Advertisement

Efficient Oblivious Transfer from Lossy Threshold Homomorphic Encryption

  • Isheeta NargisEmail author
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10239)

Abstract

In this article, a new oblivious transfer (OT) protocol, secure in the presence of erasure-free one-sided active adaptive adversaries is presented. The new bit OT protocol achieves better communication complexity than the existing bit OT protocol in this setting. The new bit OT protocol requires fewer number of public key encryption operations than the existing bit OT protocol in this setting. As a building block, a new two-party lossy threshold homomorphic public key cryptosystem is designed. It is secure in the same adversary model. It is of independent interest.

Keywords

Oblivious transfer Active adversary One-sided adaptive adversary Threshold encryption Lossy encryption Public key encryption Homomorphic encryption 

References

  1. 1.
    Aumann, Y., Lindell, Y.: Security against covert adversaries: efficient protocols for realistic adversaries. J. Cryptol. 23(2), 281–343 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bach, E.: Analytic Methods in the Analysis and Design of Number-Theoretic Algorithms. Massachusetts Institute of Technology, Cambridge (1985)zbMATHGoogle Scholar
  3. 3.
    Bellare, M., Hofheinz, D., Yilek, S.: Possibility and impossibility results for encryption and commitment secure under selective opening. In: Joux, A. (ed.) EUROCRYPT 2009. LNCS, vol. 5479, pp. 1–35. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-01001-9_1 CrossRefGoogle Scholar
  4. 4.
    Bellare, M., Yilek, S.: Encryption schemes secure under selective opening attack. Cryptology ePrint Archive, Report 2009/101 (2009). http://eprint.iacr.org/
  5. 5.
    Canetti, R.: Security and composition of multiparty cryptographic protocols. J. Cryptol. 13(1), 143–202 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Canetti, R., Gennaro, R., Jarecki, S., Krawczyk, H., Rabin, T.: Adaptive security for threshold cryptosystems. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 98–116. Springer, Heidelberg (1999). doi: 10.1007/3-540-48405-1_7 CrossRefGoogle Scholar
  7. 7.
    Choi, S.G., Dachman-Soled, D., Malkin, T., Wee, H.: Improved non-committing encryption with applications to adaptively secure protocols. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 287–302. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-10366-7_17 CrossRefGoogle Scholar
  8. 8.
    Damgård, I.: On \(\Sigma \)-protocols. www.cs.au.dk/~ivan/Sigma.pdf
  9. 9.
    Damgård, I.: Efficient concurrent zero-knowledge in the auxiliary string model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer, Heidelberg (2000). doi: 10.1007/3-540-45539-6_30 CrossRefGoogle Scholar
  10. 10.
    Damgård, I., Nielsen, J.B.: Improved non-committing encryption schemes based on a general complexity assumption. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, pp. 432–450. Springer, Heidelberg (2000). doi: 10.1007/3-540-44598-6_27 CrossRefGoogle Scholar
  11. 11.
    Fouque, P.-A., Poupard, G., Stern, J.: Sharing decryption in the context of voting or lotteries. In: Frankel, Y. (ed.) FC 2000. LNCS, vol. 1962, pp. 90–104. Springer, Heidelberg (2001). doi: 10.1007/3-540-45472-1_7 CrossRefGoogle Scholar
  12. 12.
    Garay, J.A., Wichs, D., Zhou, H.-S.: Somewhat non-committing encryption and efficient adaptively secure oblivious transfer. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 505–523. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-03356-8_30 CrossRefGoogle Scholar
  13. 13.
    Hazay, C., Patra, A.: One-sided adaptively secure two-party computation. In: Lindell, Y. (ed.) TCC 2014. LNCS, vol. 8349, pp. 368–393. Springer, Heidelberg (2014). doi: 10.1007/978-3-642-54242-8_16 CrossRefGoogle Scholar
  14. 14.
    Jarecki, S., Lysyanskaya, A.: Adaptively secure threshold cryptography: introducing concurrency, removing erasures. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 221–242. Springer, Heidelberg (2000). doi: 10.1007/3-540-45539-6_16 CrossRefGoogle Scholar
  15. 15.
    Naor, M., Ostrovsky, R., Venkatesan, R., Yung, M.: Perfect zero-knowledge arguments for NP using any one-way permutation. J. Cryptol. 11, 87–108 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Nargis, I.: Efficient oblivious transfer from lossy threshold homomorphic encryption. Cryptology ePrint Archive, Report 2017/235 (2017). http://eprint.iacr.org/2017/235
  17. 17.
    Nielsen, J.B.: On protocol security in the cryptographic model. Ph.D. thesis, University of Aarhus (2004)Google Scholar
  18. 18.
    Pedersen, T.P.: Non-interactive and information-theoretic secure verifiable secret sharing. In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg (1992). doi: 10.1007/3-540-46766-1_9 Google Scholar
  19. 19.
    Peikert, C., Vaikuntanathan, V., Waters, B.: A framework for efficient and composable oblivious transfer. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 554–571. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85174-5_31 CrossRefGoogle Scholar
  20. 20.
    Schnorr, C.P.: Efficient signature generation by smart cards. J. Cryptol. 4(3), 161–174 (1991)CrossRefzbMATHGoogle Scholar
  21. 21.
    Zhu, H., Araragi, T., Nishide, T., Sakurai, K.: Adaptive and composable non-committing encryptions. In: Steinfeld, R., Hawkes, P. (eds.) ACISP 2010. LNCS, vol. 6168, pp. 135–144. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14081-5_9 CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  1. 1.University of CalgaryCalgaryCanada

Personalised recommendations