Skip to main content
  • 1057 Accesses

Abstract

A test for the equality of the variances of two populations, each having a normal distribution, based on the ratio of the larger to the smaller variances of a sample taken from each (F-ratio). The test is widely used in analysis of variance introduced by the British statistician, (Sir) Ronald Alymer Fisher (1890–1962) in Fisher and Mackenzie (1923), Fisher (1935). Named the F-ratio and F-test in honour of Fisher, by the American statistician, George Waddel Snedecor (1881–1974) in Snedecor (1934). Its first application to a geological problem was by the American statistician, Churchill Eisenhart (1913–1994) (Eisenhart 1935).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • ADLER, R.J. (1981). The geometry of random fields. New York, NY, John Wiley & Sons.

    Google Scholar 

  • AITCHISON, J. (1986). The statistical analysis of compositional data. London, Chapman and Hall.

    Book  Google Scholar 

  • AITCHISON, J. (1999). Logratios and natural laws in compositional data analysis. Mathematical Geology, 31, 563–580.

    Article  Google Scholar 

  • AITCHISON, J. (2003). The statistical analysis of compositional data. 2nd edn., London, Chapman and Hall.

    Google Scholar 

  • AITCHISON, J. and GREENACRE, M. (2002). Biplots of compositional data. Journal of the Royal Statistical Society, ser. C (Applied Statistics), 51, 375–392.

    Article  Google Scholar 

  • ANDERSON, M.P. (1979). Using models to simulate the movement of contaminants through groundwater flow systems. In: Critical reviews of environmental controls no. 9. Boca Raton, FL, Chemical Rubber Company Press, 97–156.

    Google Scholar 

  • ANDERSON, R.Y. and KOOPMANS, L.H. (1963). Harmonic analysis of varve time series. Journal of Geophysical Research, 68, 877–893.

    Article  Google Scholar 

  • ARMSTRONG, E.H. (1936). A method of reducing disturbances in radio signalling by a system of frequency modulation. Proceedings of the Institute of Radio Engineers, 24, 689–740.

    Google Scholar 

  • BARDOSSY, A., BARDOSSY, G. and BOGARDI, I. (1989). Application of geological information in kriging. In: ARMSTRONG, M. (ed.). Geostatistics. v. 2. Dordrecht, Kluwer Academic Publishers, 591–602.

    Chapter  Google Scholar 

  • BARDOSSY, A., BOGARDI, I. and KELLY, W.E. (1990). Kriging with imprecise (fuzzy) variograms. Mathematical Geology, 22, 63–79, 81–94.

    Article  Google Scholar 

  • BARTLETT, M.S. (1948). Smoothing periodograms from time series with continuous spectra. Nature, 161, 686–687.

    Article  Google Scholar 

  • BARTLETT, M.S. (1950). Periodogram analysis and continuous spectra. Biometrika, 37, 1–16.

    Article  Google Scholar 

  • BELBIN, L. (1984). FUSE: A FORTRAN IV program for agglomerative fusion for minicomputers. Computers & Geosciences, 10, 361–384.

    Article  Google Scholar 

  • BENEDETTI, G.B. (1585). Diversarum speculationum mathematicarum et physicarum liber [Diverse speculations on mathematics and physics]. Turin, Nicolai Beuilacquae.

    Google Scholar 

  • BERGE, C. and GHOULI-HOURI, A. (1965). Programming games and transportation networks. London, Methuen.

    Google Scholar 

  • BERK, K.N. (1978). Comparing subset regression procedures. Technometrics, 20, 1–6.

    Article  Google Scholar 

  • BEZDEK, J.C. (1981). Pattern recognition with fuzzy objective functions. New York, NY, Plenum Press.

    Book  Google Scholar 

  • BEZDEK, J.C., EHRLICH, R. and FULL, W. (1984). FCM: the fuzzy c-means clustering algorithm. Computers & Geosciences, 10, 191–203.

    Article  Google Scholar 

  • BEZDEK, J.C. (1985). Corrections for “FCM: The fuzzy c-means clustering algorithm”. Computers & Geosciences, 11, 660.

    Article  Google Scholar 

  • BEZVODA, V., JEŽEK, J. and SEGETH, K. (1990). FREDPACK – A program package for linear filtering in the frequency domain. Computers & Geosciences, 16, 1123–1154.

    Article  Google Scholar 

  • BITZER, K. (1999). Two-dimensional simulation of clastic and carbonate sedimentation, consolidation, subsidence, fluid flow, heat flow and solute transport during the formation of sedimentary basins. Computers & Geosciences, 25, 431–447.

    Article  Google Scholar 

  • BITZER, K. and HARBAUGH, J.W. (1987). DEPOSIM: A Macintosh computer model for two-dimensional simulation of transport, deposition, erosion, and compaction of clastic sediments. Computers & Geosciences, 13, 611–637.

    Article  Google Scholar 

  • BJERHAMMAR, A. (1966). On the determination of the shape of the geoid and the shape of the earth from an ellipsoidal surface of reference. Bulletin Géodésique, 81, 235–265.

    Article  Google Scholar 

  • BLACK, H.S. (1934). Stabilized feedback amplifiers. Bell System Technical Journal, 13 (1), 1–18 [reprinted in Proceedings of the IEEE, 87, 379–385 (1999)].

    Google Scholar 

  • BLACKMAN, R.B. and TUKEY, J.W. (1958). The measurement of power spectra from the point of view of communications engineering. Bell System Technical Journal, 37, 185–282, 485–569.

    Article  Google Scholar 

  • BOCHNER, S. (1932). Vorlesungen über Fouriersche Integrale. [Lectures on Fourier integrals]. Leipzig, Akademische Verlagsgesellschaft.

    Google Scholar 

  • BODE, H.W. (1934). A general theory of electric wave filters. Journal of Mathematical Physics, 13, 275–362.

    Article  Google Scholar 

  • BORING, E.G. (1941). Statistical frequencies as dynamic equilibria. Psychological Review, 48, 279–301.

    Article  Google Scholar 

  • BORN, W.T. and KENDALL, J.M. (1941). Application of the Fourier integral to some geophysical instrument problems. Geophysics, 6, 105–115.

    Article  Google Scholar 

  • BOURGAULT, G. and MARCOTTE, D. (1991). The multivariable variogram and its application to the linear coregionalization model. Mathematical Geology, 23, 899–928.

    Article  Google Scholar 

  • BRAGG, W.L. (1929). The determination of parameters in crystal structures by means of Fourier series. Proceedings of the Royal Society, London, ser. A, 123, 537–559.

    Google Scholar 

  • BRAY, J.R. and CURTIS, J.T. (1957). An ordination of the upland forest communities of Southern Wisconsin. Ecology Monographs, 27, 325–349.

    Article  Google Scholar 

  • BROWN, R.D. (1977). A recursive algorithm for sequency-ordered Fast Walsh Transforms. IEEE Transactions on Computers, C-26, 819–822.

