Skip to main content

Motor-Driven Modulation in Visual Neural Circuits

  • Chapter
  • First Online:
Decoding Neural Circuit Structure and Function

Abstract

Experiments in anesthetized, immobile animals have contributed to the classical view that sensory and motor functions in the brain are separated processes. However, under natural conditions, the nervous system and the body of a moving animal interact continuously, and it is from this interaction that neural circuits in the brain form an internal representation of the sensory world. We move our head to detect and localize the source of a sound, we move our eyes to scan a visual scene; likewise, tactile sensation is based on our body’s movement, and olfaction occurs in the context of sniffing. Sensory and motor components of a sensory modality are intimately connected to each other during an active process. How this relation is implemented across sensorimotor circuits, and how motor–sensory coordination improves sensation, are questions that still remain unclear. Recent technological advances have made possible to record neural activity from sensory areas while animals walk or fly—behavioral conditions in which sensation most frequently happens. From these studies, performed both in insects and mammals, it has become apparent that the neural dynamics of primary sensory areas are readily influenced by ongoing locomotion. In this chapter, we discuss work dissecting different components of the locomotion-dependent modulations, focusing on visual circuits in flies and mice. The presence of these locomotive-related signals in early visual centers strongly suggests that motor–sensory coordination is dynamic, diverse, and adaptable to the behavioral situation of the animal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alitto HJ, Dan Y (2013) Cell type specific modulation of neocortical activity by basal forebrain input. Front Syst Neurosci 6:79

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Andermann ML, Kerlin AM, Roumis DK, Glickfeld LL, Reid RC (2011) Functional specialization of mouse higher visual cortical areas. Neuron 72:1025–1039

    Article  CAS  PubMed  Google Scholar 

  • Andermann ML, Gilfoy NB, Goldey GJ, Sachdev RN, Wolfel M, McCormick DA, Reid RC, Levene MJ (2013) Chronic cellular imaging of entire cortical columns in awake mice using microprisms. Neuron 80:900–913

    Article  CAS  PubMed  Google Scholar 

  • Angelaki DE, Gu Y, Deangelis GC (2011) Visual and vestibular cue integration for heading perception in extrastriate visual cortex. J Physiol 589:825–833

    Article  CAS  PubMed  Google Scholar 

  • Ayaz A, Saleem AB, Scholvinck ML, Carandini M (2013) Locomotion controls spatial integration in mouse visual cortex. Curr Biol 23:890–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldwin MK, Wong P, Reed JL, Kaas JH (2011) Superior colliculus connections with visual thalamus in gray squirrels Sciurus carolinensis: evidence for four subdivisions within the pulvinar complex. J Comp Neurol 519:1071–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bennett C, Arroyo S, Hestrin S (2013) Subthreshold mechanisms underlying state dependent modulation of visual responses. Neuron 80:350–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blondeau J, Heisenberg M (1982) The three-dimensional optomotor torque system of Drosophila melanogaster. J Comp Physiol 145:321–329

    Article  Google Scholar 

  • Borst A (2014) Fly visual course control behaviour algorithms and circuits. Nat Rev Neurosci 15:590–599

    Article  CAS  PubMed  Google Scholar 

  • Bradley DC, Maxwell M, Andersen RA, Banks MS, Shenoy KV (1996) Mechanisms of heading perception in primate visual cortex. Science 273:1544–1547

    Article  CAS  PubMed  Google Scholar 

  • Britten KH, van Wezel RJ (1998) Electrical microstimulation of cortical area MST biases heading perception in monkeys. Nat Neurosci 1:59–63

    Article  CAS  PubMed  Google Scholar 

  • Busch S, Selcho M, Ito K, Tanimoto H (2009) A map of octopaminergic neurons in the Drosophila brain. J Comp Neurol 513:643–667

    Article  PubMed  Google Scholar 

  • Chagnaud BP, Banchi R, Simmers J, Straka H (2015) Spinal corollary discharge modulates motion sensing during vertebrate locomotion. Nat Commun 6:7982

