Advertisement

The Current State of the Neuroanatomy Toolkit in the Fruit Fly Drosophila melanogaster

  • Daryl M. GohlEmail author
  • Javier MoranteEmail author
  • Koen J.T. VenkenEmail author
Chapter

Abstract

The fruit fly Drosophila melanogaster is a popular workhorse model organism that has tremendously contributed to our understanding of the nervous system across eukaryotic multicellular species. Through molecular, developmental, histochemical, anatomical, and physiological experimentation, studies that incorporate fruit flies have had immediate biomedical impact relevant to neurobiology and neuropathology. D. melanogaster is one of the most well-established eukaryotic multicellular model organisms, largely due to its sophisticated and expanding in vivo targeted neurogenetic manipulations. Here, we summarize the current status of techniques for precisely targeted spatiotemporal manipulation of the fly’s nervous system, focused on the most recent developments within the field.

Keywords

Binary activation system GAL4 LexA QF Reporters Logic gates Intersection Flp recombinase Cre recombinase Mitotic analysis Multistochastic labeling 

Notes

Acknowledgements

We apologize to those whose work we did not cite due to focus and space limitations. We thank Herman Dierick for critical comments on the chapter. JM is supported by the Ramon y Cajal Program (RyC-2010-07155) and grants from the Ministerio de Economia y Competitividad (SAF2012-31467 and BFU2016-76295-R), co-financed by the European Regional Development Fund (ERDF) and the “Severo Ochoa” Program for Centers of Excellence in R&D (SEV-2013-0317). KV is supported by startup funds kindly provided by Baylor College of Medicine, the Albert and Margaret Alkek Foundation, and the McNair Medical Institute, as well as grants from the March of Dimes Foundation (#1-FY14-315), the Cancer Prevention and Research Institute of Texas (R1313), and the National Institutes of Health (1R21HG006726, 1R21GM110190, 1R21OD022981, and R01GM109938).

References

  1. Allada R, Chung BY (2010) Circadian organization of behavior and physiology in Drosophila. Annu Rev Physiol 72:605–624PubMedPubMedCentralCrossRefGoogle Scholar
  2. Apitz H, Kambacheld M, Hohne M et al (2004) Identification of regulatory modules mediating specific expression of the roughest gene in Drosophila melanogaster. Dev Genes Evol 214:453–459PubMedCrossRefGoogle Scholar
  3. Arnold CD, Gerlach D, Stelzer C, Boryń ŁM, Rath M, Stark A (2013) Genome-wide quantitative enhancer activity maps identified by STARR-seq. Science 339:1074–1077Google Scholar
  4. Basler K, Struhl G (1994) Compartment boundaries and the control of Drosophila limb pattern by hedgehog protein. Nature 368:208–214PubMedCrossRefGoogle Scholar
  5. Bateman JR, Lee AM, Wu CT (2006) Site-specific transformation of Drosophila via phiC31 integrase-mediated cassette exchange. Genetics 173:769–777PubMedPubMedCentralCrossRefGoogle Scholar
  6. Bellen HJ, Tong C, Tsuda H (2010) 100 years of Drosophila research and its impact on vertebrate neuroscience: a history lesson for the future. Nat Rev Neurosci 11:514–522PubMedPubMedCentralCrossRefGoogle Scholar
  7. Bieli D, Kanca O, Gohl D et al (2015a) The Drosophila melanogaster Mutants apblot and apXasta Affect an Essential apterous Wing Enhancer. G3: Genes|Genomes|Genetics 5:1129–1143Google Scholar
  8. Bieli D, Kanca O, Requena D et al (2015b) Establishment of a developmental compartment requires interactions between three synergistic Cis-regulatory modules. PLoS Genet 11:e1005376PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bischof J, Maeda RK, Hediger M et al (2007) An optimized transgenesis system for Drosophila using germ-line-specific phiC31 integrases. Proc Natl Acad Sci USA 104:3312–3317PubMedPubMedCentralCrossRefGoogle Scholar