    Article  Google Scholar 

  • BUCCIANTI, A., MATEU-FIGUERAS, G. and PAWLOWSKY-GLAHN, V. (eds.) (2006). Compositional data analysis in the geosciences: From theory to practice. London, The Geological Society.

    Google Scholar 

  • BURT, P.J. and ADELSON, E.H. (1983). The Laplacian pyramid as a compact image code. IEEE Transactions on Communication, COM-31, 532–540.

    Article  Google Scholar 

  • BUTLER, R.J., BARRETT, P.M., PENN, M.G. and KENRICK, P. (2010). Testing coevolutionary hypotheses over geological timescales: interactions between Cretaceous dinosaurs and plants. Biological Journal of the Linnaean Society, 100, 1–15.

    Article  Google Scholar 

  • BUTTKUS, B. (1991). Spektralanalyse und Filtertheorie in der angewandten Geophysik. Berlin, Springer-Verlag.

    Book  Google Scholar 

  • BUTTKUS, B. (2000). Spectral analysis and filter theory in applied geophysics [translated by C NEWCOMB]. . Berlin, Springer-Verlag.

    Google Scholar 

  • BUYS BALLOT, C. H. D. (1847). Les changements périodiques de température [Periodical changes of temperature]. Utrecht, Broese Kemink.

    Google Scholar 

  • CALVO, A.M. (2013). Estimates and bootstrap calibration for functional regression with scalar response. Doctoral dissertation, Departamento de Estatística e Investigación Operativa, Universidade de Santiago de Compostela, Spain [online: http://minerva.usc.es/bitstream/10347/8159/1/rep_427.pdf]

  • CAMINA, A.R. and JANACEK, G.J. (1984). Mathematics for seismic data processing and interpretation. London, Graham and Trotman.

    Book  Google Scholar 

  • CAMPBELL, G.A. (1922). Physical theory of the electric wave-filter. Bell System Technical Journal, 1 (2), 1–32.

    Article  Google Scholar 

  • CAPON, J. (1969). High-resolution frequency-wavenumber spectrum analysis. Proceedings of the IEEE, 57, 1408–1418.

    Google Scholar 

  • CAPON, J. (1973). Signal processing and frequency-wavenumber spectrum analysis for a large aperture seismic array. In: BOLT, B.A. (ed.). Methods in Computational Physics 13. London, Academic Press, 2–59.

    Google Scholar 

  • CAYLEY, A. (1879). Function. In: Encyclopaedia Britannica, v. 9. 9th edn., Edinburgh, A. & C. Black, 818–824.

    Google Scholar 

  • CHEENEY, R.F. (1983). Statistical methods in geology. London, George Allen & Unwin.

    Google Scholar 

  • CHENG, Q. (1999). Multifractality and spatial statistics. Computers & Geosciences, 25, 949–961.

    Article  Google Scholar 

  • CHIEN, Y. and FU, K-S. (1966). A modified sequential recognition machine using time-varying stopping boundaries. IEEE Transactions on Information Theory, 12, 206–214.

    Article  Google Scholar 

  • CHUNG, C.-J.F. and FABBRI, A.G. (1993). Representation of earth science information for data integration. Nonrenewable Resources, 2, 122–139.

    Article  Google Scholar 

  • CLARK, D.A. (1981). A system for regional lithofacies mapping. Bulletin of Canadian Petroleum Geology, 20, 197–208.

    Google Scholar 

  • CLARK, I. and GARNETT, R.H.T. (1974). Identification of multiple mineralisation phases by statistical methods. Institution of Mining and Metallurgy Transactions, London, A83, 43–52.

    Google Scholar 

  • CLOOS, E. (1947). Oölite deformation in the South Mountain Fold, Maryland. Bulletin of the Geological Society of America, 58, 843–918.

    Article  Google Scholar 

  • CLOUGH, R.W. (1960). The finite element method in plane stress analysis. In: Conference papers, 2nd Conference on electronic computation, Pittsburgh, PA, September 8–9, 1960. New York, NY, American Society of Civil Engineers, 345–378.

    Google Scholar 

  • COGGON, J.H. (1971). Electromagnetic and electrical modeling by the finite element method. Geophysics, 36, 132–155.

    Article  Google Scholar 

  • COHEN, J.K. and CHEN, T. (1993). Fundamentals of the discrete wavelet transform for seismic data processing [online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.47.5240&rep =rep1&type=pdf].

  • CONTRERAS, J. and SUTER, M. (1990). Kinematic modeling of cross-sectional deformation sequences by computer simulation. Journal of Geophysical Research, 95, 21913–21929.

    Article  Google Scholar 

  • COOLEY, J.W. (1987). The re-discovery of the Fast Fourier Transform algorithm. Mikrochimica Acta, 3, 33–45.

    Article  Google Scholar 

  • COOLEY, J.W. (1990). How the FFT gained acceptance. In: NASH, S.G. (ed.). A history of scientific computing. New York, NY, ACM Press, 133–140.

    Google Scholar 

  • COOLEY, J.W. (1992). How the FFT gained acceptance. IEEE Transactions on Signal Processing, 9, 10–13.

    Article  Google Scholar 

  • COOLEY, J.W., LEWIS, P.A.W. and WELCH, P.D. (1967). Historical notes on the Fast Fourier Transform. IEEE Transactions on Audio and Electroacoustics, AU-15, 76–79.

    Article  Google Scholar 

  • COOLEY, J.W., LEWIS, P.A.W. and WELCH, P.D. (1969). The Finite Fourier Transform. IEEE Transactions on Audio and Electroacoustics, AU-17, 77–85.

    Article  Google Scholar 

  • COOLEY, J.W. and TUKEY, J.W. (1965). An algorithm for the machine computation of complex Fourier series. Mathematics of Computation, 19, 297–301.

    Article  Google Scholar 

  • COURANT, R. (1943). Variational methods for the solution of problems of equilibrium vibrations. Bulletin of the American Mathematical Society, 49, 1–23.

    Article  Google Scholar 

  • COURANT, R., FRIEDRICHS, K. and LEWY, H. (1928). Über die partiellen Differenzengleichungen der mathematischen Physik [On the partial difference equations of mathematical physics]. Mathematische Annalen, 100, 32–74 [English translation by P. FOX (1967). IBM Journal of Research and Development, 11 (2), 215–234].

    Google Scholar 

  • CRANDALL, I.B. (1926). Theory of vibrating systems and sound. New York, NY, Van Nostrand.

    Google Scholar 

  • CROSS, W., IDDINGS, J.P., PIRSSON, L.V. and WASHINGTON, H.S. (1902). A quantitative chemico-mineralogical classification and nomenclature of igneous rocks. Journal of Geology, 10, 555–693.

    Article  Google Scholar 

  • DANIELSON, G.C. and LANCZOS, C. (1942). Some improvements in practical Fourier analysis and their application to X-ray scattering from liquids. Journal of the Franklin Institute, 233, 365–380, 435–452.