    Article  PubMed  PubMed Central  Google Scholar 

  • Chiappe ME, Seelig JD, Reiser MB, Jayaraman V (2010) Walking modulates speed sensitivity in Drosophila motion vision. Curr Biol 20:1470–1475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coen P, Xie M, Clemens J, Murthy M (2016) Sensorimotor transformations underlying variability in song intensity during Drosophila courtship. Neuron 89:629–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cohen MR, Maunsell JH (2009) Attention improves performance primarily by reducing interneuronal correlations. Nat Neurosci 12:1594–1600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crapse TB, Sommer MA (2008) Corollary discharge across the animal kingdom. Nat Rev Neurosci 9:587–600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davis WJ, Siegler MVS, Mpitos GJ (1973) Distributed neuronal oscillators and efference copy in the feeding system of Pleurobranchaca. J Neurophysiol 36:258–274

    CAS  PubMed  Google Scholar 

  • de Haan R, Lee YJ, Nordstrom K (2012) Octopaminergic modulation of contrast sensitivity. Front Integr Neurosci 6:55

    PubMed  PubMed Central  Google Scholar 

  • Dhande OS, Estevez ME, Quattrochi LE, El-Danaf RN, Nguyen PL, Berson DM, Huberman AD (2013) Genetic dissection of retinal inputs to brainstem nuclei controlling image stabilization. J Neurosci 33:17797–17813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Distler C, Hoffmann KP (2011) Visual pathway for the optokinetic reflex in infant macaque monkeys. J Neurosci 31:17659–17668

    Article  CAS  PubMed  Google Scholar 

  • Dombeck DA, Khabbaz AN, Collman F, Adelman TL, Tank DW (2007) Imaging large scale neural activity with cellular resolution in awake mobile mice. Neuron 56:43–57

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dombeck DA, Reiser MB (2012) Real neuroscience in virtual worlds. Curr Opin Neurobiol 22:3–10

    Article  CAS  PubMed  Google Scholar 

  • Duffy CJ, Wurtz RH (1991a) Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large field stimuli. J Neurophysiol 65:1329–1345

    CAS  PubMed  Google Scholar 

  • Duffy CJ, Wurtz RH (1991b) Sensitivity of MST neurons to optic flow stimuli II Mechanisms of response selectivity revealed by small field stimuli. J Neurophysiol 65:1346–1359

    CAS  PubMed  Google Scholar 

  • Eggermann E, Kremer Y, Crochet S, Petersen CC (2014) Cholinergic signals in mouse barrel cortex during active whisker sensing. Cell Rep 9:1654–1660

    Article  CAS  PubMed  Google Scholar 

  • Erisken S, Vaiceliunaite A, Jurjut O, Fiorini M, Katzner S, Busse L (2014) Effects of locomotion extend throughout the mouse early visual system. Curr Biol 24:2899–2907

    Article  CAS  PubMed  Google Scholar 

  • Franklin DW, Wolpert DM (2011) Computational mechanisms of sensorimotor control. Neuron 72:425–442

    Article  CAS  PubMed  Google Scholar 

  • Fu Y, Tucciarone JM, Espinosa JS, Sheng N, Darcy DP, Nicoll RA, Huang ZJ, Stryker MP (2014) A cortical circuit for gain control by behavioral state. Cell 156:1139–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcia-Rill E, Skinner RD (1987a) The mesencephalic locomotor region. II. Projections to reticulospinal neurons. Brain Res 411:13–20

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Rill E, Skinner RD (1987b) The mesencephalic locomotor region. I. Activation of a medullary projection site. Brain Res 411:1–12

    Article  CAS  PubMed  Google Scholar 

  • Geiger G, Nässel DR (1981) Visual orientation behaviour of flies after selective laser beam ablation of interneurones. Nature 293:398–399

    Article  CAS  PubMed  Google Scholar 

  • Gill TM, Sarter M, Givens B (2000) Sustained visual attention performance-associated prefrontal neural activity: evidence for cholinergic activity. J Neurosci 20:4745–4757

