Advertisement

RingRainbow – An Efficient Multivariate Ring Signature Scheme

  • Mohamed Saied Emam MohamedEmail author
  • Albrecht Petzoldt
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 10239)

Abstract

Multivariate Cryptography is one of the main candidates for creating post-quantum cryptosystems. Especially in the area of digital signatures, there exist many practical and secure multivariate schemes. However, there is a lack of more advanced schemes, such as schemes for oblivious transfer and signature schemes with special properties. While, in the last years, a number of multivariate ring signature schemes have been proposed, all of these have weaknesses in terms of security or efficiency. In this paper we propose a simple and efficient technique to extend arbitrary multivariate signature schemes to ring signature schemes and illustrate it using the example of Rainbow. The resulting scheme provides perfect anonymity for the signer (as member of a group), as well as shorter ring signatures than all previously proposed post-quantum ring signature schemes.

Keywords

Multivariate cryptography Ring signatures Rainbow signature scheme 

References

  1. 1.
    Aguilar, C., Cayrel, P.L., Gaborit, P., Laguillaumie, F.: A new efficient threshold ring signature scheme based on coding theory. IEEE Trans. Inf. Theory 57(7), 4833–4842 (2011)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Asaar, M.R., Salmasizadeh, M., Susilo, W.: A short identity-based proxy ring signature scheme from RSA. Comput. Stand. Interfaces 38, 144–151 (2015)CrossRefGoogle Scholar
  3. 3.
    Bender, A., Katz, J., Morselli, R.: Ring signatures: stronger definitions and constructions without random oracles. IACR eprint 2005/304Google Scholar
  4. 4.
    Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post Quantum Cryptography. Springer, Heidelberg (2009)zbMATHGoogle Scholar
  5. 5.
    Bogdanov, A., Eisenbarth, T., Rupp, A., Wolf, C.: Time-area optimized public-key engines: \(\cal{MQ}\)-cryptosystems as replacement for elliptic curves? In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 45–61. Springer, Heidelberg (2008). doi: 10.1007/978-3-540-85053-3_4 CrossRefGoogle Scholar
  6. 6.
    Chen, A.I.-T., Chen, M.-S., Chen, T.-R., Cheng, C.-M., Ding, J., Kuo, E.L.-H., Lee, F.Y.-S., Yang, B.-Y.: SSE implementation of multivariate PKCs on modern x86 CPUs. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 33–48. Springer, Heidelberg (2009). doi: 10.1007/978-3-642-04138-9_3 CrossRefGoogle Scholar
  7. 7.
    Cayrel, P.-L., Lindner, R., Rückert, M., Silva, R.: A lattice-based threshold ring signature scheme. In: Abdalla, M., Barreto, P.S.L.M. (eds.) LATINCRYPT 2010. LNCS, vol. 6212, pp. 255–272. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-14712-8_16 CrossRefGoogle Scholar
  8. 8.
    Ding, J., Gower, J.E., Schmidt, D.S.: Multivariate Public Key Cryptosystems. Springer, USA (2006)zbMATHGoogle Scholar
  9. 9.
    Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 164–175. Springer, Heidelberg (2005). doi: 10.1007/11496137_12 CrossRefGoogle Scholar
  10. 10.
    Franklin, M., Zhang, H.: Unique ring signatures: a practical construction. In: Sadeghi, A.-R. (ed.) FC 2013. LNCS, vol. 7859, pp. 162–170. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-39884-1_13 CrossRefGoogle Scholar
  11. 11.
    Fujisaki, E.: Sub-linear size traceable ring signatures without random oracles. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 393–415. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-19074-2_25 CrossRefGoogle Scholar
  12. 12.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979)zbMATHGoogle Scholar
  13. 13.
    Kravitz, D.: Digital signature algorithm. US patent 5231668, July 1991Google Scholar
  14. 14.
    Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999). doi: 10.1007/3-540-48910-X_15 Google Scholar
  15. 15.
