Motor-Driven Modulation in Visual Neural Circuits

  • Terufumi Fujiwara
  • Eugenia ChiappeEmail author


Experiments in anesthetized, immobile animals have contributed to the classical view that sensory and motor functions in the brain are separated processes. However, under natural conditions, the nervous system and the body of a moving animal interact continuously, and it is from this interaction that neural circuits in the brain form an internal representation of the sensory world. We move our head to detect and localize the source of a sound, we move our eyes to scan a visual scene; likewise, tactile sensation is based on our body’s movement, and olfaction occurs in the context of sniffing. Sensory and motor components of a sensory modality are intimately connected to each other during an active process. How this relation is implemented across sensorimotor circuits, and how motor–sensory coordination improves sensation, are questions that still remain unclear. Recent technological advances have made possible to record neural activity from sensory areas while animals walk or fly—behavioral conditions in which sensation most frequently happens. From these studies, performed both in insects and mammals, it has become apparent that the neural dynamics of primary sensory areas are readily influenced by ongoing locomotion. In this chapter, we discuss work dissecting different components of the locomotion-dependent modulations, focusing on visual circuits in flies and mice. The presence of these locomotive-related signals in early visual centers strongly suggests that motor–sensory coordination is dynamic, diverse, and adaptable to the behavioral situation of the animal.


  1. Alitto HJ, Dan Y (2013) Cell type specific modulation of neocortical activity by basal forebrain input. Front Syst Neurosci 6:79PubMedPubMedCentralCrossRefGoogle Scholar
  2. Andermann ML, Kerlin AM, Roumis DK, Glickfeld LL, Reid RC (2011) Functional specialization of mouse higher visual cortical areas. Neuron 72:1025–1039PubMedCrossRefGoogle Scholar
  3. Andermann ML, Gilfoy NB, Goldey GJ, Sachdev RN, Wolfel M, McCormick DA, Reid RC, Levene MJ (2013) Chronic cellular imaging of entire cortical columns in awake mice using microprisms. Neuron 80:900–913PubMedCrossRefGoogle Scholar
  4. Angelaki DE, Gu Y, Deangelis GC (2011) Visual and vestibular cue integration for heading perception in extrastriate visual cortex. J Physiol 589:825–833PubMedCrossRefGoogle Scholar
  5. Ayaz A, Saleem AB, Scholvinck ML, Carandini M (2013) Locomotion controls spatial integration in mouse visual cortex. Curr Biol 23:890–894PubMedPubMedCentralCrossRefGoogle Scholar
  6. Baldwin MK, Wong P, Reed JL, Kaas JH (2011) Superior colliculus connections with visual thalamus in gray squirrels Sciurus carolinensis: evidence for four subdivisions within the pulvinar complex. J Comp Neurol 519:1071–1094PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bennett C, Arroyo S, Hestrin S (2013) Subthreshold mechanisms underlying state dependent modulation of visual responses. Neuron 80:350–357PubMedPubMedCentralCrossRefGoogle Scholar
  8. Blondeau J, Heisenberg M (1982) The three-dimensional optomotor torque system of Drosophila melanogaster. J Comp Physiol 145:321–329CrossRefGoogle Scholar
  9. Borst A (2014) Fly visual course control behaviour algorithms and circuits. Nat Rev Neurosci 15:590–599PubMedCrossRefGoogle Scholar
  10. Bradley DC, Maxwell M, Andersen RA, Banks MS, Shenoy KV (1996) Mechanisms of heading perception in primate visual cortex. Science 273:1544–1547PubMedCrossRefGoogle Scholar
  11. Britten KH, van Wezel RJ (1998) Electrical microstimulation of cortical area MST biases heading perception in monkeys. Nat Neurosci 1:59–63PubMedCrossRefGoogle Scholar