    Article  Google Scholar 

  • DAVIS, J.C. and COCKE, J.M. (1972). Interpretation of complex lithologic successions by substitutability analysis. In: MERRIAM, D.F. (ed.). Mathematical models of sedimentary processes. New York, NY, Plenum Press, 27–52.

    Chapter  Google Scholar 

  • DEDEKIND, R. (1872). Stetigkeit und irrationale Zahlen [Continuity and irrational numbers]. Braunschweig, F. Vieweg & Sohn.

    Google Scholar 

  • DELANEY, P.T. (1988). FORTRAN 77 programs for conductive cooling of dikes with temperature-dependent thermal properties and heat of crystallization. Computers & Geosciences, 14, 181–212.

    Article  Google Scholar 

  • DEMICCO, R.V. and KLIR, G.J. (eds.) (2004). Fuzzy logic in geology. Amsterdam, Academic Press.

    Google Scholar 

  • DUNN, C.E. (1974). Identification of sedimentary cycles through Fourier analysis of geochemical data. Chemical Geology, 13, 217–232.

    Article  Google Scholar 

  • DUNNET, D. (1969). A technique of finite strain analysis using elliptical particles. Tectonophysics, 7, 117–136.

    Article  Google Scholar 

  • DUTKA, J. (1991). The early history of the factorial function. Archive for History of Exact Sciences, 43, 225–249.

    Article  Google Scholar 

  • EISENHART, C. (1935). A test for the significance of lithological variations. Journal of Sedimentary Petrology, 5, 137–145.

    Google Scholar 

  • EISENHART, C. (1947). The assumptions underlying analysis of variance. Biometrics, 3, 1–21.

    Article  Google Scholar 

  • ESKOLA, P. (1915). On the relations between the chemical and mineralogical composition in the metamorphic rocks of the Orijarvi region. Bulletin de la Commission Géologique de Finlande, 44, 109–145.

    Google Scholar 

  • ESKOLA, P. (1922). The mineral facies of rocks. Norsk geologisk Tidsskrift, 6, 143–194.

    Google Scholar 

  • ESTEBAND, D. and GALAND, C. (1977). Application of quadrature mirror filters to split band voice coding schemes. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, Hartford, CT, May 1977, IEEE Computer Society Washington, DC, 191–195.

    Google Scholar 

  • ESTELLER, R., VACHTSEVANOS, G., ECHAUZ, J. and LITT, B. (1999). A comparison of fractal dimension algorithms using synthetic and experimental data. In: ISCAS'99. Proceedings of the IEEE International Symposium on Circuits and Systems, May 30–June 2, Orlando, Florida. Vol. III. Adaptive digital signal processing, IEEE, 199–202.

    Google Scholar 

  • EULER, L. (1727). Dissertatio physica de sono [Discourse on the physics of sound]. Basle, Emanuel & Johann Rudolf Thurneysen.

    Google Scholar 

  • EVERETT, J.E. (1974). Obtaining interval velocities from stacking velocities when dipping horizons are included. Geophysical Prospecting, 22, 122–142.

    Article  Google Scholar 

  • EVERITT, B.S. (1992). The analysis of contingency tables. Monographs on statistics and applied probability 45. 2nd edn., London, Chapman and Hall/CRC Press.

    Google Scholar 

  • FAIRBAIN, H.W. (1942). Structural petrology of deformed rocks. Cambridge, MA., Addison-Wesley.

    Google Scholar 

  • FEARN, T., FISHER, S., THOMPSON, M. and ELLISON, S.R.L. (2002). A decision theory approach to fitness for purpose in analytical measurement. Analyst, 127, 818–824.

    Article  Google Scholar 

  • FEIGENBAUM, M. J. (1978). Quantitative universality for a class of nonlinear transformations. Journal of Statistical Physics, 19, 25–52.

    Article  Google Scholar 

  • FEIGENBAUM, M.J. (1979). The universal metric properties of nonlinear transformations. Journal of Statistical Physics, 21, 669–706.

    Article  Google Scholar 

  • FEJÉR, L. (1904). Untersuchungen über Fouriersche Reihen [Studies on Fourier series]. Mathematische Annalen, 58, 501–569.

    Google Scholar 

  • FINNEY, D.J. (1948). The Fisher-Yates test of significance in 2×2 contingency tables. Biometrika, 35, 145–156.

    Article  Google Scholar 

  • FISHER, N.I., LEWIS, T. and EMBLETON, B.J.J. (1993). Statistical analysis of spherical data. Cambridge, Cambridge University Press.

    Google Scholar 

  • FISHER, R.A. (1935). The design of experiments. London, Oliver & Boyd.

    Google Scholar 

  • FISHER, R.A. (1953). Dispersion on the sphere. Proceedings of the Royal Society, London, ser. A, 217, 295–305.

    Article  Google Scholar 

  • FISHER, W.D. (1958). On grouping for maximum homogeneity. Journal of the American Statistical Association, 53, 789–798.

    Article  Google Scholar 

  • FLINN, D. (1956). On the deformation of the Funzie conglomerate, Fetlar, Shetland. Journal of Geology, 64, 480–505.

    Article  Google Scholar 

  • FLINN, D. (1962). On folding during three-dimensional progressive deformation. Quarterly Journal of the Geological Society, London, 118, 385–433.

    Article  Google Scholar 

  • FORGOTSON, J.M. (1960). Review and classification of quantitative mapping techniques. Bulletin of the American Association of Petroleum Geologists, 44, 83–100.

    Google Scholar 

  • FOURIER, J. (1822). Théorie analytique de la Chaleur [The analytical theory of heat]. Paris, Firmin Didot.

    Google Scholar 

  • FOURIER, J.-B.-J. (1808). Mémoire sur la propagation de la chaleur dans les corps solides [Présenté le 21 décembre 1807 à l’Institut national]. Nouveau Bulletin des sciences par la Société philomatique de Paris, 1 (6), 112–116.

    Google Scholar 

  • FOX, W.T. (1964). FORTRAN and FAP program for calculating and plotting time-trend curves using an IBM 7090 or 7094/1401 computer system. Kansas Geological Survey Special Distribution Publication 12, Lawrence, KS, Kansas Geological Survey.

    Google Scholar 

  • FRANK, H.R. and DOTY, E.N. (1953). Signal-to-noise ratio improvements by filtering and mixing. Geophysics, 18, 587–604.

    Article  Google Scholar 

  • FRAPPORTI, G., VRIEND, S.P. and VAN DUIJVENBOODEN, W. (1993). Hydrogeochemistry of Dutch groundwater: classification into natural homogeneous groupings with fuzzy c-means clustering. Applied Geochemistry, 8 (Supplement 2), 273–276.

    Google Scholar 

  • FRÉCHET, M. (1927). Sur la loi de probabilité de l’écart maximum [On the probability distribution of the maximum difference]. Annales de la Société Polonaise de Mathématique, 6, 93–116.

    Google Scholar 

  • FRY, N. (1979). Random point distributions and strain measurement in rocks. Tectonophysics, 60, 89–105.