    CAS  PubMed  Google Scholar 

  • Goard M, Dan Y (2009) Basal forebrain activation enhances cortical coding of natural scenes. Nat Neurosci 12:1444–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goetz L, Piallat B, Bhattacharjee M, Mathieu H, David O, Chabardès S (2016) On the role of the pedunculopontine nucleus and mesencephalic reticular formation in locomotion in nonhuman primates. J Neurosci 36:4917–4929

    Article  CAS  PubMed  Google Scholar 

  • Götz KG, Wenking H (1973) Visual control of locomotion in the walking fruit fly Drosophila. J Comp Physiol 85:235–266

    Article  Google Scholar 

  • Grasse KL, Cynader MS (1991) The accessory optic system in frontal-eyed animals. Macmillan, New York, pp 111–139

    Google Scholar 

  • Grieve KL, Acuna C, Cudeiro J (2000) The primate pulvinar nuclei vision and action. Trends Neurosci 23:35–39

    Article  CAS  PubMed  Google Scholar 

  • Grover D, Katsuki T, Greenspan RJ (2016) Flyception: imaging brain activity in freely walking fruit flies. Nat Methods 13:569–572

    Article  CAS  PubMed  Google Scholar 

  • Haag J, Wertz A, Borst A (2010) Central gating of fly optomotor response. Proc Nat Acad Sci U S A 107:20104–20109

    Article  CAS  Google Scholar 

  • Haikala V, Joesch M, Borst A, Mauss AS (2013) Optogenetic control of fly optomotor responses. J Neurosci 33:13927–13934

    Article  CAS  PubMed  Google Scholar 

  • Harris KD, Thiele A (2011) Cortical state and attention. Nat Rev Neurosci 12:509–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hasselmo ME, Sarter M (2011) Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology 36:52–73

    Article  CAS  PubMed  Google Scholar 

  • Hausen K (1982a) Motion sensitive interneurons in the optomotor system of the fly. I. The horizontal cells: structure and signals. Biol Cybern 45:143–156

    Article  Google Scholar 

  • Hausen K (1982b) Motion sensitive interneurons in the optomotor system of the fly. II. The horizontal cells: receptive field organization and response characteristics. Biol Cybern 46:67–79

    Article  Google Scholar 

  • Hausen K, Wehrhahn C (1983) Microsurgical lesion of horizontal cells changes optomotor yaw responses in the blowfly Calliphora erythrocephala. Proc R Soc Lond B 219:211–216

    Article  Google Scholar 

  • Heisenberg M, Wonneberger R, Wolf R (1978) Optomotor-blindh31—a Drosophila mutant of the lobula plate giant neurons. J Comp Physiol 124:287–296

    Article  Google Scholar 

  • Hendricks M, Ha H, Maffey N, Zhang Y (2012) Compartmentalized calcium dynamics in a C elegans interneuron encode head movement. Nature 487:99–103

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hoy RR (1989) Startle, categorical response, and attention in acoustic behavior of insects. Annu Rev Neurosci 12:355–375

    Article  CAS  PubMed  Google Scholar 

  • Joesch M, Plett J, Borst A, Reiff DF (2008) Response properties of motion sensitive visual interneurons in the lobula plate of Drosophila melanogaster. Curr Biol 18:368–374

    Article  CAS  PubMed  Google Scholar 

  • Jung SN, Borst A, Haag J (2011) Flight activity alters velocity tuning of fly motion sensitive neurons. J Neurosci 31:9231–9237

    Article  CAS  PubMed  Google Scholar 

  • Keller GB, Bonhoeffer T, Hubener M (2012) Sensorimotor mismatch signals in primary visual cortex of the behaving mouse. Neuron 74:809–815

    Article  CAS  PubMed  Google Scholar 

  • Kim AJ, Fitzgerald JK, Maimon G (2015) Cellular evidence for efference copy in Drosophila visuomotor processing. Nat Neurosci 18:1247–1255

    Article  CAS  PubMed  Google Scholar 

  • Kobayashi Y, Isa T (2002) Sensory motor gating and cognitive control by the brainstem cholinergic system. Neural Netw 15:731–741

