle Scholar
  15. Fernández MP, Berni J, Ceriani MF (2008) Circadian remodeling of neuronal circuits involved in rhythmic behavior. PLoS Biol 6:e69CrossRefPubMedPubMedCentralGoogle Scholar
  16. Fiala A (2007) Olfaction and olfactory learning in Drosophila: recent progress. Curr Opin Neurobiol 17:720–726CrossRefPubMedGoogle Scholar
  17. Fiala A, Suska A, Schlüter OM (2010) Optogenetic approaches in neuroscience. Curr Biol 20:R897–R903CrossRefPubMedGoogle Scholar
  18. Frenkel L, Ceriani MF (2011) Circadian plasticity: from structure to behavior. Int Rev Neurobiol 99:107–138CrossRefPubMedGoogle Scholar
  19. Gordon MD, Scott K (2009) Motor control in a Drosophila taste circuit. Neuron 61:373–384CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gorostiza EA, Depetris-Chauvin A, Frenkel L, Pírez N, Ceriani MF (2014) Circadian pacemaker neurons change synaptic contacts across the day. Curr Biol 24:2161–2167CrossRefPubMedPubMedCentralGoogle Scholar
  21. Heilemann M, van de Linde S, Schüttpelz M, Kasper R, Seefeldt B, Mukherjee A, Tinnefeld P, Sauer M (2008) Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. Angew Chem Int Ed Engl 47:6172–6176CrossRefPubMedGoogle Scholar
  22. Heisenberg M (2003) Mushroom body memoir: from maps to models. Nat Rev Neurosci 4:266–275CrossRefPubMedGoogle Scholar
  23. Ito K, Suzuki K, Estes P, Ramaswami M, Yamamoto D, Strausfeld NJ (1998) The organization of extrinsic neurons and their implications in the functional roles of the mushroom bodies in Drosophila melanogaster Meigen. Learn Mem 5:52–77PubMedPubMedCentralGoogle Scholar
  24. Klar TA, Jakobs S, Dyba M, Egner A, Hell SW (2000) Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc Natl Acad Sci U S A 97:8206–8210CrossRefPubMedPubMedCentralGoogle Scholar
  25. Kittel RJ, Wichmann C, Rasse TM, Fouquet W, Schmidt M, Schmid A, Wagh DA, Pawlu C, Kellner RR, Willig KI, Hell SW, Buchner E, Heckmann M, Sigrist SJ (2006) Bruchpilot promotes active zone assembly, Ca2+ channel clustering, and vesicle release. Science 312:1051–1054CrossRefPubMedGoogle Scholar
  26. Kremer MC, Christiansen F, Leiss F, Paehler M, Knapek S, Andlauer TF, Förstner F, Kloppenburg P, Sigrist SJ, Tavosanis G (2010) Structural long-term changes at mushroom body input synapses. Curr Biol 20:1938–1944CrossRefPubMedGoogle Scholar
  27. Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22:451–461CrossRefPubMedGoogle Scholar
  28. Leiss F, Koper E, Hein I, Fouquet W, Lindner J, Sigrist S, Tavosanis G (2009) Characterization of dendritic spines in the Drosophila central nervous system. Dev Neurobiol 69:221–234CrossRefPubMedGoogle Scholar
  29. Li Y, Tsien RW (2012) pHTomato, a red, genetically encoded indicator that enables multiplex interrogation of synaptic activity. Nat Neurosci 15:1047–1053CrossRefPubMedPubMedCentralGoogle Scholar
  30. Li H, Foss SM, Dobryy YL, Park CK, Hires SA, Shaner NC, Tsien RY, Osborne LC, Voglmaier SM (2011) Concurrent imaging of synaptic vesicle recycling and calcium dynamics. Front Mol Neurosci 4:34CrossRefPubMedPubMedCentralGoogle Scholar
  31. Li Y, Guo A, Li H (2016) CRASP: CFP reconstitution across synaptic partners. Biochem Biophys Res Commun 469:352–356CrossRefPubMedGoogle Scholar
  32. Luo L, Callaway EM, Svoboda K (2008) Genetic dissection of neural circuits. Neuron 57:634–660CrossRefPubMedPubMedCentralGoogle Scholar
  33. MacPherson LJ, Zaharieva EE, Kearney PJ, Alpert MH, Lin TY, Turan Z, Lee CH, Gallio M (2015) Dynamic labelling of neural connections in multiple colours by trans-synaptic fluorescence complementation. Nat Comm 6:e10024CrossRefGoogle Scholar
  34. Martin JR, Ernst R, Heisenberg M (1998) Mushroom bodies suppress locomotor activity in Drosophila melanogaster. Learn Mem 5:179–191PubMedPubMedCentralGoogle Scholar
  35. Meinertzhagen IA, Lee CH (2012) The genetic analysis of functional connectomics in Drosophila. Adv Genet 80:99–151PubMedPubMedCentralGoogle Scholar
  36. Miesenböck G, De Angelis DA, Rothman JE (1998) Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–195CrossRefPubMedGoogle Scholar
  37. Ng M, Roorda RD, Lima SQ, Zemelman BV, Morcillo P, Miesenböck G (2002) Transmission of olfactory information between three populations of neurons in the antennal lobe of the fly. Neuron 36:463–474CrossRefPubMedGoogle Scholar