    Article  Google Scholar 

  • FRY, N. (2001). Stress space: striated faults, deformation twins, and their constraints on palaeostress. Journal of Structural Geology, 23, 1–9.

    Article  Google Scholar 

  • FULLER, R. (1992). Paleomagnetism: Magnetic domains to geologic terranes. Boston, MS, Blackwell.

    Google Scholar 

  • GABRIEL, K.R. (1971). The biplot-graphic display of matrices with application to principal component analysis. Biometrika, 58, 453–467.

    Article  Google Scholar 

  • GAUSS, C.F. (1805 [1866]). Nachlass. Teoria interpolationis methodo nova tractata [Interpolation method treated by a new theory]. In: Carl Friedrich Gauss Werke herausgegeben von der Königliche Gesellschaft der wissenschaften zu Göttingen. Göttingen, W.F. Kaestner. v. III, 265–330.

    Google Scholar 

  • GENTLEMAN, W.M. and SANDE, G. (1966). Fast Fourier Transforms – for fun and profit. In: American Federation of Information Processing Societies: Proceedings of the AFIPS ’66 Fall Joint Computer Conference, November 7–10, 1966, San Francisco, California, USA. AFIPS Conference Proceedings 29, Spartan Books, Washington, DC, 563–578.

    Google Scholar 

  • GOLDBERG, D. (1991). What every computer scientist should know about floating-point arithmetic. Computing Surveys, 23, 5–48.

    Article  Google Scholar 

  • GOLDSTINE, H.H. (1972). The computer from Pascal to von Neumann. Princeton, NJ, Princeton University Press.

    Google Scholar 

  • GOLDSTINE, H.H. and VON NEUMANN, J. (1947). Planning and coding of problems for an electronic computing instrument, Part II, Volume 1. Princeton, N.J., Institute for Advanced Study [In: TAUB, A. (ed.). (1963). John von Neumann collected works. Vol 5. London, Macmillan, 80–151].

    Google Scholar 

  • GÓMEZ-HERNÁNDEZ, J.J. and DEUTSCH, C.V. (eds.) (1999). Modelling subsurface flow. Mathematical Geology, 31, 747–928.

    Google Scholar 

  • GOOGLE RESEARCH (2012). Google Books Ngram Viewer (v. 2.0) [online: https://books.google.com/ ngrams/info].

  • GORDON, T. and MARTIN, G. (1974). File management systems and geological field data. In: Computer use in projects of the Geological Survey of Canada. Geological Survey of Canada Paper 74-60. Ottawa, Geological Survey of Canada, 23–28.

    Google Scholar 

  • GRANATH, G. (1984). Application of fuzzy clustering and fuzzy classification to evaluate the provenance of glacial till. Journal of the International Association for Mathematical Geology, 16, 283–301.

    Article  Google Scholar 

  • GREENACRE, M. J. and UNDERHILL, L.G. (1982). Scaling a data matrix in low-dimensional Euclidean space. In: HAWKINS, D.M. (ed.). Topics in Applied Multivariate Analysis. Cambridge, Cambridge University Press, 183–268.

    Chapter  Google Scholar 

  • GRESSLY, A. (1838). Observations géologiques sur le Jura soleurois [Geological observations in the Soleure Jura]. 1. Neue Denkschriften der allgemeinen schweizerischen Gesellschaft für die gesammten Naturwissenschaften, 2, 1–112.

    Google Scholar 

  • GUBBINS, D. (2004). Time series analysis and inverse theory for geophysicists. Cambridge, Cambridge University Press.

    Book  Google Scholar 

  • HAIGH, T., PRIESTLY, M. and ROPE, C. (2014a). Los Alamos bets on ENIAC: Nuclear Monte Carlo simulations, 1947–1948. IEEE Annals on the History of Computing, 36 (3), 42–63.

    Article  Google Scholar 

  • HAMMING, R.W. (1977). Digital filters. Englewood Cliffs, NJ, Prentice-Hall.

    Google Scholar 

  • HARBAUGH, J.W. and MERRIAM, D.F. (1968). Computer applications in stratigraphic analysis. New York, NY, John Wiley & Sons.

    Google Scholar 

  • HARRIS, F.J. (1978). On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the IEEE, 66, 51–83.

    Google Scholar 

  • HARTIGAN, J.A. (1975). Clustering algorithms. New York, NY, John Wiley & Sons.

    Google Scholar 

  • HAUSDORFF, F. (1918). Dimension und äusseres Mass [Dimension and exterior measure]. Mathematische Annalen, 79, 157–179.

    Article  Google Scholar 

  • HAVILAND, E.K. (1935). On the inversion formula for Fourier-Stieltjes transforms for more than one dimension. II. American Journal of Mathematics, 57, 382–388.

    Article  Google Scholar 

  • HEIDEMAN, M.T., JOHNSON, D.H. and BURRUS, C.S. (1984). Gauss and the history of the FFT. IEEE Transactions on Acoustics, Speech and Signal Processing, 1, 14–21.

    Google Scholar 

  • HELSEL, D.R. (2005). Nondetects and data analysis. Hoboken, NJ, Wiley-Interscience.

    Google Scholar 

  • HERZFELD, U.C. (1993). Fractals in earth sciences – Challenges and concerns. In: DAVIS, J. and HERZFELD, J.C. (eds.). Computers in geology – 25 years of progress. Oxford, Oxford University Press, 217–230.

    Google Scholar 

  • HILLS, S.J. (1988). Outline extraction of microfossils in reflected light images. Computers & Geosciences, 14, 481–488.

    Article  Google Scholar 

  • HOWARTH, R.J. (1973b). Preliminary assessment of a nonlinear mapping algorithm in a geological context. Journal of the International Association for Mathematical Geology, 5, 39–57.

    Article  Google Scholar 

  • HOWARTH, R.J., KOCH, G.S., Jr., CHORK, C.Y., CARPENTER, R.H. and SCHUENEMEYER, J.H. (1980a). Statistical map analysis techniques applied to regional distribution of uranium in stream sediment samples from the southeastern United States for the National Uranium Resource Evaluation Program. Journal of the International Association for Mathematical Geology, 12, 339–366.

    Article  Google Scholar 

  • HOWELL, B.F. (1949). Ground vibration near explosions. Bulletin of the Seismological Society of America, 39, 285–310.

    Google Scholar 

  • HRENNIKOFF, A. (1941). Solution of problems of elasticity by the frame-work method. ASME Journal of Applied Mechanics, 8, A619–A715.

    Google Scholar 

  • HRUŠKA, J. (1976). Current data-management systems: Problems of application in economic geology. Computers & Geosciences, 2, 299–304.

    Article  Google Scholar 

  • IANÂS, M. and ZORILESCU, D. (1968). Solution of the direct problem in gravimetry by means of the Monte Carlo method. Geoexploration, 6, 245–249.

    Article  Google Scholar 

  • IMBRIE, J. (1963). Factor and vector analysis programs for analyzing geologic data. United States Office of Naval Research, Geography Branch, Technical Report 6, ONR Task No. 389-135 [AD0420466], Evanston, IL, Northwestern University.