  10. Bohm RA, Welch WP, Goodnight LK et al (2010) A genetic mosaic approach for neural circuit mapping in Drosophila. Proc Natl Acad Sci USA 107:16378–16383PubMedPubMedCentralCrossRefGoogle Scholar
  11. Boulina M, Samarajeewa H, Baker JD et al (2013) Live imaging of multicolor-labeled cells in Drosophila. Development 140:1605–1613PubMedPubMedCentralCrossRefGoogle Scholar
  12. Brand AH, Perrimon N (1993) Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–415PubMedGoogle Scholar
  13. Cajal SR, Sanchez D (1915) Contribucion al conocimiento de los centros nerviosos de los insectos. Trab Lab Invest Biol XIII:1–167Google Scholar
  14. Casadaban MJ, Cohen SN (1979) Lactose genes fused to exogenous promoters in one step using a Mu-lac bacteriophage: in vivo probe for transcriptional control sequences. Proc Natl Acad Sci USA 76:4530–4533PubMedPubMedCentralCrossRefGoogle Scholar
  15. Chan CC, Scoggin S, Wang D et al (2011) Systematic discovery of Rab GTPases with synaptic functions in Drosophila. Curr Biol 21:1704–1715PubMedPubMedCentralCrossRefGoogle Scholar
  16. Chiang AS, Lin CY, Chuang CC et al (2011) Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr Biol 21:1–11PubMedCrossRefGoogle Scholar
  17. Costa M, Manton JD, Ostrovsky AD et al (2016) NBLAST: rapid, sensitive comparison of neuronal structure and construction of neuron family databases. Neuron 91:293–311PubMedPubMedCentralCrossRefGoogle Scholar
  18. del Valle Rodríguez A, Didiano D, Desplan C (2012) Power tools for gene expression and clonal analysis in Drosophila. Nat Methods 9:47–55CrossRefGoogle Scholar
  19. Diao F, Ironfield H, Luan H et al (2015) Plug-and-play genetic access to drosophila cell types using exchangeable exon cassettes. Cell Rep 10:1410–1421PubMedPubMedCentralCrossRefGoogle Scholar
  20. Dickson BJ (2008) Wired for sex: the neurobiology of Drosophila mating decisions. Science 322:904–909PubMedCrossRefGoogle Scholar
  21. Diegelmann S, Bate M, Landgraf M (2008) Gateway cloning vectors for the LexA-based binary expression system in Drosophila. Fly 2:236–239PubMedPubMedCentralCrossRefGoogle Scholar
  22. Donelson NC, Sanyal S (2015) Use of Drosophila in the investigation of sleep disorders. Exp Neurol 274:72–79Google Scholar
  23. Duffy JB (2002) GAL4 system in Drosophila: a fly geneticist’s Swiss army knife. Genesis 34:1–15PubMedCrossRefGoogle Scholar
  24. Ejsmont RK, Sarov M, Winkler S et al (2009) A toolkit for high-throughput, cross-species gene engineering in Drosophila. Nat Methods 6:435–437PubMedCrossRefGoogle Scholar
  25. Estes PS, Ho GL, Narayanan R et al (2000) Synaptic localization and restricted diffusion of a Drosophila neuronal synaptobrevin-green fluorescent protein chimera in vivo. J Neurogenet 13:233–255PubMedCrossRefGoogle Scholar
  26. Feinberg EH, Vanhoven MK, Bendesky A et al (2008) GFP reconstitution across synaptic partners (GRASP) defines cell contacts and synapses in living nervous systems. Neuron 57:353–363PubMedCrossRefGoogle Scholar
  27. Fischbach KF, Dittrich AP (1989) The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res 441–475Google Scholar
  28. Fischer JA, Giniger E, Maniatis T et al (1988) GAL4 activates transcription in Drosophila. Nature 332:853–856PubMedCrossRefGoogle Scholar
  29. Freeman EG, Dahanukar A (2015) Molecular neurobiology of Drosophila taste. Curr Opin Neurobiol 34:140–148PubMedPubMedCentralCrossRefGoogle Scholar
  30. Gao S, Takemura S, Ting C-Y et al (2008) The neural substrate of spectral preference in Drosophila. Neuron 60:328–342PubMedPubMedCentralCrossRefGoogle Scholar
  31. Gasiunas G, Barrangou R, Horvath P et al (2012) Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA 109:E2579–E2586PubMedPubMedCentralCrossRefGoogle Scholar