    Article  PubMed  Google Scholar 

  • Koenderink JJ (1986) Optic flow. Vision Res 26:161–179

    Article  CAS  PubMed  Google Scholar 

  • Kral K (2012) The functional significance of mantis peering behaviour. Eur J Entomol 109:295–301

    Article  Google Scholar 

  • Kropff E, Carmichael JE, Moser MB, Moser EI (2015) Speed cells in the medial entorhinal cortex. Nature 523:419–424

    Article  CAS  PubMed  Google Scholar 

  • Kubo F, Hablitzel B, Maschio MD, Driever W, Baier H, Arrenberg AB (2014) Functional architecture of an optic flow responsive area that drives horizontal eye movements in zebrafish. Neuron 81:1344–1359

    Article  CAS  PubMed  Google Scholar 

  • Lappe M, Bremmer F, van den Berg AV (1999) Perception of self motion from visual flow. Trends Cogn Sci 3:329–336

    Article  CAS  PubMed  Google Scholar 

  • Lee SH, Dan Y (2012) Neuromodulation of brain states. Neuron 76:209–222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Carvell GE, Simons DJ (2008) Motor modulation of afferent somatosensory circuits. Nat Neurosci 11:1430–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee S, Kruglikov I, Huang ZJ, Fishell G, Rudy B (2013) A disinhibitory circuit mediates motor integration in the somatosensory cortex. Nat Neurosci 16:1662–1670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee AM, Hoy JL, Bonci A, Wilbrecht L, Stryker MP, Niell CM (2014) Identification of a brainstem circuit regulating visual cortical state in parallel with locomotion. Neuron 83:455–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang F, Xiong XR, Zingg B, Ji XY, Zhang LI, Tao HW (2015) Sensory cortical control of a visually induced arrest behavior via corticotectal projections. Neuron 86:755–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Longden KD, Krapp HG (2009) State dependent performance of optic flow processing interneurons. J Neurophysiol 102:3606–3618

    Article  PubMed  Google Scholar 

  • Longden KD, Krapp HG (2010) Octopaminergic modulation of temporal frequency coding in an identified optic flow processing interneuron. Front Syst Neurosci 4:153

    Article  PubMed  PubMed Central  Google Scholar 

  • Longden KD, Muzzu T, Cook DJ, Schultz SR, Krapp HG (2014) Nutritional state modulates the neural processing of visual motion. Curr Biol 24:890–895

    Article  CAS  PubMed  Google Scholar 

  • Lüders J, Kurtz R (2015) Octopaminergic modulation of temporal frequency tuning of a fly visual motion sensitive neuron depends on adaptation level. Front Integr Neurosci 9:36

    PubMed  PubMed Central  Google Scholar 

  • Maimon G, Straw AD, Dickinson MH (2010) Active flight increases the gain of visual motion processing in Drosophila. Nat Neurosci 13:393–399

    Article  CAS  PubMed  Google Scholar 

  • Masseck OA, Hoffmann KP (2009) Comparative neurobiology of the optokinetic reflex. Ann N Y Acad Sci 1164:430–439

    Article  PubMed  Google Scholar 

  • McGinley MJ, Vinck M, Reimer J, Batista-Brito R, Zagha E, Cadwell CR, Tolias AS, Cardin JA, McCormick DA (2015) Waking state: rapid variations modulate neural and behavioral responses. Neuron 87:1143–1161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Minderer M, Harvey CD, Donato F, Moser E (2016) Neuroscience: virtual reality explored. Nature 533:324–325

    Article  CAS  PubMed  Google Scholar 

  • Mori S, Nishimura H, Kurakami C, Yamamura T, Aoki M (1978) Controlled locomotion in the mesencephalic cat distribution of facilitatory and inhibitory regions within pontine tegmentum. J Neurophysiol 41:1580–1591

    CAS  PubMed  Google Scholar 

  • Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1:455–473

    Article  CAS  PubMed  Google Scholar 

  • Muijres FT, Elzinga MJ, Melis JM, Dickinson MH (2014) Flies evade looming targets by executing rapid visually directed banked turns. Science 344:172–177