  38. Owald D, Lin S, Waddell S (2015) Light, heat, action: neural control of fruit fly behaviour. Philos Trans R Soc Lond B Biol Sci 370:20140211CrossRefPubMedPubMedCentralGoogle Scholar
  39. Pech U, Pooryasin A, Birman S, Fiala A (2013) Localization of the contacts between Kenyon cells and aminergic neurons in the Drosophila melanogaster brain using SplitGFP reconstitution. J Comp Neurol 521:3992–4026PubMedGoogle Scholar
  40. Pech U, Revelo NH, Seitz KJ, Rizzoli SO, Fiala A (2015) Optical dissection of experience-dependent pre- and postsynaptic plasticity in the Drosophila brain. Cell Rep 10:2083–2095CrossRefPubMedGoogle Scholar
  41. Pedelacq JD, Cabantous S, Tran T, Terwilliger TC, Waldo GS (2006) Engineering and characterization of a superfolder green fluorescent protein. Nat Biotechnol 24:79–88CrossRefPubMedGoogle Scholar
  42. Rasse TM, Fouquet W, Schmid A, Kittel RJ, Mertel S, Sigrist CB, Schmidt M, Guzman A, Merino C, Qin G, Quentin C, Madeo FF, Heckmann M, Sigrist SJ (2005) Glutamate receptor dynamics organizing synapse formation in vivo. Nat Neurosci 8:898–905CrossRefPubMedGoogle Scholar
  43. Riemensperger T, Pech U, Dipt S, Fiala A (2012) Optical calcium imaging in the nervous system of Drosophila melanogaster. Biochim Biophys Acta 1820:1169–1178CrossRefPubMedGoogle Scholar
  44. Riemensperger T, Issa AR, Pech U, Coulom H, Nguyễn MV, Cassar M, Jacquet M, Fiala A, Birman S (2013) A single dopamine pathway underlies progressive locomotor deficits in a Drosophila model of Parkinson disease. Cell Rep 5:952–960CrossRefPubMedGoogle Scholar
  45. Riemensperger T, Kittel RJ, Fiala A (2016) Optogenetics in Drosophila neuroscience. Methods Mol Biol 1408:167–175CrossRefPubMedGoogle Scholar
  46. Rust MJ, Bates M, Zhuang X (2006) Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:793–795CrossRefPubMedPubMedCentralGoogle Scholar
  47. Saitoe M, Horiuchi J, Tamura T, Ito N (2005) Drosophila as a novel animal model for studying the genetics of age-related memory impairment. Rev Neurosci 16:137–149CrossRefPubMedGoogle Scholar
  48. Su CY, Wang JW (2014) Modulation of neural circuits: how stimulus context shapes innate behavior in Drosophila. Curr Opin Neurobiol 29:9–16CrossRefPubMedGoogle Scholar
  49. Tian L, Hires SA, Mao T, Huber D, Chiappe ME, Chalasani SH, Petreanu L, Akerboom J, McKinney SA, Schreiter ER, Bargmann CI, Jayaraman V, Svoboda K, Looger LL (2009) Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators. Nat Methods 6:875–881CrossRefPubMedPubMedCentralGoogle Scholar
  50. Tonoki A, Davis RL (2015) Aging impairs protein-synthesis-dependent long-term memory in Drosophila. J Neurosci 35:1173–1180CrossRefPubMedPubMedCentralGoogle Scholar
  51. Twick I, Lee JA, Ramaswami M (2014) Olfactory habituation in Drosophila—odor encoding and its plasticity in the antennal lobe. Prog Brain Res 208:3–38CrossRefPubMedGoogle Scholar
  52. Venken KJ, Simpson JH, Bellen HJ (2011) Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 72:202–230CrossRefPubMedPubMedCentralGoogle Scholar
  53. Wagh DA, Rasse TM, Asan E, Hofbauer A, Schwenkert I, Dürrbeck H, Buchner S, Dabauvalle MC, Schmidt M, Qin G, Wichmann C, Kittel R, Sigrist SJ, Buchner E (2006) Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron 49:833–844CrossRefPubMedGoogle Scholar
  54. White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 314:1–340CrossRefPubMedGoogle Scholar
  55. Yu D, Ponomarev A, Davis RL (2004) Altered representation of the spatial code for odors after olfactory classical conditioning; memory trace formation by synaptic recruitment. Neuron 42:437–449CrossRefPubMedGoogle Scholar
  56. Zhang YQ, Rodesch CK, Broadie K (2002) Living synaptic vesicle marker: Synaptotagmin-GFP. Genesis 34:134–142CrossRefGoogle Scholar
  57. Zhang Y, Guo H, Kwan H, Wang JW, Kosek J, Lu B (2007) PAR-1 kinase phosphorylates Dlg and regulates its postsynaptic targeting at the Drosophila neuromuscular junction. Neuron 53:201–215CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Department of Molecular Neurobiology of BehaviorJohann-Friedrich-Blumenbach-Institute for Zoology and Anthropology, Georg-August-University GöttingenGöttingenGermany

Personalised recommendations