  32. Gatto CL, Broadie K (2011) Drosophila modeling of heritable neurodevelopmental disorders. Curr Opin Neurobiol 21:834–841PubMedPubMedCentralCrossRefGoogle Scholar
  33. Geever RF, Huiet L, Baum JA et al (1989) DNA sequence, organization and regulation of the qa gene cluster of Neurospora crassa. J Mol Biol 207:15–34PubMedCrossRefGoogle Scholar
  34. Giniger E, Varnum SM, Ptashne M (1985) Specific DNA binding of GAL4, a positive regulatory protein of yeast. Cell 40:767–774PubMedCrossRefGoogle Scholar
  35. Gnerer JP, Venken KJ, Dierick HA (2015) Gene-specific cell labeling using MiMIC transposons. Nucleic Acids Res 43:e56PubMedPubMedCentralCrossRefGoogle Scholar
  36. Gohl DM, Silies MA, Gao XJ et al (2011) A versatile in vivo system for directed dissection of gene expression patterns. Nat Methods 8:231–237PubMedPubMedCentralCrossRefGoogle Scholar
  37. Gohl DM, Freifeld L, Silies M et al (2014) Large-scale mapping of transposable element insertion sites using digital encoding of sample identity. Genetics 196:615–623PubMedCrossRefGoogle Scholar
  38. Golic KG, Lindquist S (1989) The FLP recombinase of yeast catalyzes site-specific recombination in the Drosophila genome. Cell 59:499–509PubMedCrossRefGoogle Scholar
  39. Gordon MD, Scott K (2009) Motor control in a Drosophila taste circuit. Neuron 61:373–384PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gratz SJ, Ukken FP, Rubinstein CD et al (2014) Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. Genetics 196:961–971PubMedPubMedCentralCrossRefGoogle Scholar
  41. Graveley BR, Brooks AN, Carlson JW et al (2011) The developmental transcriptome of Drosophila melanogaster. Nature 471:473–479PubMedCrossRefGoogle Scholar
  42. Groth AC, Fish M, Nusse R et al (2004) Construction of transgenic Drosophila by using the site-specific integrase from phage phiC31. Genetics 166:1775–1782PubMedPubMedCentralCrossRefGoogle Scholar
  43. Hadjieconomou D, Rotkopf S, Alexandre C et al (2011) Flybow: genetic multicolor cell labeling for neural circuit analysis in Drosophila melanogaster. Nat Methods 8:260–266PubMedCrossRefGoogle Scholar
  44. Halfon MS, Gisselbrecht S, Lu J et al (2002) New fluorescent protein reporters for use with the Drosophila Gal4 expression system and for vital detection of balancer chromosomes. Genesis 34:135–138PubMedCrossRefGoogle Scholar
  45. Hampel S, Chung P, McKellar CE et al (2011) Drosophila Brainbow: a recombinase-based fluorescence labeling technique to subdivide neural expression patterns. Nat Methods 8:253–259PubMedPubMedCentralCrossRefGoogle Scholar
  46. Han DD, Stein D, Stevens LM (2000) Investigating the function of follicular subpopulations during Drosophila oogenesis through hormone-dependent enhancer-targeted cell ablation. Development 127:573–583PubMedGoogle Scholar
  47. Hayashi S, Ito K, Sado Y et al (2002) GETDB, a database compiling expression patterns and molecular locations of a collection of Gal4 enhancer traps. Genesis. 34:58–61PubMedCrossRefGoogle Scholar
  48. Heidmann D, Lehner CF (2001) Reduction of Cre recombinase toxicity in proliferating Drosophila cells by estrogen-dependent activity regulation. Dev Genes Evol 211:458–465PubMedCrossRefGoogle Scholar
  49. Hofbauer A, Campos-Ortega JA (1990) Proliferation pattern and early differentiation of the optic lobes in Drosophila melanogaster. Roux’s Arch Dev Biol 198:264–274CrossRefGoogle Scholar
  50. Huiet L, Giles NH (1986) The qa repressor gene of Neurospora crassa: wild-type and mutant nucleotide sequences. Proc Natl Acad Sci USA 83:3381–3385PubMedPubMedCentralCrossRefGoogle Scholar