    Miura, H., Hashimoto, Y., Takagi, T.: Extended algorithm for solving underdefined multivariate quadratic equations. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 118–135. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38616-9_8 CrossRefGoogle Scholar
  16. 16.
    Petzoldt, A., Bulygin, S., Buchmann, J.: A multivariate based threshold ring signature scheme. Appl. Algebra Eng. Commun. Comput. 24(3–4), 255–275 (2012)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Petzoldt, A., Bulygin, S., Buchmann, J.: Selecting parameters for the rainbow signature scheme. In: Sendrier, N. (ed.) PQCrypto 2010. LNCS, vol. 6061, pp. 218–240. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-12929-2_16 CrossRefGoogle Scholar
  18. 18.
    Petzoldt, A., Bulygin, S., Buchmann, J.: CyclicRainbow – a multivariate signature scheme with a partially cyclic public key. In: Gong, G., Gupta, K.C. (eds.) INDOCRYPT 2010. LNCS, vol. 6498, pp. 33–48. Springer, Heidelberg (2010). doi: 10.1007/978-3-642-17401-8_4 CrossRefGoogle Scholar
  19. 19.
    Petzoldt, A., Bulygin, S., Buchmann, J.: A multivariate threshold ring signature scheme. AAECC 25(3–4), 255–275 (2012)zbMATHGoogle Scholar
  20. 20.
    Petzoldt, A., Bulygin, S., Buchmann, J.: Fast verification for improved versions of the UOV and rainbow signature schemes. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 188–202. Springer, Heidelberg (2013). doi: 10.1007/978-3-642-38616-9_13 CrossRefGoogle Scholar
  21. 21.
    Petzoldt, A., Chen, M.-S., Yang, B.-Y., Tao, C., Ding, J.: Design principles for HFEv-based multivariate signature schemes. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 311–334. Springer, Heidelberg (2015). doi: 10.1007/978-3-662-48797-6_14 CrossRefGoogle Scholar
  22. 22.
    Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Rivest, R.L., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001). doi: 10.1007/3-540-45682-1_32 CrossRefGoogle Scholar
  24. 24.
    Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Sakumoto, K., Shirai, T., Hiwatari, H.: Public-key identification schemes based on multivariate quadratic polynomials. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS, vol. 6841, pp. 706–723. Springer, Heidelberg (2011). doi: 10.1007/978-3-642-22792-9_40 CrossRefGoogle Scholar
  26. 26.
    Thomae, E., Wolf, C.: Solving underdetermined systems of multivariate quadratic equations revisited. In: Fischlin, M., Buchmann, J., Manulis, M. (eds.) PKC 2012. LNCS, vol. 7293, pp. 156–171. Springer, Heidelberg (2012). doi: 10.1007/978-3-642-30057-8_10 CrossRefGoogle Scholar
  27. 27.
    Wang, L.L.: A new multivariate-based ring signature scheme. In: Proceeedings of ISCCCA (2013)Google Scholar
  28. 28.
    Wang, S., Ma, R., Zhang, Y., Wang, X.: Ring signature scheme based on multivariate public key cryptosystems. Comput. Math. Appl. 62, 3973–3979 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Wang, S., Zhao, R.: Lattice-based ring signature scheme under the random oracle model (2014). CoRR abs/1405.3177Google Scholar
  30. 30.
    Yang, B.-Y., Chen, J.-M., Chen, Y.-H.: TTS: high-speed signatures on a low-cost smart card. In: Joye, M., Quisquater, J.-J. (eds.) CHES 2004. LNCS, vol. 3156, pp. 371–385. Springer, Heidelberg (2004). doi: 10.1007/978-3-540-28632-5_27 CrossRefGoogle Scholar
  31. 31.
    Zhang, J., Zhao, Y.: A new multivariate based threshold ring signature scheme. In: Au, M.H., Carminati, B., Kuo, C.-C.J. (eds.) NSS 2014. LNCS, vol. 8792, pp. 526–533. Springer, Cham (2014). doi: 10.1007/978-3-319-11698-3_42 Google Scholar

Copyright information

© Springer International Publishing AG 2017

Authors and Affiliations

  • Mohamed Saied Emam Mohamed
    • 1
    Email author
  • Albrecht Petzoldt
    • 2
  1. 1.Technische Universität DarmstadtDarmstadtGermany
  2. 2.National Institute for Standards and TechnologyGaithersburgUSA

Personalised recommendations