    Article  CAS  PubMed  Google Scholar 

  • Nauta WJH, Kuypers HGJM (1958) Some ascending pathways in the brain stem reticular formation. In: Jasper HH, Proctor LD, Knighton RS, Noshay WC, Costello RT (eds) Reticular formation of the brain (pp. 3-30), Little, Brown: Oxford, England, 766 pp

    Google Scholar 

  • Nelson A, Mooney R (2016) The basal forebrain and motor cortex provide convergent yet distinct movement related inputs to the auditory cortex. Neuron 90:635–648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nelson A, Schneider DM, Taktoh J, Sakurai K, Wang F, Mooney R (2013) A circuit for motor cortical modulation of auditory cortical activity. J Neurosci 33:14342–14353

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Newsome WT, Wurtz RH, Komatsu H (1988) Relation of cortical areas MT and MST to pursuit eye movements II Differentiation of retinal from extraretinal inputs. J Neurophysiol 60:604–620

    CAS  PubMed  Google Scholar 

  • Niell CM, Stryker MP (2010) Modulation of visual responses by behavioral state in mouse visual cortex. Neuron 65:472–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orchard I, Ramirez JM, Lange AB (1993) A multifunctional role for octopamine in locust flight. Annu Rev Entomol 38:227–249

    Article  CAS  Google Scholar 

  • Petreanu L, Mao T, Sternson SM, Svoboda K (2009) The subcellular organization of neocortical excitatory connections. Nature 457:1142–1145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Petreanu L, Gutnisky DA, Huber D, Xu NL, O’Connor DH, Tian L, Looger L, Svoboda K (2012) Activity in motor sensory projections reveals distributed coding in somatosensation. Nature 489:299–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pfeiffer K, Homberg U (2014) Organization and functional roles of the central complex in the insect brain. Annu Rev Entomol 59:165–184

    Article  CAS  PubMed  Google Scholar 

  • Pinto L, Goard MJ, Estandian D, Xu M, Kwan AC, Lee SH, Harrison TC, Feng G, Dan Y (2013) Fast modulation of visual perception by basal forebrain cholinergic neurons. Nat Neurosci 16:1857–1863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polack PO, Friedman J, Golshani P (2013) Cellular mechanisms of brain state dependent gain modulation in visual cortex. Nat Neurosci 16:1331–1339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poteser M, Pabst MA, Kral K (1998) Proprioceptive contribution to distance estimation by motion parallax in praying mantid. J Exp Biol 201:1483–1491

    Google Scholar 

  • Poulet JF, Hedwig B (2002) A corollary discharge maintains auditory sensitivity during sound production. Nature 418:872–876

    Article  CAS  PubMed  Google Scholar 

  • Poulet JF, Petersen CC (2008) Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature 454:881–885

    Article  CAS  PubMed  Google Scholar 

  • Reimer J, Froudarakis E, Cadwell CR, Yatsenko D, Denfield GH, Tolias AS (2014) Pupil fluctuations track fast switching of cortical states during quiet wakefulness. Neuron 84:355–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Requarth T, Kaifosh P, Sawtell NB (2014) A role for mixed corollary discharge and proprioceptive signals in predicting the sensory consequences of movements. J Neurosci 34:16103–16116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rien D, Kern R, Kurtz R (2012) Octopaminergic modulation of contrast gain adaptation in fly visual motion sensitive neurons. Eur J Neurosci 36:3030–3039

    Article  PubMed  Google Scholar 

  • Ringach DL (2009) Spontaneous and driven cortical activity: implications for computation. Curr Opin Neurobiol 19:439–444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roeder T (2005) Tyramine and octopamine: ruling behavior and metabolism. Annu Rev Entomol 50:447–477

    Article  CAS  PubMed  Google Scholar 

  • Roseberry TK, Lee AM, Lalive AL, Wilbrecht L, Bonci A, Kreitzer AC (2016) Cell type specific control of brainstem locomotor circuits by basal ganglia. Cell 164:526–537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roth MM, Dahmen JC, Muir DR, Imhof F, Martini FJ, Hofer SB (2016) Thalamic nuclei convey diverse contextual information to layer of visual cortex. Nat Neurosci 19:299–307