  51. Jenett A, Rubin GM, Ngo TT et al (2012) A GAL4-driver line resource for Drosophila neurobiology. Cell Rep 2:991–1001PubMedPubMedCentralCrossRefGoogle Scholar
  52. Jin EJ, Chan CC, Agi E et al (2012) Similarities of Drosophila rab GTPases based on expression profiling: completion and analysis of the rab-Gal4 kit. PLoS One 7:e40912Google Scholar
  53. Jinek M, Chylinski K, Fonfara I et al (2012) A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337:816–821PubMedCrossRefGoogle Scholar
  54. Johnston SA, Hopper JE (1982) Isolation of the yeast regulatory gene GAL4 and analysis of its dosage effects on the galactose/melibiose regulon. Proc Natl Acad Sci USA 79:6971PubMedPubMedCentralCrossRefGoogle Scholar
  55. Jory A, Estella C, Giorgianni MW et al (2012) A survey of 6300 genomic fragments for cis-regulatory activity in the imaginal discs of Drosophila melanogaster. Cell Rep 2:1014–1024PubMedPubMedCentralCrossRefGoogle Scholar
  56. Kakidani H, Ptashne M (1988) GAL4 activates gene expression in mammalian cells. Cell 52:161–167PubMedCrossRefGoogle Scholar
  57. Kanca O, Caussinus E, Denes AS et al (2014) Raeppli: a whole-tissue labeling tool for live imaging of Drosophila development. Development. 141:472–480PubMedCrossRefGoogle Scholar
  58. Kawasaki F, Zou B, Xu X et al (2004) Active zone localization of presynaptic calcium channels encoded by the cacophony locus of Drosophila. J Neurosci 24:282–285PubMedCrossRefGoogle Scholar
  59. Keene AC, Waddell S (2007) Drosophila olfactory memory: single genes to complex neural circuits. Nat Rev Neurosci 8:341–354PubMedCrossRefGoogle Scholar
  60. Knapp JM, Chung P, Simpson JH (2015) Generating customized transgene landing sites and multi-transgene arrays in Drosophila using phiC31 integrase. Genetics 199:919–934PubMedPubMedCentralCrossRefGoogle Scholar
  61. Kuo SY, Tu CH, Hsu YT et al (2012) A hormone receptor-based transactivator bridges different binary systems to precisely control spatial-temporal gene expression in Drosophila, PLoS One 7:e50855Google Scholar
  62. Kvon EZ (2015) Using transgenic reporter assays to functionally characterize enhancers in animals. Genomics 106:185–192PubMedCrossRefGoogle Scholar
  63. Lai SL, Lee T (2006) Genetic mosaic with dual binary transcriptional systems in Drosophila. Nat Neurosci 9:703–709PubMedCrossRefGoogle Scholar
  64. LaJeunesse DR, Buckner SM, Lake J et al (2004) Three new Drosophila markers of intracellular membranes. Biotechniques 36:790Google Scholar
  65. Larsen CW, Hirst E, Alexandre C et al (2003) Segment boundary formation in Drosophila embryos. Development 130:5625–5635PubMedCrossRefGoogle Scholar
  66. Laughon A, Gesteland RF (1982) Isolation and preliminary characterization of the GAL4 gene, a positive regulator of transcription in yeast. Proc Natl Acad Sci USA 79:6827–6831PubMedPubMedCentralCrossRefGoogle Scholar
  67. Lee T, Luo L (1999) Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22:451–461PubMedCrossRefGoogle Scholar
  68. Leiss F, Koper E, Hein I et al (2009) Characterization of dendritic spines in the Drosophila central nervous system. Dev Neurobiol 69:221–234PubMedCrossRefGoogle Scholar
  69. Leung C, Wilson Y, Khuong TM et al (2013) Fruit flies as a powerful model to drive or validate pain genomics efforts. Pharmacogenomics. 14:1879–1887PubMedCrossRefGoogle Scholar
  70. Levis R, Hazelrigg T, Rubin GM (1985) Effects of genomic position on the expression of transduced copies of the white gene of Drosophila. Science 229:558–561PubMedCrossRefGoogle Scholar
  71. Li H-H, Kroll JR, Lennox SM et al (2014) A GAL4 driver resource for developmental and behavioral studies on the larval CNS of Drosophila. Cell Rep 8:897–908PubMedCrossRefGoogle Scholar
