Privacy-Friendly Forecasting for the Smart Grid Using Homomorphic Encryption and the Group Method of Data Handling

  • Joppe W. Bos
  • Wouter CastryckEmail author
  • Ilia Iliashenko
  • Frederik Vercauteren
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10239)


While the smart grid has the potential to have a positive impact on the sustainability and efficiency of the electricity market, it also poses some serious challenges with respect to the privacy of the consumer. One of the traditional use-cases of this privacy sensitive data is the usage for forecast prediction. In this paper we show how to compute the forecast prediction such that the supplier does not learn any individual consumer usage information. This is achieved by using the Fan-Vercauteren somewhat homomorphic encryption scheme. Typical prediction algorithms are based on artificial neural networks that require the computation of an activation function which is complicated to compute homomorphically. We investigate a different approach and show that Ivakhnenko’s group method of data handling is suitable for homomorphic computation.

Our results show this approach is practical: prediction for a small apartment complex of 10 households can be computed homomorphically in less than four seconds using a parallel implementation or in about half a minute using a sequential implementation. Expressed in terms of the mean absolute percentage error, the prediction accuracy is roughly \(21\%\).


  1. 1.
    Ahmad, A., Hassan, M., Abdullah, M., Rahman, H., Hussin, F., Abdullah, H., Saidur, R.: A review on applications of ANN and SVM for building electrical energy consumption forecasting. Renew. Sustain. Energ. Rev. 33, 102–109 (2014)CrossRefGoogle Scholar
  2. 2.
    Albrecht, M.: Complexity estimates for solving LWE (2000–2004).
  3. 3.
    Albrecht, M.R., Player, R., Scott, S.: On the concrete hardness of learning with errors. J. Math. Cryptology 9(3), 169–203 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bos, J.W., Lauter, K., Loftus, J., Naehrig, M.: Improved security for a ring-based fully homomorphic encryption scheme. In: Stam, M. (ed.) IMACC 2013. LNCS, vol. 8308, pp. 45–64. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-45239-0_4 CrossRefGoogle Scholar
  5. 5.
    Commission for Energy Regulation: Electricity smart metering customer behaviour trials (CBT) findings report. Technical Report CER11080a (2011).
  6. 6.
    Costache, A., Smart, N.P., Vivek, S., Waller, A.: Fixed point arithmetic in SHE schemes. In: SAC 2016. LNCS. Springer (2016)Google Scholar
  7. 7.
    CryptoExperts: FV-NFLlib (2016).
  8. 8.
    CryptoExperts, INP ENSEEIHT, and Quarkslab: NFLlib (2016).
  9. 9.
    Department of Energy & Climate Change: Smart metering implementation programme. Technical Report Third Annual Report on the Roll-out of Smart Meters (2014).
  10. 10.
    Department of Energy, Climate Change: Smart metering implementation programme - data access, privacy.
  11. 11.
    Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K., Naehrig, M., Wernsing, J.: Manual for using homomorphic encryption for bioinformatics. Technical report, Technical report MSR-TR-2015-87, Microsoft Research (2015)Google Scholar
  12. 12.
    Dowlin, N., Gilad-Bachrach, R., Laine, K., Lauter, K.E., Naehrig, M., Wernsing, J.: Cryptonets: applying neural networks to encrypted data with high throughput and accuracy. In: Balcan, M., Weinberger, K.Q. (eds.) International Conference on Machine Learning, vol. 48, pp. 201–210. (2016)Google Scholar
  13. 13.
    Erkin, Z., Tsudik, G.: Private computation of spatial and temporal power consumption with smart meters. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 561–577. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-31284-7_33 CrossRefGoogle Scholar
  14. 14.
    European Commission: Commission recommendation of 9 on preparations for the roll-out of smart metering systems. Official Journal of the European Union (2012).
  15. 15.
    European Commission: Benchmarking smart metering deployment in the EU-27 with a focus on electricity. Technical Report 365, June 2014.
  16. 16.
    Fan, J., Vercauteren, F.: Somewhat practical fully homomorphic encryption. IACR Cryptology ePrint Archive 2012, 144 (2012)Google Scholar
  17. 17.
    Koo, B.G., Lee, S.W., Kim, W., Park, J.H.: Comparative study of short-term electric load forecasting. In: Conference on Intelligent Systems, Modelling and Simulation, pp. 463–467, January 2014Google Scholar
  18. 18.
    Garcia, F.D., Jacobs, B.: Privacy-friendly energy-metering via homomorphic encryption. In: Cuellar, J., Lopez, J., Barthe, G., Pretschner, A. (eds.) STM 2010. LNCS, vol. 6710, pp. 226–238. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22444-7_15 CrossRefGoogle Scholar