  12. Busch S, Selcho M, Ito K, Tanimoto H (2009) A map of octopaminergic neurons in the Drosophila brain. J Comp Neurol 513:643–667PubMedCrossRefGoogle Scholar
  13. Chagnaud BP, Banchi R, Simmers J, Straka H (2015) Spinal corollary discharge modulates motion sensing during vertebrate locomotion. Nat Commun 6:7982PubMedPubMedCentralCrossRefGoogle Scholar
  14. Chiappe ME, Seelig JD, Reiser MB, Jayaraman V (2010) Walking modulates speed sensitivity in Drosophila motion vision. Curr Biol 20:1470–1475PubMedPubMedCentralCrossRefGoogle Scholar
  15. Coen P, Xie M, Clemens J, Murthy M (2016) Sensorimotor transformations underlying variability in song intensity during Drosophila courtship. Neuron 89:629–644PubMedPubMedCentralCrossRefGoogle Scholar
  16. Cohen MR, Maunsell JH (2009) Attention improves performance primarily by reducing interneuronal correlations. Nat Neurosci 12:1594–1600PubMedPubMedCentralCrossRefGoogle Scholar
  17. Crapse TB, Sommer MA (2008) Corollary discharge across the animal kingdom. Nat Rev Neurosci 9:587–600PubMedPubMedCentralCrossRefGoogle Scholar
  18. Davis WJ, Siegler MVS, Mpitos GJ (1973) Distributed neuronal oscillators and efference copy in the feeding system of Pleurobranchaca. J Neurophysiol 36:258–274PubMedGoogle Scholar
  19. de Haan R, Lee YJ, Nordstrom K (2012) Octopaminergic modulation of contrast sensitivity. Front Integr Neurosci 6:55PubMedPubMedCentralGoogle Scholar
  20. Dhande OS, Estevez ME, Quattrochi LE, El-Danaf RN, Nguyen PL, Berson DM, Huberman AD (2013) Genetic dissection of retinal inputs to brainstem nuclei controlling image stabilization. J Neurosci 33:17797–17813PubMedPubMedCentralCrossRefGoogle Scholar
  21. Distler C, Hoffmann KP (2011) Visual pathway for the optokinetic reflex in infant macaque monkeys. J Neurosci 31:17659–17668PubMedCrossRefGoogle Scholar
  22. Dombeck DA, Khabbaz AN, Collman F, Adelman TL, Tank DW (2007) Imaging large scale neural activity with cellular resolution in awake mobile mice. Neuron 56:43–57PubMedPubMedCentralCrossRefGoogle Scholar
  23. Dombeck DA, Reiser MB (2012) Real neuroscience in virtual worlds. Curr Opin Neurobiol 22:3–10PubMedCrossRefGoogle Scholar
  24. Duffy CJ, Wurtz RH (1991a) Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large field stimuli. J Neurophysiol 65:1329–1345PubMedGoogle Scholar
  25. Duffy CJ, Wurtz RH (1991b) Sensitivity of MST neurons to optic flow stimuli II Mechanisms of response selectivity revealed by small field stimuli. J Neurophysiol 65:1346–1359PubMedGoogle Scholar
  26. Eggermann E, Kremer Y, Crochet S, Petersen CC (2014) Cholinergic signals in mouse barrel cortex during active whisker sensing. Cell Rep 9:1654–1660PubMedCrossRefGoogle Scholar
  27. Erisken S, Vaiceliunaite A, Jurjut O, Fiorini M, Katzner S, Busse L (2014) Effects of locomotion extend throughout the mouse early visual system. Curr Biol 24:2899–2907PubMedCrossRefGoogle Scholar
  28. Franklin DW, Wolpert DM (2011) Computational mechanisms of sensorimotor control. Neuron 72:425–442PubMedCrossRefGoogle Scholar
  29. Fu Y, Tucciarone JM, Espinosa JS, Sheng N, Darcy DP, Nicoll RA, Huang ZJ, Stryker MP (2014) A cortical circuit for gain control by behavioral state. Cell 156:1139–1152PubMedPubMedCentralCrossRefGoogle Scholar
  30. Garcia-Rill E, Skinner RD (1987a) The mesencephalic locomotor region. II. Projections to reticulospinal neurons. Brain Res 411:13–20PubMedCrossRefGoogle Scholar
  31. Garcia-Rill E, Skinner RD (1987b) The mesencephalic locomotor region. I. Activation of a medullary projection site. Brain Res 411:1–12PubMedCrossRefGoogle Scholar