  72. Lin C-C, Potter CJ (2016) Editing transgenic DNA components by inducible gene replacement in Drosophila melanogaster. Genetics 203:1613–1628PubMedPubMedCentralCrossRefGoogle Scholar
  73. Livet J, Weissman TA, Kang H et al (2007) Transgenic strategies for combinatorial expression of fluorescent proteins in the nervous system. Nature 450:56–62PubMedCrossRefGoogle Scholar
  74. Luan H, Peabody NC, Vinson CR et al (2006) Refined spatial manipulation of neuronal function by combinatorial restriction of transgene expression. Neuron 52:425–436PubMedPubMedCentralCrossRefGoogle Scholar
  75. Ma J, Ptashne M (1987a) The carboxy-terminal 30 amino acids of GAL4 are recognized by GAL80. Cell 50:137–142PubMedCrossRefGoogle Scholar
  76. Ma J, Ptashne M (1987b) Deletion analysis of GAL4 defines two transcriptional activating segments. Cell 48:847–853PubMedCrossRefGoogle Scholar
  77. Macpherson LJ, Zaharieva EE, Kearney PJ et al (2015) Dynamic labelling of neural connections in multiple colours by trans-synaptic fluorescence complementation. Nat Commun 6:10024PubMedPubMedCentralCrossRefGoogle Scholar
  78. Manning L, Heckscher ES, Purice MD et al (2012) A resource for manipulating gene expression and analyzing cis-regulatory modules in the Drosophila CNS. Cell Rep 2:1002–1013PubMedPubMedCentralCrossRefGoogle Scholar
  79. Markstein M, Pitsouli C, Villalta C et al (2008) Exploiting position effects and the gypsy retrovirus insulator to engineer precisely expressed transgenes. Nat Genet 40:476–483PubMedPubMedCentralCrossRefGoogle Scholar
  80. Matsumoto K, Toh-e A, Oshima Y (1978) Genetic control of galactokinase synthesis in Saccharomyces cerevisiae: evidence for constitutive expression of the positive regulatory gene gal4. J Bacteriol 134:446–457PubMedPubMedCentralGoogle Scholar
  81. McGuire SE, Le PT, Osborn AJ et al (2003) Spatiotemporal rescue of memory dysfunction in Drosophila. Science 302:1765–1768PubMedCrossRefGoogle Scholar
  82. McGurk L, Berson A, Bonini NM (2015) Drosophila as an in vivo model for human neurodegenerative disease. Genetics 201:377–402PubMedPubMedCentralCrossRefGoogle Scholar
  83. McKenna A, Findlay GM, Gagnon JA et al (2016) Whole-organism lineage tracing by combinatorial and cumulative genome editing. Science 353:aaf7907Google Scholar
  84. Miyazaki T, Ito K (2010) Neural architecture of the primary gustatory center of Drosophila melanogaster visualized with GAL4 and LexA enhancer-trap systems. J Comp Neurol 518:4147–4181PubMedCrossRefGoogle Scholar
  85. Mondal K, Dastidar AG, Singh G et al (2007) Design and isolation of temperature-sensitive mutants of Gal4 in yeast and Drosophila. J Mol Biol 370:939–950PubMedCrossRefGoogle Scholar
  86. Morante J, Desplan C (2008) The color-vision circuit in the Medulla of Drosophila. Curr Biol 18:553–565PubMedPubMedCentralCrossRefGoogle Scholar
  87. Nagarkar-Jaiswal S, Lee P-T, Campbell ME et al (2015) A library of MiMICs allows tagging of genes and reversible, spatial and temporal knockdown of proteins in Drosophila. eLife 4:e05338Google Scholar
  88. Nern A, Pfeiffer BD, Svoboda K et al (2011) Multiple new site-specific recombinases for use in manipulating animal genomes. Proc Natl Acad Sci USA 108:14198–14203PubMedPubMedCentralCrossRefGoogle Scholar
  89. Nern A, Pfeiffer BD, Rubin GM (2015) Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system. Proc Natl Acad Sci USA 112:E2967–E2976PubMedPubMedCentralCrossRefGoogle Scholar
  90. Ni JQ, Markstein M, Binari R et al (2008) Vector and parameters for targeted transgenic RNA interference in Drosophila melanogaster. Nat Methods 5:49–51PubMedCrossRefGoogle Scholar
  91. Ni JQ, Liu LP, Binari R et al (2009) A Drosophila resource of transgenic RNAi lines for neurogenetics. Genetics 182:1089–1100PubMedPubMedCentralCrossRefGoogle Scholar