  19. 19.
    Gentry, C.: Fully homomorphic encryption using ideal lattices. In: ACM Symposium on Theory of Computing - STOC 2009, pp. 169–178. ACM (2009)Google Scholar
  20. 20.
    Hart, G.W.: Nonintrusive appliance load monitoring. Proc. IEEE 80(12), 1870–1891 (1992)CrossRefGoogle Scholar
  21. 21.
    Hernandez, L., Baladron, C., Aguiar, J.M., Carro, B., Sanchez-Esguevillas, A.J., Lloret, J., Massana, J.: A survey on electric power demand forecasting: future trends in smart grids, microgrids and smart buildings. IEEE Commun. Surv. Tutorials 16(3), 1460–1495 (2014)CrossRefGoogle Scholar
  22. 22.
    Ivakhnenko, A.: Heuristic self-organization in problems of engineering cybernetics. Automatica 6(2), 207–219 (1970)CrossRefGoogle Scholar
  23. 23.
    Jawurek, M., Kerschbaum, F., Danezis, G.: Privacy technologies for smart grids - a survey of options. Technical Report MSR-TR-2012-119, November 2012.
  24. 24.
    Kursawe, K., Danezis, G., Kohlweiss, M.: Privacy-friendly aggregation for the smart-grid. In: Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 175–191. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22263-4_10 CrossRefGoogle Scholar
  25. 25.
    Li, F., Luo, B., Liu, P.: Secure information aggregation for smart grids using homomorphic encryption. In: Smart Grid Communication, pp. 327–332. IEEE (2010)Google Scholar
  26. 26.
    Livni, R., Shalev-Shwartz, S., Shamir, O.: On the computational efficiency of training neural networks. In: Advances in Neural Information Processing Systems, pp. 855–863 (2014)Google Scholar
  27. 27.
    Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. In: Gilbert, H. (ed.) EUROCRYPT 2010. LNCS, vol. 6110, pp. 1–23. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-13190-5_1 CrossRefGoogle Scholar
  28. 28.
    Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors over rings. J. ACM 60(6), 35 (2013). Article 43MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Aguilar-Melchor, C., Barrier, J., Guelton, S., Guinet, A., Killijian, M.-O., Lepoint, T.: NFLlib: NTT-based fast lattice library. In: Sako, K. (ed.) CT-RSA 2016. LNCS, vol. 9610, pp. 341–356. Springer, Cham (2016). doi: 10.1007/978-3-319-29485-8_20 CrossRefGoogle Scholar
  30. 30.
    Molina-Markham, A., Shenoy, P.J., Fu, K., Cecchet, E., Irwin, D.E.: Private memoirs of a smart meter. In: Ruzzelli, A.G. (ed.) Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, pp. 61–66. ACM (2010)Google Scholar
  31. 31.
    Paillier, P.: Public-key cryptosystems based on composite degree residuosity classes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 223–238. Springer, Heidelberg (1999). doi: 10.1007/3-540-48910-X_16 Google Scholar
  32. 32.
    Recommendation to the European Commission: Essential regulatory requirements and recommendations for data handling, data safety, and consumer protection. Technical Report version 1.0 (2011).
  33. 33.
    Rial, A., Danezis, G.: Privacy-preserving smart metering. In: Workshop on Privacy in the Electronic Society, WPES 2011, pp. 49–60. ACM (2011)Google Scholar
  34. 34.
    Rivest, R.L., Adleman, L., Dertouzos, M.L.: On data banks and privacy homomorphisms. Found. Secure Comput. 4(11), 169–180 (1978)MathSciNetGoogle Scholar
  35. 35.
    Smart Grid Coordination Group: Smart grid information security, November 2012.
  36. 36.
    Srinivasan, D.: Energy demand prediction using GMDH networks. Neurocomputing 72(1), 625–629 (2008)CrossRefGoogle Scholar
  37. 37.
    The Smart Grid Interoperability Panel - Smart Grid Cybersecurity Committee: Guidelines for smart grid cybersecurity: volume 1 - smart grid cybersecurity strategy, architecture, and high-level requirements. Technical Report NISTIR 7628 Rev 1 (2014).
  38. 38.
    Veit, A., Goebel, C., Tidke, R., Doblander, C., Jacobsen, H.-A.: Household electricity demand forecasting: benchmarking state-of-the-art methods. In: Conference on future energy systems, pp. 233–234. ACM (2014)Google Scholar
  39. 39.
    Xie, P., Bilenko, M., Finley, T., Gilad-Bachrach, R., Lauter, K.E., Naehrig, M.: Crypto-nets: neural networks over encrypted data. CoRR, abs/1412.6181 (2014)Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Joppe W. Bos
    • 1
  • Wouter Castryck
    • 2
    • 3
    Email author
  • Ilia Iliashenko
    • 2
  • Frederik Vercauteren
    • 2
    • 4
  1. 1.NXP SemiconductorsLeuvenBelgium
  2. 2.imec-Cosic, Department of Electrical EngineeringKU LeuvenLeuvenBelgium
  3. 3.Laboratoire Paul Painlevé, Université de Lille-1Villeneuve-d’AscqFrance
  4. 4.Open Security ResearchShenzhenChina

Personalised recommendations