  32. Geiger G, Nässel DR (1981) Visual orientation behaviour of flies after selective laser beam ablation of interneurones. Nature 293:398–399PubMedCrossRefGoogle Scholar
  33. Gill TM, Sarter M, Givens B (2000) Sustained visual attention performance-associated prefrontal neural activity: evidence for cholinergic activity. J Neurosci 20:4745–4757PubMedGoogle Scholar
  34. Goard M, Dan Y (2009) Basal forebrain activation enhances cortical coding of natural scenes. Nat Neurosci 12:1444–1449PubMedPubMedCentralCrossRefGoogle Scholar
  35. Goetz L, Piallat B, Bhattacharjee M, Mathieu H, David O, Chabardès S (2016) On the role of the pedunculopontine nucleus and mesencephalic reticular formation in locomotion in nonhuman primates. J Neurosci 36:4917–4929PubMedCrossRefGoogle Scholar
  36. Götz KG, Wenking H (1973) Visual control of locomotion in the walking fruit fly Drosophila. J Comp Physiol 85:235–266CrossRefGoogle Scholar
  37. Grasse KL, Cynader MS (1991) The accessory optic system in frontal-eyed animals. Macmillan, New York, pp 111–139Google Scholar
  38. Grieve KL, Acuna C, Cudeiro J (2000) The primate pulvinar nuclei vision and action. Trends Neurosci 23:35–39PubMedCrossRefGoogle Scholar
  39. Grover D, Katsuki T, Greenspan RJ (2016) Flyception: imaging brain activity in freely walking fruit flies. Nat Methods 13:569–572PubMedCrossRefGoogle Scholar
  40. Haag J, Wertz A, Borst A (2010) Central gating of fly optomotor response. Proc Nat Acad Sci U S A 107:20104–20109CrossRefGoogle Scholar
  41. Haikala V, Joesch M, Borst A, Mauss AS (2013) Optogenetic control of fly optomotor responses. J Neurosci 33:13927–13934PubMedCrossRefGoogle Scholar
  42. Harris KD, Thiele A (2011) Cortical state and attention. Nat Rev Neurosci 12:509–523PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hasselmo ME, Sarter M (2011) Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology 36:52–73PubMedCrossRefGoogle Scholar
  44. Hausen K (1982a) Motion sensitive interneurons in the optomotor system of the fly. I. The horizontal cells: structure and signals. Biol Cybern 45:143–156CrossRefGoogle Scholar
  45. Hausen K (1982b) Motion sensitive interneurons in the optomotor system of the fly. II. The horizontal cells: receptive field organization and response characteristics. Biol Cybern 46:67–79CrossRefGoogle Scholar
  46. Hausen K, Wehrhahn C (1983) Microsurgical lesion of horizontal cells changes optomotor yaw responses in the blowfly Calliphora erythrocephala. Proc R Soc Lond B 219:211–216CrossRefGoogle Scholar
  47. Heisenberg M, Wonneberger R, Wolf R (1978) Optomotor-blindh31—a Drosophila mutant of the lobula plate giant neurons. J Comp Physiol 124:287–296CrossRefGoogle Scholar
  48. Hendricks M, Ha H, Maffey N, Zhang Y (2012) Compartmentalized calcium dynamics in a C elegans interneuron encode head movement. Nature 487:99–103PubMedPubMedCentralGoogle Scholar
  49. Hoy RR (1989) Startle, categorical response, and attention in acoustic behavior of insects. Annu Rev Neurosci 12:355–375PubMedCrossRefGoogle Scholar
  50. Joesch M, Plett J, Borst A, Reiff DF (2008) Response properties of motion sensitive visual interneurons in the lobula plate of Drosophila melanogaster. Curr Biol 18:368–374PubMedCrossRefGoogle Scholar
  51. Jung SN, Borst A, Haag J (2011) Flight activity alters velocity tuning of fly motion sensitive neurons. J Neurosci 31:9231–9237PubMedCrossRefGoogle Scholar
  52. Keller GB, Bonhoeffer T, Hubener M (2012) Sensorimotor mismatch signals in primary visual cortex of the behaving mouse. Neuron 74:809–815PubMedCrossRefGoogle Scholar
  53. Kim AJ, Fitzgerald JK, Maimon G (2015) Cellular evidence for efference copy in Drosophila visuomotor processing. Nat Neurosci 18:1247–1255PubMedCrossRefGoogle Scholar