    Article  CAS  PubMed  Google Scholar 

  • Roy JE, Cullen KE (2004) Dissociating self generated from passively applied head motion neural mechanisms in the vestibular nuclei. J Neurosci 24:2102–2111

    Article  CAS  PubMed  Google Scholar 

  • Saleem AB, Ayaz A, Jeffery KJ, Harris KD, Carandini M (2013) Integration of visual motion and locomotion in mouse visual cortex. Nat Neurosci 16:1864–1869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schilstra C, Hateren JH (1999) Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics. J Exp Biol 202:1481–1490

    PubMed  Google Scholar 

  • Schneider DM, Nelson A, Mooney R (2014) A synaptic and circuit basis for corollary discharge in the auditory cortex. Nature 513:189–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schnell B, Joesch M, Forstner F, Raghu SV, Otsuna H, Ito K, Borst A, Reiff DF (2010) Processing of horizontal optic flow in three visual interneurons of the Drosophila brain. J Neurophysiol 103:1646–1657

    Article  CAS  PubMed  Google Scholar 

  • Schnell B, Weir PT, Roth E, Fairhall AL, Dickinson MH (2014) Cellular mechanisms for integral feedback in visually guided behavior. Proc Nat Acad Sci U S A 111:5700–5705

    Article  CAS  Google Scholar 

  • Scott EK, Raabe T, Luo L (2002) Structure of the vertical and horizontal system neurons of the lobula plate in Drosophila. J Comp Neurol 454:470–481

    Article  PubMed  Google Scholar 

  • Seelig JD, Jayaraman V (2015) Neural dynamics for landmark orientation and angular path integration. Nature 521:186–191

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seelig JD, Chiappe ME, Lott GK, Dutta A, Osborne JE, Reiser MB, Jayaraman V (2010) Two photon calcium imaging from head fixed Drosophila during optomotor walking behavior. Nat Methods 7:535–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shik ML, Severin FV, Orlovsky GN (1966) Control of walking and running by means of electrical stimulation of the mid-brain. Biophysics 11:756–765

    Google Scholar 

  • Joshi S, Yin Li, Rishi M. Kalwani, Joshua I. Gold (2016) Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron 89:221–234

    Google Scholar 

  • Silies M, Gohl DM, Clandinin TR (2014) Motion detecting circuits in flies coming into view. Annu Rev Neurosci 37:307–327

    Article  CAS  PubMed  Google Scholar 

  • Sillito AM, Cudeiro J, Jones HE (2006) Always returning feedback and sensory processing in visual cortex and thalamus. Trends Neurosci 29:307–316

    Article  CAS  PubMed  Google Scholar 

  • Sillar KT, Roberts A (1988) A neuronal mechanism for sensory gating during locomotion in a vertebrate. Nature 331:262–265

    Article  CAS  PubMed  Google Scholar 

  • Simpson JI (1984) The accessory optic system. Annu Rev Neurosci 7:13–41

    Article  CAS  PubMed  Google Scholar 

  • Sommer MA, Wurtz RH (2002) A pathway in primate brain for internal monitoring of movements. Science 296:1480–1482

    Article  CAS  PubMed  Google Scholar 

  • Sommer MA, Wurtz RH (2006) Influence of the thalamus on spatial visual processing in frontal cortex. Nature 444:374–377

    Article  CAS  PubMed  Google Scholar 

  • Sperry RW (1950) Neural basis of the spontaneous optokinetic response produced by visual inversion. J Comp Physiol Psychol 43:482–489

    Article  CAS  PubMed  Google Scholar 

  • Stackman RW, Golob EJ, Bassett JP, Taube JS (2003) Passive transport disrupts directional path integration by rat head direction cells. J Neurophysiol 90:2862–2874

