Advertisement

Pinocchio-Based Adaptive zk-SNARKs and Secure/Correct Adaptive Function Evaluation

  • Meilof VeeningenEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10239)

Abstract

Pinocchio is a practical zk-SNARK that allows a prover to perform cryptographically verifiable computations with verification effort potentially less than performing the computation itself. A recent proposal showed how to make Pinocchio adaptive (or “hash-and-prove”), i.e., to enable proofs with respect to computation-independent commitments. This enables computations to be chosen after the commitments have been produced, and for data to be shared between different computations in a flexible way. Unfortunately, this proposal is not zero-knowledge. In particular, it cannot be combined with Trinocchio, a system in which Pinocchio is outsourced to three workers that do not learn the inputs thanks to multi-party computation (MPC). In this paper, we show how to make Pinocchio adaptive in a zero-knowledge way; apply this to make Trinocchio work on computation-independent commitments; present tooling to easily program flexible verifiable computations (with or without MPC); and use it to build a prototype in a medical research case study.

Keywords

Data Owner Arithmetic Circuit Verifiable Computation Commit Data Additive Share 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work is part of projects that have received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 643964 (SUPERCLOUD) and No. 731583 (SODA).

References

  1. 1.
    Backes, M., Barbosa, M., Fiore, D., Reischuk, R.M.: ADSNARK: nearly practical and privacy-preserving proofs on authenticated data. In: Proceedings S&P (2015)Google Scholar
  2. 2.
    Ben-Sasson, E., Chiesa, A., Genkin, D., Tromer, E., Virza, M.: SNARKs for C: verifying program executions succinctly and in zero knowledge. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013. LNCS, vol. 8043, pp. 90–108. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-40084-1_6 CrossRefGoogle Scholar
  3. 3.
    Costello, C., Fournet, C., Howell, J., Kohlweiss, M., Kreuter, B., Naehrig, M., Parno, B., Zahur, S.: Geppetto: versatile verifiable computation. In: Proceedings S&P, pp. 253–270 (2015)Google Scholar
  4. 4.
    Danezis, G., Fournet, C., Groth, J., Kohlweiss, M.: Square span programs with applications to succinct NIZK arguments. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 532–550. Springer, Heidelberg (2014). doi: 10.1007/978-3-662-45611-8_28 Google Scholar
  5. 5.
    de Hoogh, S.: Design of large scale applications of secure multiparty computation: secure linear programming. Ph.D. thesis, Eindhoven University of Technology (2012)Google Scholar
  6. 6.
    de Hoogh, S., Schoenmakers, B., Veeningen, M.: Certificate validation in secure computation and its use in verifiable linear programming. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol. 9646, pp. 265–284. Springer, Cham (2016). doi: 10.1007/978-3-319-31517-1_14 CrossRefGoogle Scholar
  7. 7.
    Fiore, D., Fournet, C., Ghosh, E., Kohlweiss, M., Ohrimenko, O., Parno, B.: Hash first, argue later: adaptive verifiable computations on outsourced data. In: Proceedings CCS (2016)Google Scholar
  8. 8.
    Gennaro, R., Gentry, C., Parno, B., Raykova, M.: Quadratic span programs and succinct NIZKs without PCPs. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 626–645. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38348-9_37 CrossRefGoogle Scholar
  9. 9.
    Groth, J.: On the size of pairing-based non-interactive arguments. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 305–326. Springer, Heidelberg (2016). doi: 10.1007/978-3-662-49896-5_11 CrossRefGoogle Scholar
  10. 10.
    Lipmaa, H.: Prover-efficient commit-and-prove zero-knowledge SNARKs. In: Pointcheval, D., Nitaj, A., Rachidi, T. (eds.) AFRICACRYPT 2016. LNCS, vol. 9646, pp. 185–206. Springer, Cham (2016). doi: 10.1007/978-3-319-31517-1_10 CrossRefGoogle Scholar
  11. 11.
    Parno, B., Howell, J., Gentry, C., Raykova, M.: Pinocchio: nearly practical verifiable computation. In: Proceedings S&P, pp. 238–252 (2013)Google Scholar
  12. 12.
    Parno, B.: A note on the unsoundness of vntinyram’s snark. Cryptology ePrint Archive, Report 2015/437 (2015). http://eprint.iacr.org/
  13. 13.
    Schoenmakers, B., Veeningen, M., Vreede, N.: Trinocchio: privacy-preserving outsourcing by distributed verifiable computation. In: Manulis, M., Sadeghi, A.-R., Schneider, S. (eds.) ACNS 2016. LNCS, vol. 9696, pp. 346–366. Springer, Cham (2016). doi: 10.1007/978-3-319-39555-5_19 Google Scholar
  14. 14.
    Veeningen, M.: Pinocchio-based adaptive zk-SNARKS and secure/correct adaptive function evaluation. Cryptology ePrint Archive, Report 2017/013 (2017). http://eprint.iacr.org/2017/013

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.Philips ResearchEindhovenThe Netherlands

Personalised recommendations