Advertisement

Revisiting and Extending the AONT-RS Scheme: A Robust Computationally Secure Secret Sharing Scheme

  • Liqun Chen
  • Thalia M. LaingEmail author
  • Keith M. Martin
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10239)

Abstract

In 2010, Resch and Plank proposed a computationally secure secret sharing scheme, called AONT-RS. We present a generalisation of their scheme and discuss two ways in which information is leaked if used to distribute small ciphertexts. We discuss how to prevent such leakage and provide a proof of computational privacy in the random oracle model. Next, we extend the scheme to be robust and prove the robust AONT-RS achieves computational privacy in the random oracle model and computational recoverability under standard assumptions. Finally, we compare the security, share size and complexity of the AONT-RS scheme with Krawczyk’s SSMS scheme.

References

  1. 1.
    Beimel, A.: Secret-Sharing schemes: A survey. In: Chee, Y.M., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang, H., Xing, C. (eds.) IWCC 2011. LNCS, vol. 6639, pp. 11–46. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-20901-7_2 CrossRefGoogle Scholar
  2. 2.
    Blakley, G.R.: Safeguarding cryptographic keys. In: Proceeding of the National Computer Conference 1979, vol. 48, pp. 313–317 (1979)Google Scholar
  3. 3.
    Boyko, V.: On the security properties of OAEP as an all-or-nothing transform. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 503–518. Springer, Heidelberg (1999). doi: 10.1007/3-540-48405-1_32 Google Scholar
  4. 4.
    Chandrasekara, A., Bala, R., Landers, G.: Critical capabilities for object storage - Gartner. Technical report (March 2016). https://www.gartner.com/doc/3269531/critical-capabilities-object-storage (Accessed March 2017)
  5. 5.
    Chen, H., Cramer, R.: Algebraic geometric secret sharing schemes and secure multi-party computations over small fields. In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 521–536. Springer, Heidelberg (2006). doi: 10.1007/11818175_31 CrossRefGoogle Scholar
  6. 6.
    Chen, L., Laing, T.M., Martin, K.M.: Efficient, XOR-based, ideal \((t,n)-\)threshold schemes. In: Foresti, S., Persiano, G. (eds.) CANS 2016. LNCS, vol. 10052, pp. 467–483. Springer, Cham (2016). doi: 10.1007/978-3-319-48965-0_28 CrossRefGoogle Scholar
  7. 7.
    IBM. IBM Cloud Object Storage (2016). https://www.cleversafe.com/platform/why-ibm-cloud-object-storage, Accessed 04 Sept 2016
  8. 8.
    Karnin, E.D., Greene, J.W., Hellman, M.E.: On secret sharing systems. IEEE Trans. Inf. Theory 29(1), 35–41 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Krawczyk, H.: Secret sharing made short. In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 136–146. Springer, Heidelberg (1994). doi: 10.1007/3-540-48329-2_12 Google Scholar
  10. 10.
    MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error Correcting Codes. Elsevier, New York (1977)zbMATHGoogle Scholar
  11. 11.
    McEliece, R.J., Sarwate, D.V.: On sharing secrets and reed-solomon codes. Commun. ACM 24(9), 583–584 (1981)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Rabin, M.O.: Efficient dispersal of information for security, load balancing, and fault tolerance. J. ACM (JACM) 36(2), 335–348 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Reed, I.S., Solomon, G.: Polynomial codes over certain finite fields. J. Soc. Ind. Appl. Math. 8(2), 300–304 (1960)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Resch, J.K., Plank, J.S.: AONT-RS: blending security and performance in dispersed storage systems. In: FAST-2011: 9th Usenix Conference on File and Storage Technologies, pp. 191–202, February 2011Google Scholar
  15. 15.
    Rivest, R.L.: All-or-nothing encryption and the package transform. In: Biham, E. (ed.) FSE 1997. LNCS, vol. 1267, pp. 210–218. Springer, Heidelberg (1997). doi: 10.1007/BFb0052348 CrossRefGoogle Scholar
  16. 16.
    Rogaway, P., Bellare, M.: Robust computational secret sharing and a unified account of classical secret-sharing goals. In: Proceedings of the 14th ACM conference on Computer and communications security, pp. 172–184. ACM (2007)Google Scholar
  17. 17.
    Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Tompa, M., Woll, H.: How to share a secret with cheaters. J. Cryptology 1(3), 133–138 (1989)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Liqun Chen
    • 1
  • Thalia M. Laing
    • 2
    Email author
  • Keith M. Martin
    • 2
  1. 1.University of SurreyGuildfordUK
  2. 2.Information Security GroupRoyal Holloway, University of LondonEghamUK

Personalised recommendations