  92. Nicholson L, Singh GK, Osterwalder T et al (2008) Spatial and temporal control of gene expression in Drosophila using the inducible GeneSwitch GAL4 system. I. Screen for larval nervous system drivers. Genetics 178:215–234PubMedPubMedCentralCrossRefGoogle Scholar
  93. Nicolai LJ, Ramaekers A, Raemaekers T et al (2010) Genetically encoded dendritic marker sheds light on neuronal connectivity in Drosophila. Proc Natl Acad Sci USA 107:20553–20558PubMedPubMedCentralCrossRefGoogle Scholar
  94. O’Kane CJ, Gehring WJ (1987) Detection in situ of genomic regulatory elements in Drosophila. Proc Natl Acad Sci USA 84:9123–9127PubMedPubMedCentralCrossRefGoogle Scholar
  95. Osterwalder T, Yoon KS, White BH et al (2001) A conditional tissue-specific transgene expression system using inducible GAL4. Proc Natl Acad Sci USA 98:12596–12601PubMedPubMedCentralCrossRefGoogle Scholar
  96. Peng H, Chung P, Long F et al (2011) BrainAligner: 3D registration atlases of Drosophila brains. Nat Methods 8:493–498PubMedPubMedCentralCrossRefGoogle Scholar
  97. Petersen LK, Stowers RS (2011) A gateway MultiSite recombination cloning toolkit. PLoS One 6: e24531Google Scholar
  98. Pfeiffer BD, Jenett A, Hammonds AS et al (2008) Tools for neuroanatomy and neurogenetics in Drosophila. Proc Natl Acad Sci USA 105:9715–9720PubMedPubMedCentralCrossRefGoogle Scholar
  99. Pfeiffer BD, Ngo TT, Hibbard KL et al (2010) Refinement of tools for targeted gene expression in Drosophila. Genetics 186:735–755PubMedPubMedCentralCrossRefGoogle Scholar
  100. Pfeiffer BD, Truman JW, Rubin GM (2012) Using translational enhancers to increase transgene expression in Drosophila. Proc Natl Acad Sci 109:6626–6631PubMedPubMedCentralCrossRefGoogle Scholar
  101. Potter CJ, Luo L (2011) Using the Q system in Drosophila melanogaster. Nat Protoc 6:1105–1120PubMedPubMedCentralCrossRefGoogle Scholar
  102. Potter CJ, Tasic B, Russler EV et al (2010) The Q system: a repressible binary system for transgene expression, lineage tracing, and mosaic analysis. Cell 141:536–548PubMedPubMedCentralCrossRefGoogle Scholar
  103. Riabinina O, Luginbuhl D, Marr E et al (2015) Improved and expanded Q-system reagents for genetic manipulations. Nat Methods 12:219–222PubMedPubMedCentralCrossRefGoogle Scholar
  104. Ritzenthaler S, Suzuki E, Chiba A (2000) Postsynaptic filopodia in muscle cells interact with innervating motoneuron axons. Nat Neurosci 3:1012–1017PubMedCrossRefGoogle Scholar
  105. Rolls MM, Satoh D, Clyne PJ et al (2007) Polarity and intracellular compartmentalization of Drosophila neurons. Neural Dev 2:7PubMedPubMedCentralCrossRefGoogle Scholar
  106. Roman G, Davis RL (2002) Conditional expression of UAS-transgenes in the adult eye with a new gene-switch vector system. Genesis. 34:127–131PubMedCrossRefGoogle Scholar
  107. Roman G, Endo K, Zong L et al (2001) P[Switch], a system for spatial and temporal control of gene expression in Drosophila melanogaster. Proc Natl Acad Sci USA 98:12602–12607PubMedPubMedCentralCrossRefGoogle Scholar
  108. Rubin GM, Spradling AC (1982) Genetic transformation of Drosophila with transposable element vectors. Science 218:348–353PubMedCrossRefGoogle Scholar
  109. Sanchez-Soriano N, Bottenberg W, Fiala A et al (2005) Are dendrites in Drosophila homologous to vertebrate dendrites? Dev Biol 288:126–138PubMedCrossRefGoogle Scholar
  110. Sharan SK, Thomason LC, Kuznetsov SG et al (2009) Recombineering: a homologous recombination-based method of genetic engineering. Nat Protoc 4:206–223PubMedPubMedCentralCrossRefGoogle Scholar
  111. Sharma Y, Cheung U, Larsen EW et al (2002) PPTGAL, a convenient Gal4 P-element vector for testing expression of enhancer fragments in drosophila. Genesis 34:115–118PubMedPubMedCentralCrossRefGoogle Scholar