  54. Kobayashi Y, Isa T (2002) Sensory motor gating and cognitive control by the brainstem cholinergic system. Neural Netw 15:731–741PubMedCrossRefGoogle Scholar
  55. Koenderink JJ (1986) Optic flow. Vision Res 26:161–179PubMedCrossRefGoogle Scholar
  56. Kral K (2012) The functional significance of mantis peering behaviour. Eur J Entomol 109:295–301CrossRefGoogle Scholar
  57. Kropff E, Carmichael JE, Moser MB, Moser EI (2015) Speed cells in the medial entorhinal cortex. Nature 523:419–424PubMedCrossRefGoogle Scholar
  58. Kubo F, Hablitzel B, Maschio MD, Driever W, Baier H, Arrenberg AB (2014) Functional architecture of an optic flow responsive area that drives horizontal eye movements in zebrafish. Neuron 81:1344–1359PubMedCrossRefGoogle Scholar
  59. Lappe M, Bremmer F, van den Berg AV (1999) Perception of self motion from visual flow. Trends Cogn Sci 3:329–336PubMedCrossRefGoogle Scholar
  60. Lee SH, Dan Y (2012) Neuromodulation of brain states. Neuron 76:209–222PubMedPubMedCentralCrossRefGoogle Scholar
  61. Lee S, Carvell GE, Simons DJ (2008) Motor modulation of afferent somatosensory circuits. Nat Neurosci 11:1430–1438PubMedPubMedCentralCrossRefGoogle Scholar
  62. Lee S, Kruglikov I, Huang ZJ, Fishell G, Rudy B (2013) A disinhibitory circuit mediates motor integration in the somatosensory cortex. Nat Neurosci 16:1662–1670PubMedPubMedCentralCrossRefGoogle Scholar
  63. Lee AM, Hoy JL, Bonci A, Wilbrecht L, Stryker MP, Niell CM (2014) Identification of a brainstem circuit regulating visual cortical state in parallel with locomotion. Neuron 83:455–466PubMedPubMedCentralCrossRefGoogle Scholar
  64. Liang F, Xiong XR, Zingg B, Ji XY, Zhang LI, Tao HW (2015) Sensory cortical control of a visually induced arrest behavior via corticotectal projections. Neuron 86:755–767PubMedPubMedCentralCrossRefGoogle Scholar
  65. Longden KD, Krapp HG (2009) State dependent performance of optic flow processing interneurons. J Neurophysiol 102:3606–3618PubMedCrossRefGoogle Scholar
  66. Longden KD, Krapp HG (2010) Octopaminergic modulation of temporal frequency coding in an identified optic flow processing interneuron. Front Syst Neurosci 4:153PubMedPubMedCentralCrossRefGoogle Scholar
  67. Longden KD, Muzzu T, Cook DJ, Schultz SR, Krapp HG (2014) Nutritional state modulates the neural processing of visual motion. Curr Biol 24:890–895PubMedCrossRefGoogle Scholar
  68. Lüders J, Kurtz R (2015) Octopaminergic modulation of temporal frequency tuning of a fly visual motion sensitive neuron depends on adaptation level. Front Integr Neurosci 9:36PubMedPubMedCentralGoogle Scholar
  69. Maimon G, Straw AD, Dickinson MH (2010) Active flight increases the gain of visual motion processing in Drosophila. Nat Neurosci 13:393–399PubMedCrossRefGoogle Scholar
  70. Masseck OA, Hoffmann KP (2009) Comparative neurobiology of the optokinetic reflex. Ann N Y Acad Sci 1164:430–439PubMedCrossRefGoogle Scholar
  71. McGinley MJ, Vinck M, Reimer J, Batista-Brito R, Zagha E, Cadwell CR, Tolias AS, Cardin JA, McCormick DA (2015) Waking state: rapid variations modulate neural and behavioral responses. Neuron 87:1143–1161PubMedPubMedCentralCrossRefGoogle Scholar
  72. Minderer M, Harvey CD, Donato F, Moser E (2016) Neuroscience: virtual reality explored. Nature 533:324–325PubMedCrossRefGoogle Scholar
  73. Mori S, Nishimura H, Kurakami C, Yamamura T, Aoki M (1978) Controlled locomotion in the mesencephalic cat distribution of facilitatory and inhibitory regions within pontine tegmentum. J Neurophysiol 41:1580–1591PubMedGoogle Scholar
  74. Moruzzi G, Magoun HW (1949) Brain stem reticular formation and activation of the EEG. Electroencephalogr Clin Neurophysiol 1:455–473PubMedCrossRefGoogle Scholar
