Advertisement

Impossible Differential Attack on Reduced Round SPARX-64/128

  • Ahmed Abdelkhalek
  • Mohamed Tolba
  • Amr M. YoussefEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10239)

Abstract

SPARX-64/128 is an ARX-based block cipher with 64-bit block size and 128-bit key. It was published in ASIACRYPT 2016 as one of the instantiations of a family of ARX-based block ciphers with provable security against single-characteristic differential and linear cryptanalysis. In this work, we present 12 and 13-round impossible distinguishers on SPARX-64/128 that can be used to attack 15 and 16-round SPARX-64/128 with post-whitening keys, respectively. While the 15-round attack starts from round 0, the 16-round one, exploiting the key schedule, has to start from round 2.

Keywords

Block ciphers Impossible differential Miss-in-the-middle SPARX 

References

  1. 1.
    Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: The SIMON and SPECK families of lightweight block ciphers. Cryptology ePrint Archive, Report 2013/404 (2013). http://eprint.iacr.org/2013/404
  2. 2.
    Beaulieu, R., Shors, D., Smith, J., Treatman-Clark, S., Weeks, B., Wingers, L.: SIMON and SPECK: block ciphers for the internet of things. Cryptology ePrint Archive, Report 2015/585 (2015). http://eprint.iacr.org/2015/585
  3. 3.
    Biham, E., Biryukov, A., Shamir, A.: Cryptanalysis of Skipjack reduced to 31 rounds using impossible differentials. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 12–23. Springer, Heidelberg (1999). doi: 10.1007/3-540-48910-X_2 Google Scholar
  4. 4.
    Daemen, J., Rijmen, V.: The wide trail design strategy. In: Honary, B. (ed.) Cryptography and Coding 2001. LNCS, vol. 2260, pp. 222–238. Springer, Heidelberg (2001). doi: 10.1007/3-540-45325-3_20 CrossRefGoogle Scholar
  5. 5.
    Dinu, D., Perrin, L., Udovenko, A., Velichkov, V., Großschädl, J., Biryukov, A.: Design strategies for ARX with provable bounds: SPARX and LAX (Full Version). Cryptology ePrint Archive, Report 2016/984 (2016). http://eprint.iacr.org/2016/984
  6. 6.
    Dinu, D., Perrin, L., Udovenko, A., Velichkov, V., Großschädl, J., Biryukov, A.: Design strategies for ARX with provable bounds: Sparx and LAX. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10031, pp. 484–513. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-53887-6_18 CrossRefGoogle Scholar
  7. 7.
    Fu, K., Wang, M., Guo, Y., Sun, S., Hu, L.: MILP-based automatic search algorithms for differential and linear trails for Speck. In: Peyrin, T. (ed.) FSE 2016. LNCS, vol. 9783, pp. 268–288. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-52993-5_14 CrossRefGoogle Scholar
  8. 8.
    Gurobi Optimization Inc.: Gurobi Optimizer Reference Manual (2016). http://www.gurobi.com
  9. 9.
    Knudsen, L.: DEAL: A 128-bit block cipher (1998). NIST AES ProposalGoogle Scholar
  10. 10.
    Lu, J., Kim, J., Keller, N., Dunkelman, O.: Improving the efficiency of impossible differential cryptanalysis of reduced Camellia and MISTY1. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964, pp. 370–386. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-79263-5_24 CrossRefGoogle Scholar
  11. 11.
    Mala, H., Dakhilalian, M., Rijmen, V., Modarres-Hashemi, M.: Improved impossible differential cryptanalysis of 7-round AES-128. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 282–291. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-17401-8_20 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Ahmed Abdelkhalek
    • 1
  • Mohamed Tolba
    • 1
  • Amr M. Youssef
    • 1
    Email author
  1. 1.Concordia Institute for Information Systems EngineeringConcordia UniversityMontréalCanada

Personalised recommendations