    Google Scholar 

  • IMBRIE, J. and PURDY, E.G. (1962). Classification of modern Bahamian carbonate sediments. In: HAM, W.E. (ed.). Classification of carbonate rocks: A symposium arranged by the Research Committee of the American Association of Petroleum Geologists. Including papers presented orally at Denver, Colorado, April 27, 1961. AAPG Memoir 1. Tulsa, OK, The American Association of Petroleum Geologists, 253–272.

    Google Scholar 

  • IMBRIE, J. and VAN ANDEL, T.H. (1964). Vector analysis of heavy-mineral data. Bulletin of the Geological Society of America, 75, 1131–1156.

    Article  Google Scholar 

  • INGERSON, E. (1938). Albite trends in some rocks of the Piedmont. American Journal of Science, 35, 127–141.

    Google Scholar 

  • INTERNATIONAL BUSINESS MACHINES (1954). Preliminary report: Specifications for the IBM Mathematical FORmula TRANslating system, FORTRAN. November 10, 1954. New York, NY, Programming Research Group, Applied Science Division, International Business Machines Corporation.

    Google Scholar 

  • INTERNATIONAL BUSINESS MACHINES (1957). The FORTRAN automatic coding system for the IBM 704: Programmer's primer. New York, NY, IBM Corporation.

    Google Scholar 

  • INTERNATIONAL BUSINESS MACHINES (1958). FORTRAN II for the IBM 704 data processing system: Reference manual. Form C28-6000-2. New York, NY, IBM Corporation.

    Google Scholar 

  • INTERNATIONAL BUSINESS MACHINES (1969a). IBM Data processing techniques. Flowcharting techniques [manual] GC20-8152-0. White Plains, New York, NY, IBM Technical Publications Department.

    Google Scholar 

  • INTERNATIONAL BUSINESS MACHINES (1969b). Flowcharting template. Form X20-8020. White Plains, New York, NY, IBM Technical Publications Department.

    Google Scholar 

  • JAVANDREL, I. and WITHERSPOON, P. A. (1969). A method of analysing transient fluid flow in multilayer aquifers. Water Resources Research, 5, 856–869.

    Article  Google Scholar 

  • JOHNSON, K.S. (1962). CIPW flow chart. Oklahoma Geology Notes, 22, 143–155.

    Google Scholar 

  • JÖRESKOG, K.G., KLOVAN, J.E. and REYMENT, R. (1976). Geological factor analysis. Amsterdam, Elsevier.

    Google Scholar 

  • KACEWICZ, M. (1987). Fuzzy slope stability method. Mathematical Geology, 19, 757–767.

    Article  Google Scholar 

  • KAESLER, R.L., PRESTON, F.W. and GOOD, D.I. (1963). FORTRAN II program for coefficient of association (Match-Coeff) using an IBM 1620 computer. Kansas Geological Survey Special Distribution Publication 4, Lawrence, KS, Kansas Geological Survey.

    Google Scholar 

  • KAISER, H.F. (1958). The varimax criterion for analytic rotation in factor analysis. Psychometrika, 23, 187–200.

    Article  Google Scholar 

  • KEMPTHORNE, O. (1952). The design and analysis of experiments. New York, NY, John Wiley & Sons.

    Google Scholar 

  • KENDALL, M.G. and STUART, A. (1958). The advanced theory of statistics. Vol. 3. London, C. Griffin.

    Google Scholar 

  • KENKEL, N.C. (2013). Sample size requirements for fractal dimension estimation. Community Ecology, 14, 144–152.

    Article  Google Scholar 

  • KIM, W., DOH, S.-J., YU, Y. and LEE, Y.I. (2013). Magnetic evaluation of sediment provenance in the northern East China Sea using fuzzy c-means cluster analysis. Marine Geology, 337, 9–19.

    Article  Google Scholar 

  • KING, T. (1996). Quantifying nonlinearity and geometry in time series of climate. Quaternary Science Reviews, 15, 247–266.

    Article  Google Scholar 

  • KLIR, G.J. (2004). Fuzzy logic: A specialized tutorial. In: DEMICCO, R.V. and KLIR, G.J. (eds.). Fuzzy logic in geology. Amsterdam, Academic Press, 11–61.

    Chapter  Google Scholar 

  • KNOTT, C.G. (1884 [1886]). Earthquake frequency. Transactions of the Seismological Society of Japan, 9 (1), 1–22.

    Google Scholar 

  • KNUTH, D.E. (1968–73). The art of computer programming. Reading, MA, Addison-Wesley.

    Google Scholar 

  • KOCH, G.S. and LINK, R.F. (1970–71). Statistical analysis of geological data. v. 2. New York, NY, John Wiley & Sons.

    Google Scholar 

  • KOCH, G.S., LINK, R.F. and SCHUENEMEYER, J.H. (1972). Computer programs for geology. New York, Artronic Information Systems.

    Google Scholar 

  • KORN, H. (1938). Schichtung und absolute Zeit [Stratification and absolute time]. Neues Jahrbuch für Geologie und Paläontologie, A74, 51–166.

    Google Scholar 

  • KRUMBEIN, W.C. (1934a). Size frequency distributions of sediments. Journal of Sedimentary Petrology, 4, 65–77.

    Article  Google Scholar 

  • KRUMBEIN, W.C. (1939). Preferred orientation of pebbles in sedimentary deposits. Journal of Geology, 47, 673–706.

    Article  Google Scholar 

  • KRUMBEIN, W.C. (1948). Lithofacies maps and regional sedimentary-stratigraphic analysis. Bulletin of the American Association of Petroleum Geologists, 32, 1909–1923.

    Google Scholar 

  • KRUMBEIN, W.C. (1952). Principles of facies map interpretation. Journal of Sedimentary Petrology, 22, 200–211.

    Article  Google Scholar 

  • KRUMBEIN, W.C. (1955a). Composite end members in facies mapping. Journal of Sedimentary Petrology, 25, 115–122.

    Article  Google Scholar 

  • KRUMBEIN, W.C. and GARRELS, R.M. (1952). Origin and classification of chemical sediments in terms of pH and oxidation reduction potentials. The Journal of Geology, 60, 1–33.

    Article  Google Scholar 

  • KRUMBEIN, W.C. and GRAYBILL, F.A. (1965). An introduction to statistical models in geology. New York, NY, McGraw-Hill.

    Google Scholar 

  • KRUMBEIN, W.C. and PETTIJOHN, F.J. (1938). Manual of sedimentary petrography.. New York, NY, NY, Appleton-Century.

    Google Scholar 

  • KRUMBEIN, W.C. and SLOSS, L.L. (1951). Stratigraphy and sedimentation. San Francisco, CA, W.H. Freeman.

    Google Scholar 

  • KRUMBEIN, W.C. and SLOSS, L.L. (1958). High-speed digital computers in stratigraphic and facies analysis. Bulletin of the American Association of Petroleum Geologists, 42, 2650–2669.