  112. Shearin HK, Dvarishkis AR, Kozeluh CD et al (2013) Expansion of the gateway multisite recombination cloning toolkit. PLoS One 8:e77724Google Scholar
  113. Shearin HK, Macdonald IS, Spector LP et al (2014) Hexameric GFP and mCherry reporters for the Drosophila GAL4, Q, and LexA transcription systems. Genetics 196:951–960PubMedPubMedCentralCrossRefGoogle Scholar
  114. Shulman JM (2015) Drosophila and experimental neurology in the post-genomic era. Exp Neurol 274:4–13PubMedPubMedCentralCrossRefGoogle Scholar
  115. Siegal ML, Hartl DL (1996) Transgene Coplacement and high efficiency site-specific recombination with the Cre/loxP system in Drosophila. Genetics 144:715–726PubMedPubMedCentralGoogle Scholar
  116. Silies M, Gohl DM, Fisher YE et al (2013) Modular use of peripheral input channels tunes motion-detecting circuitry. Neuron 79:111–127PubMedPubMedCentralCrossRefGoogle Scholar
  117. Silies M, Gohl DM, Clandinin TR (2014) Motion-detecting circuits in flies: coming into view. Annu Rev Neurosci 37:307–327PubMedCrossRefGoogle Scholar
  118. Stowers RS (2011) An efficient method for recombineering GAL4 and QF drivers. Fly 5:371–378Google Scholar
  119. Strausfeld NJ (1976) Atlas of an insect brain. Springer-Verlag, Berlin, HeidelbergGoogle Scholar
  120. Struhl G, Basler K (1993) Organizing activity of wingless protein in Drosophila. Cell 72:527–540PubMedCrossRefGoogle Scholar
  121. Suster ML, Seugnet L, Bate M et al (2004) Refining GAL4-driven transgene expression in Drosophila with a GAL80 enhancer-trap. Genesis 39:240–245PubMedCrossRefGoogle Scholar
  122. Szuts D, Bienz M (2000) LexA chimeras reveal the function of Drosophila Fos as a context-dependent transcriptional activator. Proc Natl Acad Sci USA 97:5351–5356PubMedPubMedCentralCrossRefGoogle Scholar
  123. Takemura S, Bharioke A, Lu Z et al (2013) A visual motion detection circuit suggested by Drosophila connectomics. Nature 500:175–181PubMedPubMedCentralCrossRefGoogle Scholar
  124. Takemura S, Xu CS, Lu Z et al (2015) Synaptic circuits and their variations within different columns in the visual system of Drosophila. Proc Natl Acad Sci USA 112:13711–13716PubMedPubMedCentralCrossRefGoogle Scholar
  125. Tataroglu O, Emery P (2014) Studying circadian rhythms in Drosophila melanogaster. Methods 68:140–150Google Scholar
  126. Ting CY, Gu S, Guttikonda S et al (2011) Focusing transgene expression in Drosophila by coupling Gal4 with a novel split-LexA expression system. Genetics 188:229–233PubMedPubMedCentralCrossRefGoogle Scholar
  127. Tracey WD, Wilson RI, Laurent G et al (2003) Painless, a Drosophila gene essential for nociception. Cell 113:261–273PubMedCrossRefGoogle Scholar
  128. van Alphen B, van Swinderen B (2013) Drosophila strategies to study psychiatric disorders. Brain Res Bull 92:1–11PubMedCrossRefGoogle Scholar
  129. Venken KJT, Bellen HJ (2012) Genome-wide manipulations of Drosophila melanogaster with transposons, Flp recombinase, and ΦC31 integrase. Methods Mol Biol 859:203–228PubMedCrossRefGoogle Scholar
  130. Venken KJT, Bellen HJ (2014) Chemical mutagens, transposons, and transgenes to interrogate gene function in Drosophila melanogaster. Methods 68:15–28PubMedPubMedCentralCrossRefGoogle Scholar
  131. Venken KJT, He Y, Hoskins RA et al (2006) P[acman]: a BAC transgenic platform for targeted insertion of large DNA fragments in D. melanogaster. Science 314:1747–1751Google Scholar
  132. Venken KJT, Carlson JW, Schulze KL et al (2009) Versatile P[acman] BAC libraries for transgenesis studies in Drosophila melanogaster. Nat Methods 6:431–434PubMedPubMedCentralCrossRefGoogle Scholar
  133. Venken KJT, Simpson JH, Bellen HJ (2011a) Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 72:202–230PubMedPubMedCentralCrossRefGoogle Scholar