  75. Muijres FT, Elzinga MJ, Melis JM, Dickinson MH (2014) Flies evade looming targets by executing rapid visually directed banked turns. Science 344:172–177PubMedCrossRefGoogle Scholar
  76. Nauta WJH, Kuypers HGJM (1958) Some ascending pathways in the brain stem reticular formation. In: Jasper HH, Proctor LD, Knighton RS, Noshay WC, Costello RT (eds) Reticular formation of the brain (pp. 3-30), Little, Brown: Oxford, England, 766 ppGoogle Scholar
  77. Nelson A, Mooney R (2016) The basal forebrain and motor cortex provide convergent yet distinct movement related inputs to the auditory cortex. Neuron 90:635–648PubMedPubMedCentralCrossRefGoogle Scholar
  78. Nelson A, Schneider DM, Taktoh J, Sakurai K, Wang F, Mooney R (2013) A circuit for motor cortical modulation of auditory cortical activity. J Neurosci 33:14342–14353PubMedPubMedCentralCrossRefGoogle Scholar
  79. Newsome WT, Wurtz RH, Komatsu H (1988) Relation of cortical areas MT and MST to pursuit eye movements II Differentiation of retinal from extraretinal inputs. J Neurophysiol 60:604–620PubMedGoogle Scholar
  80. Niell CM, Stryker MP (2010) Modulation of visual responses by behavioral state in mouse visual cortex. Neuron 65:472–479PubMedPubMedCentralCrossRefGoogle Scholar
  81. Orchard I, Ramirez JM, Lange AB (1993) A multifunctional role for octopamine in locust flight. Annu Rev Entomol 38:227–249CrossRefGoogle Scholar
  82. Petreanu L, Mao T, Sternson SM, Svoboda K (2009) The subcellular organization of neocortical excitatory connections. Nature 457:1142–1145PubMedPubMedCentralCrossRefGoogle Scholar
  83. Petreanu L, Gutnisky DA, Huber D, Xu NL, O’Connor DH, Tian L, Looger L, Svoboda K (2012) Activity in motor sensory projections reveals distributed coding in somatosensation. Nature 489:299–303PubMedPubMedCentralCrossRefGoogle Scholar
  84. Pfeiffer K, Homberg U (2014) Organization and functional roles of the central complex in the insect brain. Annu Rev Entomol 59:165–184PubMedCrossRefGoogle Scholar
  85. Pinto L, Goard MJ, Estandian D, Xu M, Kwan AC, Lee SH, Harrison TC, Feng G, Dan Y (2013) Fast modulation of visual perception by basal forebrain cholinergic neurons. Nat Neurosci 16:1857–1863PubMedPubMedCentralCrossRefGoogle Scholar
  86. Polack PO, Friedman J, Golshani P (2013) Cellular mechanisms of brain state dependent gain modulation in visual cortex. Nat Neurosci 16:1331–1339PubMedPubMedCentralCrossRefGoogle Scholar
  87. Poteser M, Pabst MA, Kral K (1998) Proprioceptive contribution to distance estimation by motion parallax in praying mantid. J Exp Biol 201:1483–1491Google Scholar
  88. Poulet JF, Hedwig B (2002) A corollary discharge maintains auditory sensitivity during sound production. Nature 418:872–876PubMedCrossRefGoogle Scholar
  89. Poulet JF, Petersen CC (2008) Internal brain state regulates membrane potential synchrony in barrel cortex of behaving mice. Nature 454:881–885PubMedCrossRefGoogle Scholar
  90. Reimer J, Froudarakis E, Cadwell CR, Yatsenko D, Denfield GH, Tolias AS (2014) Pupil fluctuations track fast switching of cortical states during quiet wakefulness. Neuron 84:355–362PubMedPubMedCentralCrossRefGoogle Scholar
  91. Requarth T, Kaifosh P, Sawtell NB (2014) A role for mixed corollary discharge and proprioceptive signals in predicting the sensory consequences of movements. J Neurosci 34:16103–16116PubMedPubMedCentralCrossRefGoogle Scholar
  92. Rien D, Kern R, Kurtz R (2012) Octopaminergic modulation of contrast gain adaptation in fly visual motion sensitive neurons. Eur J Neurosci 36:3030–3039PubMedCrossRefGoogle Scholar
  93. Ringach DL (2009) Spontaneous and driven cortical activity: implications for computation. Curr Opin Neurobiol 19:439–444PubMedPubMedCentralCrossRefGoogle Scholar