    Google Scholar 

  • KRUMBEIN, W.C. and TUKEY, J.W. (1956). Multivariate analysis of mineralogic, lithologic, and chemical composition of rock bodies. Journal of Sedimentary Petrology, 26, 322–337.

    Google Scholar 

  • KURITA, T. (1973). Regional variations in the structure of the crust in the central United States from P-wave spectra. Bulletin of the Seismological Society of America, 63, 1663–1687.

    Google Scholar 

  • La POINTE, P.R. (1995). Estimation of undiscovered hydrocarbon potential through fractal geometry. In: BARTON, C.C. and LA POINTE, P.R. (eds.). Fractals in petroleum geology and earth processes. New York, NY, Plenum, 35–57.

    Chapter  Google Scholar 

  • Le ROUX, J.P. and RUST, I.C. (1989). Composite facies maps: a new aid to palaeo-environmental reconstruction. South African Journal of Geology, 92, 436–443.

    Google Scholar 

  • LEIBNIZ, G.W. (1692). De linea ex lineis numero infinitis ordinatim ductis inter se concurrentibus formata easque omnes tangente, ac de novo in ea re analyseos infinitorum usu [Construction from an infinite number of ordered and concurrent curves, from the tangent to each curve; a new application to undertake this analysis of infinities]. Acta Eruditorum, 11, 168–171 [French translation in PARMENTIER (1995), 210–222].

    Google Scholar 

  • LEPELTIER, C. (1969). A simplified statistical treatment of geochemical data by graphical representation. Economic Geology, 64, 538–550.

    Article  Google Scholar 

  • LIBCHABER, A. and MAURER, J. (1982). A Rayleigh-Bénard experiment: Helium in a small box. In: RISTE, T. (ed.). Nonlinear phenomena at phase transitions and instabilities. Proceedings of the NATO Advanced Study Institute, Geilo, Norway, March 1981. New York, NY, Plenum, 259–286.

    Google Scholar 

  • LICKLIDER, J.C.R. and POLLACK, I. (1948). Effects of differentiation, integration and infinite peak clipping upon the intelligibility of speech. Journal of the Acoustic Society of America, 20, 42–51.

    Article  Google Scholar 

  • LINK, R.F., KOCH, G.S. Jr. and GLADFELTER, G.W. (1964). Computer methods of fitting surfaces to assay and other data by regression analysis. Report of Investigations 6508, Washington, United States Department of the Interior, Bureau of Mines.

    Google Scholar 

  • LINVILLE, A.F. and LASTER, S.J. (1966). Numerical experiments in the estimation of frequency-wavenumber spectra of seismic events using linear arrays. Bulletin of the Seismological Society of America, 56, 1337–1355.

    Google Scholar 

  • NEGI, J.G. and TIWARI, R.K. (1984). Periodicities of palaeomagnetic intensity and palaeoclimatic variations: a Walsh spectral approach. Earth and Planetary Science Letters, 70, 139–147.

    Article  Google Scholar 

  • MALLAT, S.G. (1989a). Multiresolution approximations and wavelet orthonormal bases of L^2(R). Transactions of the American Mathematical Society, 315, 69–87.

    Google Scholar 

  • MALLAT, S.G. (2008). A wavelet tour of signal processing: The sparse way. 3rd edn., Amsterdam, Academic Press.

    Google Scholar 

  • MANDELBROT, B. (1967). How long is the coast of Britain? Statistical self-similarity and fractional dimension. Science, new ser., 156, 636–638.

    Google Scholar 

  • MANDELBROT, B. (1975a). Les objects fractales: Forme, hasard, et dimension [Fractals: Form, chance and dimension]. Paris, Flammarion.

    Google Scholar 

  • MANDELBROT, B.B. (1975b). On the geometry of homogeneous turbulence, with stress on the fractal dimension of the iso-surfaces of scalars. Journal of Fluid Mechanics, 72, 401–416.

    Article  Google Scholar 

  • MANDELBROT, B. (1977). Fractals: Form chance and dimension. San Francisco, CA, W.H. Freeman.

    Google Scholar 

  • MANDELBROT, B.B. (1982). The fractal geometry of nature. San Francisco, CA, W.H. Freeman.

    Google Scholar 

  • MANSON, V. and IMBRIE, J. (1964). FORTRAN program for factor and vector analysis of geologic data using an IBM 7090 or 7094/1401 computer system. Kansas Geological Survey Special Distribution Publication 13, Lawrence, KS, Kansas Geological Survey.

    Google Scholar 

  • MANTÉ, C., YAO, A.F. and DEGIOVANNI, C. Principal component analysis of measures with special emphasis on grain-size curves. Computational Statistics & Data Analysis, 51, 4969–4983.

    Google Scholar 

  • MARCOTTE, D. (1991). Cokriging with Matlab. Computers & Geosciences, 17, 1265–1280.

    Article  Google Scholar 

  • MARDIA, K.V. (1972). Statistics of directional data. London, Academic Press.

    Google Scholar 

  • MARI, J.L. (2006). Seismic wave separation by SVD and (F-K) combined filters. In: Proceedings, ISCCSP 2006: Second International Symposium on Communications, Control and Signal Processing, 13–15 March 2006, Marrakech, Morocco; Geophysical Signal Processing Session, SuviSoft Oy, Tempere, 1–4.

    Google Scholar 

  • MATHERON, G. (1970). La théorie des variables régionalisées et ses applications. Fascicule 5 [The theory of regionalised variables and its applications. Part 5]. Fontainebleau, Centre de Géostatistique, École des Mines.

    Google Scholar 

  • MATHERON, G. (1982). Pour une analyse krigante des données régionalisées [A kriging analysis of regionalised variables]. Note N-732, Fontainebleau, Centre de Géostatistique, École des Mines de Paris.

    Google Scholar 

  • MAXWELL, J.C. (1879). Harmonic analysis. In: Encyclopaedia Britannica. Vol XI. 9th edn., Edinburgh, A. & C. Black, 481–482.

    Google Scholar 

  • McCRACKEN, D.D. (1963). A guide to Fortran programming. New York, NY, John Wiley & Sons.

    Google Scholar 

  • McCRACKEN, D.D. (1965). A guide to FORTRAN IV programming. New York, NY, John Wiley & Sons.

    Google Scholar 

  • MIESCH, A.T. (1976b). Q-mode factor analysis of geochemical and petrologic data matrices with constant row-sums. United States Geological Survey Professional Paper 574-G, Washington, DC, United States Government Printing Office.

    Google Scholar 

  • MILLER, J. (ed.) (2015a). Earliest known uses of some of the words of mathematics [online: http://jeff560.tripod.com/mathword.html].

  • MILLER, R.L. and KAHN, J.S. (1962). Statistical analysis in the geological sciences. New York, John Wiley & Sons.

    Google Scholar 

  • MITCHELL, U.G. (1911). The growth of algebraic symbolism. In: Lectures on fundamental concepts of algebra and geometry. New York, Macmillan, 226–239.