    Article  PubMed  Google Scholar 

  • Steriade M, Datta S, Pare D, Oakson G, Dossi RC (1990) Neuronal activities in brain–stem cholinergic nuclei related to tonic activation processes in thalamocortical systems. J Neurosci 10:2541–2559

    CAS  PubMed  Google Scholar 

  • Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262:679–685

    Article  CAS  PubMed  Google Scholar 

  • Strauss R, Berg C (2010) The central control of oriented locomotion in insects—towards a neurobiological model. IEEE world congress on computational intelligence, pp 3919–3926

    Google Scholar 

  • Suver MP, Mamiya A, Dickinson MH (2012) Octopamine neurons mediate flight induced modulation of visual processing in Drosophila. Curr Biol 22:2294–2302

    Article  CAS  PubMed  Google Scholar 

  • Tuthill JC, Nern A, Rubin GM, Reiser MB (2014) Wide field feedback neurons dynamically tune early visual processing. Neuron 82:887–895

    Article  CAS  PubMed  Google Scholar 

  • van Breugel F, Suver MP, Dickinson MH (2014) Octopaminergic modulation of the visual flight speed regulator of Drosophila. J Exp Biol 217:1737–1744

    Google Scholar 

  • van Swinderen B (2007) Attention-like processes in Drosophila require short-term memory genes. Science 315:1590–1593

    Article  PubMed  CAS  Google Scholar 

  • Vinck M, Batista-Brito R, Knoblich U, Cardin JA (2015) Arousal and locomotion make distinct contributions to cortical activity patterns and visual encoding. Neuron 86:740–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Holst E, Mittelstaedt H (1950) Das Reafferenzprinzip. Wechselwirkungen zwischen Zentralnervensystem und Peripherie. Naturwissenschaften 37:464–476

    Google Scholar 

  • Voss M, Ingram JN, Haggard P, Wolpert DM (2006) Sensorimotor attenuation by central motor command signals in the absence of movement. Nat Neurosci 9:26–27

    Article  CAS  PubMed  Google Scholar 

  • Wall MB, Smith AT (2008) The representation of egomotion in the human brain. Curr Biol 18:191–194

    Article  CAS  PubMed  Google Scholar 

  • Weir PT, Dickinson MH (2015) Functional divisions for visual processing in the central brain of flying Drosophila. Proc Nat Acad Sci U S A 112:E5523–E5532

    Article  CAS  Google Scholar 

  • Weir PT, Schnell B, Dickinson MH (2014) Central complex neurons exhibit behaviorally gated responses to visual motion in Drosophila. J Neurophysiol 111:62–71

    Article  PubMed  Google Scholar 

  • Whitlock JR, Sutherland RJ, Witter MP, Moser MB, Moser EI (2008) Navigating from hippocampus to parietal cortex. Proc Nat Acad Sci U S A 105:14755–14762

    Article  CAS  Google Scholar 

  • Wiederman SD, O’Carroll DC (2013) Selective attention in an insect neuron. Curr Biol 23:156–161

    Article  CAS  PubMed  Google Scholar 

  • Wurtz RH, McAlonan K, Cavanaugh J, Berman RA (2011) Thalamic pathways for active vision. Trends Cogn Sci 15:177–184

    Article  PubMed  PubMed Central  Google Scholar 

  • Yonehara K, Ishikane H, Sakuta H, Shintani T, Nakamura-Yonehara K, Kamiji NL, Usui S, Noda M (2009) Identification of retinal ganglion cells and their projections involved in central transmission of information about upward and downward image motion. PLoS ONE 4:e4320

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zagha E, Casale AE, Sachdev RN, McGinley MJ, McCormick DA (2013) Motor cortex feedback influences sensory processing by modulating network state. Neuron 79:567–578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eugenia Chiappe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Fujiwara, T., Chiappe, E. (2017). Motor-Driven Modulation in Visual Neural Circuits. In: Çelik, A., Wernet, M. (eds) Decoding Neural Circuit Structure and Function. Springer, Cham. https://doi.org/10.1007/978-3-319-57363-2_10

Download citation

Publish with us

Policies and ethics