  134. Venken KJT, Schulze KL, Haelterman NA et al (2011b) MiMIC: a highly versatile transposon insertion resource for engineering Drosophila melanogaster genes. Nat Methods 8:737–743PubMedPubMedCentralCrossRefGoogle Scholar
  135. Venken KJT, Sarrion-Perdigones A, Vandeventer PJ et al (2016) Genome engineering: Drosophila melanogaster and beyond. Wiley Interdisc Rev. Dev Biol 5:233–267CrossRefGoogle Scholar
  136. Viswanathan S, Williams ME, Bloss EB et al (2015) High-performance probes for light and electron microscopy. Nat Methods 12:568–576PubMedPubMedCentralCrossRefGoogle Scholar
  137. Wagh DA, Rasse TM, Asan E et al (2006) Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron 49:833–844PubMedCrossRefGoogle Scholar
  138. Walker GC (1984) Mutagenesis and inducible responses to deoxyribonucleic acid damage in Escherichia coli. Microbiol Rev 48:60–93PubMedPubMedCentralGoogle Scholar
  139. Wang J, Ma X, Yang JS et al (2004) Transmembrane/juxtamembrane domain-dependent Dscam distribution and function during mushroom body neuronal morphogenesis. Neuron 43:663–672PubMedCrossRefGoogle Scholar
  140. Watts RJ, Schuldiner O, Perrino J et al (2004) Glia engulf degenerating axons during developmental axon pruning. Curr Biol 14:678–684PubMedCrossRefGoogle Scholar
  141. Wei X, Potter CJ, Luo L et al (2012) Controlling gene expression with the Q repressible binary expression system in Caenorhabditis elegans. Nat Methods 9:391–395PubMedPubMedCentralCrossRefGoogle Scholar
  142. Wilson RI (2013) Early olfactory processing in Drosophila: mechanisms and principles. Annu Rev Neurosci 36:217–241PubMedPubMedCentralCrossRefGoogle Scholar
  143. Wolff T, Iyer NA, Rubin GM (2015) Neuroarchitecture and neuroanatomy of the Drosophila central complex: a GAL4-based dissection of protocerebral bridge neurons and circuits. J Comp Neurol 523:997–1037PubMedCrossRefGoogle Scholar
  144. Worley MI, Setiawan L, Hariharan IK (2013) TIE-DYE: a combinatorial marking system to visualize and genetically manipulate clones during development in Drosophila melanogaster. Development 140:3275–3284PubMedPubMedCentralCrossRefGoogle Scholar
  145. Yagi R, Mayer F, Basler K (2010) Refined LexA transactivators and their use in combination with the Drosophila Gal4 system. Proc Natl Acad Sci USA 107:16166–16171PubMedPubMedCentralCrossRefGoogle Scholar
  146. Yasunaga K, Saigo K, Kojima T (2006) Fate map of the distal portion of Drosophila proboscis as inferred from the expression and mutations of basic patterning genes. Mech Dev 123:893–906PubMedCrossRefGoogle Scholar
  147. Ye B, Zhang Y, Song W et al (2007) Growing dendrites and axons differ in their reliance on the secretory pathway. Cell 130:717–729PubMedPubMedCentralCrossRefGoogle Scholar
  148. Yeh E, Gustafson K, Boulianne GL (1995) Green fluorescent protein as a vital marker and reporter of gene expression in Drosophila. Proc Natl Acad Sci USA 92:7036–7040PubMedPubMedCentralCrossRefGoogle Scholar
  149. Yu HH, Chen CH, Shi L et al (2009) Twin-spot MARCM to reveal the developmental origin and identity of neurons. Nat Neurosci 12:947–953PubMedPubMedCentralCrossRefGoogle Scholar
  150. Zhang YQ, Rodesch CK, Broadie K (2002) Living synaptic vesicle marker: synaptotagmin-GFP. Genesis. 34:142–145PubMedCrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of Minnesota Genomics CenterMinneapolisUSA
  2. 2.Instituto de Neurociencias, Consejo Superior de Investigaciones CientíficasUniversidad Miguel HernándezAlicanteSpain
  3. 3.Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Department of PharmacologyDan L. Duncan Cancer Center, Baylor College of MedicineHoustonUSA

Personalised recommendations