    Google Scholar 

  • MOOD, A.M. (1950). Introduction to the theory of statistics. New York, NY, McGraw-Hill.

    Google Scholar 

  • MOOKERJEE, M. and PEEK, S. (2014). Evaluating the effectiveness of Flinn’s k-value versus Lode’s ratio. Journal of Structural Geology, 68 (Part A), 33–43.

    Google Scholar 

  • MOORE, D.P. (1960). FORTRAN Assembly Program (FAP) for the IBM 709/7090. 709/7090 Data processing System Bulletin J28-6098, New York, NY, Programming Systems Publications, IBM Corporation.

    Google Scholar 

  • MOORE, E.H. (1893). A doubly-infinite system of simple groups. Bulletin of the New York Mathematical Society, 3 (3), 73–78.

    Article  Google Scholar 

  • MOORE, R.C. (1949). Meaning of facies. In: MOORE, R.C. (ed.). Sedimentary facies in geological history. Memoir 39. Washington, DC, Geological Society of America, 1–34.

    Google Scholar 

  • MORTON, K.W. and MAYERS, D.F. (2005). Numerical solution of partial differential equations. An introduction. Cambridge, Cambridge University Press.

    Google Scholar 

  • NABIGHIAN, M.N. (1966). The application of finite forward differences in the resistivity computations over a layered earth. Geophysics, 31, 971–980.

    Article  Google Scholar 

  • NUTTLI, O. (1964). Some observations relating to the effect of the crust on long-period P-wave motion. Bulletin of the Seismological Society of America, 54, 141–149.

    Google Scholar 

  • NYQUIST, H. (1928a). Certain topics in telegraph transmission theory. Transactions of the American Institute of Electrical Engineers, 47, 617–644.

    Article  Google Scholar 

  • NYQUIST, H. (1932). Regeneration theory. The Bell System Technical Journal, 11, 126–147.

    Article  Google Scholar 

  • O’BRIEN, J.T., KAMP, W.P. and HOOVER, G.M. (1982). Sign-bit amplitude recovery with applications to seismic data. Geophysics, 47, 1527–1539.

    Article  Google Scholar 

  • OHM, G.S. (1839). Bemerkungen über Combinationstöne und Stosse [Remarks on combination tones and pulses]. Poggendorff’s Annalen der Physik und Chemie, 47, 463–466.

    Article  Google Scholar 

  • OPLER, A. (1967). Fourth-generation software. Datamation, 13, 22–24.

    Google Scholar 

  • PARKER, R.L. (1972). Inverse theory with grossly inadequate data. Geophysical Journal of the Royal Astronomical Society, 29, 123–138.

    Article  Google Scholar 

  • PARKER, R.L. (1977). Understanding inverse theory. Annual Review of Earth and Planetary Sciences, 5, 35–64.

    Article  Google Scholar 

  • PEARSON, K. (1894). Contributions to the mathematical theory of evolution. I. On the dissection of asymmetrical frequency curves. Philosophical Transactions of the Royal Society, London, ser. A, 185, 71–110.

    Google Scholar 

  • PEARSON, K. (1895). Contributions to the mathematical theory of evolution. II. Skew variation in homogeneous material. Philosophical Transactions of the Royal Society, London, ser. A, 186, 343–414.

    Google Scholar 

  • PERREY, A. (1845). Mémoire sur les tremblements de terre dans le bassin du Rhin [Note on earth tremors in the Rhine basin]. Mémoires couronnés et Mémoires des Savants Étrangers, Académie Royale des Sciences et Belles Lettres de Bruxelles, 19, 1–113.

    Google Scholar 

  • PINDER, G. F. and BREDEHOEFT, J. D. (1968). Applications of the digital computer for aquifer evaluation. Water Resources Research, 4, 1069–1093.

    Article  Google Scholar 

  • POINCARÉ, H. (1881). Mémoire sur les courbes définies par une équation différentielle [Memoir on curves defined by a differential equation]. I. Journal de Mathématiques Pures et Appliquées, ser. 3, 7, 375–442.

    Google Scholar 

  • POINCARÉ, H. (1882). Mémoire sur les courbes définies par une équation différentielle [Memoir on curves defined by a differential equation]. II. Journal de Mathématiques Pures et Appliquées, ser. 3, 8, 251–296.

    Google Scholar 

  • PORWAL, A.K., CARRANZA, E.J.M. and HALE, M. (2004). A hybrid neuro-fuzzy model for mineral potential mapping. Mathematical Geology, 36, 803–826.

    Article  Google Scholar 

  • PRICKETT, T. A., NAYMIK, T. G. and LONNQUIST, C. G. (1981). A ‘random walk’ solute transport model for selected groundwater quality evaluations. Illinois State Water Survey Bulletin, 65, 1–103.

    Google Scholar 

  • PURDY, R.C. (1908). Qualities of clays suitable for making paving brick. Illinois State Geological Survey Bulletin, 9, 133–278.

    Google Scholar 

  • RAMSAY, J.G. (1967). Folding and fracturing of rocks. New York, McGraw-Hill.

    Google Scholar 

  • RAMSAY, J.G. and HUBER, M.I. (1983). The techniques of modern structural geology. Vol. 1: Strain analysis. London, Academic Press.

    Google Scholar 

  • RAMSAY, J.O. and SILVERMAN, B.W. (1997). Functional data analysis. New York, NY, Springer.

    Book  Google Scholar 

  • RAMSEY, M.H. and THOMPSON, M. (1992). Data quality in applied geochemistry – the requirements, and how to achieve them. Exploration Geochemistry, 44, 3–22.

    Article  Google Scholar 

  • RAMSON, I., APPEL, C. A. and WEBSTER, R. A. (1965). Ground-water models solved by digital computer. Journal of the Hydraulics Division, Proceedings of the American Society of Civil Engineers, 91, 133–147.

    Google Scholar 

  • RAO, S.V.L.N. and PRASAD, J. (1982). Definition of kriging in terms of fuzzy logic. Journal of the International Association for Mathematical Geology, 14, 37–42.

    Article  Google Scholar 

  • RICHARDSON, L.F. (1960a). Arms and insecurity: mathematical study of the causes and origins of war (eds. Rashevsky, N. and Trucco, E.). Pittsburgh, PA, Boxwood Press.

    Google Scholar 

  • RICHARDSON, L.F. (1960b). Statistics of deadly quarrels [edited by Q. WRIGHT and C.C. LIENAU]. Pittsburgh, PA, Boxwood Press.

    Google Scholar 

  • RICHARDSON, W.A. (1923). The frequency-distribution of igneous rocks. Part II. The laws of distribution in relation to petrogenic theories. Mineralogical Magazine, 20, 1–19.

    Article  Google Scholar 

  • RICHTER, K. (1936). Ergebnisse und Aussichten der Gefügeforschung im pommerschen Diluvium [Results and prospects of structural research in Pomeranian Diluvium]. Geologische Rundschau, 27, 196–206.