  94. Roeder T (2005) Tyramine and octopamine: ruling behavior and metabolism. Annu Rev Entomol 50:447–477PubMedCrossRefGoogle Scholar
  95. Roseberry TK, Lee AM, Lalive AL, Wilbrecht L, Bonci A, Kreitzer AC (2016) Cell type specific control of brainstem locomotor circuits by basal ganglia. Cell 164:526–537PubMedPubMedCentralCrossRefGoogle Scholar
  96. Roth MM, Dahmen JC, Muir DR, Imhof F, Martini FJ, Hofer SB (2016) Thalamic nuclei convey diverse contextual information to layer of visual cortex. Nat Neurosci 19:299–307PubMedCrossRefGoogle Scholar
  97. Roy JE, Cullen KE (2004) Dissociating self generated from passively applied head motion neural mechanisms in the vestibular nuclei. J Neurosci 24:2102–2111PubMedCrossRefGoogle Scholar
  98. Saleem AB, Ayaz A, Jeffery KJ, Harris KD, Carandini M (2013) Integration of visual motion and locomotion in mouse visual cortex. Nat Neurosci 16:1864–1869PubMedPubMedCentralCrossRefGoogle Scholar
  99. Schilstra C, Hateren JH (1999) Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics. J Exp Biol 202:1481–1490PubMedGoogle Scholar
  100. Schneider DM, Nelson A, Mooney R (2014) A synaptic and circuit basis for corollary discharge in the auditory cortex. Nature 513:189–194PubMedPubMedCentralCrossRefGoogle Scholar
  101. Schnell B, Joesch M, Forstner F, Raghu SV, Otsuna H, Ito K, Borst A, Reiff DF (2010) Processing of horizontal optic flow in three visual interneurons of the Drosophila brain. J Neurophysiol 103:1646–1657PubMedCrossRefGoogle Scholar
  102. Schnell B, Weir PT, Roth E, Fairhall AL, Dickinson MH (2014) Cellular mechanisms for integral feedback in visually guided behavior. Proc Nat Acad Sci U S A 111:5700–5705CrossRefGoogle Scholar
  103. Scott EK, Raabe T, Luo L (2002) Structure of the vertical and horizontal system neurons of the lobula plate in Drosophila. J Comp Neurol 454:470–481PubMedCrossRefGoogle Scholar
  104. Seelig JD, Jayaraman V (2015) Neural dynamics for landmark orientation and angular path integration. Nature 521:186–191PubMedPubMedCentralCrossRefGoogle Scholar
  105. Seelig JD, Chiappe ME, Lott GK, Dutta A, Osborne JE, Reiser MB, Jayaraman V (2010) Two photon calcium imaging from head fixed Drosophila during optomotor walking behavior. Nat Methods 7:535–540PubMedPubMedCentralCrossRefGoogle Scholar
  106. Shik ML, Severin FV, Orlovsky GN (1966) Control of walking and running by means of electrical stimulation of the mid-brain. Biophysics 11:756–765Google Scholar
  107. Joshi S, Yin Li, Rishi M. Kalwani, Joshua I. Gold (2016) Relationships between pupil diameter and neuronal activity in the locus coeruleus, colliculi, and cingulate cortex. Neuron 89:221–234Google Scholar
  108. Silies M, Gohl DM, Clandinin TR (2014) Motion detecting circuits in flies coming into view. Annu Rev Neurosci 37:307–327PubMedCrossRefGoogle Scholar
  109. Sillito AM, Cudeiro J, Jones HE (2006) Always returning feedback and sensory processing in visual cortex and thalamus. Trends Neurosci 29:307–316PubMedCrossRefGoogle Scholar
  110. Sillar KT, Roberts A (1988) A neuronal mechanism for sensory gating during locomotion in a vertebrate. Nature 331:262–265PubMedCrossRefGoogle Scholar
  111. Simpson JI (1984) The accessory optic system. Annu Rev Neurosci 7:13–41PubMedCrossRefGoogle Scholar
  112. Sommer MA, Wurtz RH (2002) A pathway in primate brain for internal monitoring of movements. Science 296:1480–1482PubMedCrossRefGoogle Scholar
  113. Sommer MA, Wurtz RH (2006) Influence of the thalamus on spatial visual processing in frontal cortex. Nature 444:374–377PubMedCrossRefGoogle Scholar
  114. Sperry RW (1950) Neural basis of the spontaneous optokinetic response produced by visual inversion. J Comp Physiol Psychol 43:482–489PubMedCrossRefGoogle Scholar
  115. Stackman RW, Golob EJ, Bassett JP, Taube JS (2003) Passive transport disrupts directional path integration by rat head direction cells. J Neurophysiol 90:2862–2874PubMedCrossRefGoogle Scholar
  116. Steriade M, Datta S, Pare D, Oakson G, Dossi RC (1990) Neuronal activities in brain–stem cholinergic nuclei related to tonic activation processes in thalamocortical systems. J Neurosci 10:2541–2559PubMedGoogle Scholar
  117. Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262:679–685PubMedCrossRefGoogle Scholar
  118. Strauss R, Berg C (2010) The central control of oriented locomotion in insects—towards a neurobiological model. IEEE world congress on computational intelligence, pp 3919–3926Google Scholar
  119. Suver MP, Mamiya A, Dickinson MH (2012) Octopamine neurons mediate flight induced modulation of visual processing in Drosophila. Curr Biol 22:2294–2302PubMedCrossRefGoogle Scholar
  120. Tuthill JC, Nern A, Rubin GM, Reiser MB (2014) Wide field feedback neurons dynamically tune early visual processing. Neuron 82:887–895PubMedCrossRefGoogle Scholar
  121. van Breugel F, Suver MP, Dickinson MH (2014) Octopaminergic modulation of the visual flight speed regulator of Drosophila. J Exp Biol 217:1737–1744Google Scholar
  122. van Swinderen B (2007) Attention-like processes in Drosophila require short-term memory genes. Science 315:1590–1593PubMedCrossRefGoogle Scholar
  123. Vinck M, Batista-Brito R, Knoblich U, Cardin JA (2015) Arousal and locomotion make distinct contributions to cortical activity patterns and visual encoding. Neuron 86:740–754PubMedPubMedCentralCrossRefGoogle Scholar
  124. von Holst E, Mittelstaedt H (1950) Das Reafferenzprinzip. Wechselwirkungen zwischen Zentralnervensystem und Peripherie. Naturwissenschaften 37:464–476Google Scholar
  125. Voss M, Ingram JN, Haggard P, Wolpert DM (2006) Sensorimotor attenuation by central motor command signals in the absence of movement. Nat Neurosci 9:26–27PubMedCrossRefGoogle Scholar
  126. Wall MB, Smith AT (2008) The representation of egomotion in the human brain. Curr Biol 18:191–194PubMedCrossRefGoogle Scholar
  127. Weir PT, Dickinson MH (2015) Functional divisions for visual processing in the central brain of flying Drosophila. Proc Nat Acad Sci U S A 112:E5523–E5532CrossRefGoogle Scholar
  128. Weir PT, Schnell B, Dickinson MH (2014) Central complex neurons exhibit behaviorally gated responses to visual motion in Drosophila. J Neurophysiol 111:62–71PubMedCrossRefGoogle Scholar
  129. Whitlock JR, Sutherland RJ, Witter MP, Moser MB, Moser EI (2008) Navigating from hippocampus to parietal cortex. Proc Nat Acad Sci U S A 105:14755–14762CrossRefGoogle Scholar
  130. Wiederman SD, O’Carroll DC (2013) Selective attention in an insect neuron. Curr Biol 23:156–161PubMedCrossRefGoogle Scholar
  131. Wurtz RH, McAlonan K, Cavanaugh J, Berman RA (2011) Thalamic pathways for active vision. Trends Cogn Sci 15:177–184PubMedPubMedCentralCrossRefGoogle Scholar
  132. Yonehara K, Ishikane H, Sakuta H, Shintani T, Nakamura-Yonehara K, Kamiji NL, Usui S, Noda M (2009) Identification of retinal ganglion cells and their projections involved in central transmission of information about upward and downward image motion. PLoS ONE 4:e4320PubMedPubMedCentralCrossRefGoogle Scholar
  133. Zagha E, Casale AE, Sachdev RN, McGinley MJ, McCormick DA (2013) Motor cortex feedback influences sensory processing by modulating network state. Neuron 79:567–578PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Sensorimotor Integration LaboratoryChampalimaud Neuroscience ProgrammeLisbonPortugal

Personalised recommendations