    Article  Google Scholar 

  • RIDSDILL-SMITH, T.A. (2000) The application of the Wavelet Transform to the processing of aeromagnetic data. Ph.D. thesis. Department of Geology and Geophysics, University of Western Australia. [online http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.27.451&rep=rep1&type=pdf].

  • ROBINSON, E.A. (1966a). Collection of FORTRAN II programs for filtering and spectral analysis of single-channel time series. Geophysical Prospecting, 14, 2–52.

    Article  Google Scholar 

  • ROBINSON, E.A. (1967b). Statistical communication and detection with special reference to digital signal processing of radar and seismic signals. London, Griffin.

    Google Scholar 

  • ROBINSON, E.A. and TREITEL, S. (1964). Principals of digital filtering. Geophysics, 29, 395–404.

    Article  Google Scholar 

  • ROBINSON, H.H. (1916). The summation of chemical analyses for igneous rocks. American Journal of Science. ser. 4, 41, 257–275.

    Article  Google Scholar 

  • SANDER, B. (1923). Zur petrographisch-tektonischen Analyse [On petrographic-tectonic analysis]. I–II. Jahrbuch der Geologischen Bundesanstalt (Wien), 73, 183–253.

    Google Scholar 

  • SANDER, B. (1930). Gefügekunde der Gesteine mit besonderer Berücksichtigung der Tektonite [Microstructure of rocks with special emphasis on tectonite]. Vienna, Springer.

    Google Scholar 

  • SANDER, B. (1948). Einführung in die Gefügekunde der geologischen Körper. I. Allgemeine Gefügekunde und Arbeiten in Bereich Handstuck bis Profil [Introduction to the structure of geological bodies. I. General study of fabrics, work on a scale from profile to hand-specimen]. Vienna, Springer-Verlag.

    Google Scholar 

  • SANDER, B. (1950). Einführung in die Gefügekunde der geologischen Körper. 2. Die Korngefüge [An introduction to the fabrics of geological bodies. 2. Grain-fabrics]. Vienna, Springer-Verlag.

    Book  Google Scholar 

  • SANDER, B. (1970). An introduction to the fabrics of geological bodies. Oxford [English translation by F.C. PHILLIPS and G. WINDSOR], Pergamon Press.

    Google Scholar 

  • SANDER, B. and SCHMIDEGG, O. (1926). Zur petrographisch-tektonischen Analyse. III [On petrographic-tectonic analysis]. Jahrbuch der Geologischen Bundesanstalt, 73, 313–406.

    Google Scholar 

  • SCHEFFÉ, H. (1956). Alternative models for the analysis of variance. The Annals of Mathematical Statistics, 27, 251–271.

    Article  Google Scholar 

  • SCHMIDT, W. (1917). Statische Methoden beim Gefügestudium kristalliner Schiefer [Statistical methods in petrological studies of crystalline slate]. Sitzungsberichte der Königlichen bayerischen Akademie der Wissenschaften zu Munchen, 126, 515–537.

    Google Scholar 

  • SCHOENBERG, I.J. (1950). The finite Fourier series and elementary geometry. American Mathematical Monthly, 57, 390–404.

    Article  Google Scholar 

  • SCHOUTEN, H. and MCCAMY, K. (1972). Filtering marine magnetic anomalies. Journal of Geophysical Research, 77, 7089–7099.

    Article  Google Scholar 

  • SCHUSTER, A. (1897). On lunar and solar periodicities of earthquakes. Proceedings of the Royal Society, London, 61, 455–465.

    Google Scholar 

  • SCHUSTER, A. (1898). On the investigation of hidden periodicities with applications to a supposed 26 day period of meteorological phenomena. Terrestrial Magnetism, 3, 13–41.

    Article  Google Scholar 

  • SCHWARCZ, H.P. and SHANE, K.C. (1969). Measurement of particle shape by Fourier analysis. Sedimentology, 13, 213–231.

    Article  Google Scholar 

  • SHAW, J.B. (1918). Lectures on the philosophy of mathematics. Chicago, IL, Open Court Publishing.

    Google Scholar 

  • SHERIFF, R.E.(1984). Encyclopedic dictionary of exploration geophysics. 2nd edn., Tulsa, Society of Exploration Geophysicists.

    Google Scholar 

  • SILVERMAN, D. (1939). The frequency response of electromagnetically damped dynamic and reluctance type seismometers. Geophysics, 4, 53–68.

    Article  Google Scholar 

  • SIMONS, D.B. and SENTÜRK, F. (1992). Sediment Transport Technology. Water and sediment dynamics. Littleton, CO, Water Resources Publications.

    Google Scholar 

  • SINCLAIR, A.J. (1974). Selection of threshold values in geochemical data using probability graphs. Journal of Geochemical Exploration, 3, 129–149.

    Article  Google Scholar 

  • SINCLAIR, A.J. (1976). Applications of probability graphs in mineral exploration. The Association of Exploration Geochemists Special volume 4. Richmond, BC, The Association of Exploration Geochemists.

    Google Scholar 

  • SLOSS, L.L. and LAIRD, W. (1946). Devonian stratigraphy of central and northwestern Montana. United States Geological Survey Oil and Gas Investigation Series, Preliminary Chart no. 25, Washington, DC, United States Government Printing Office.

    Google Scholar 

  • SMALLEY, R., Jr. (2009). Student guide: Making waves by visualising the Fourier transform. Seismological Research Letters, 80, 651–657.

    Article  Google Scholar 

  • SMULIKOWSKI, W., DESMONS, J., FETTES, D.F., HARTE, B., SASSI, F.P. and SCHMID, R. (2007). Types, grade and facies of metamorphism. In: FETTES, D. and DESMONS, J. (eds.). Metamorphic rocks: a classification and glossary of terms: recommendations of the International Union of Geological Sciences Subcommission on the Systematics of Metamorphic Rocks. Cambridge, Cambridge University Press, 16–23.

    Google Scholar 

  • SNEDECOR, G.W. (1934). Calculation and interpretation of analysis of variance and covariance. Iowa State College of agriculture and mechanic arts. Division of Industrial Sciences, Monograph 1. Ames, IA, Collegiate Press.

    Book  Google Scholar 

  • SORENSEN, H.V., BURRUS, C.S. and HEIDEMAN, M.T. (1995). Fast Fourier Transform database. Boston, MA, PWS Publishing.

    Google Scholar 

  • SPEARMAN, C.E. (1904b). ‘General intelligence’ objectively determined and measured. American Journal of Psychology, 15, 201–293.

    Article  Google Scholar 

  • SPITZ, K. and MORENO, J. (1996). A practical guide to groundwater transport and solute transport modelling. New York, NY, John Wiley & Sons.

    Google Scholar 

  • STARKEY, J. and SIMIGIAN, S. (1987). IMAGE: A FORTRAN V program for image analysis of particles. Computers & Geosciences, 13, 37–59.

    Article  Google Scholar 

  • STEPHANSSON, O. and BERNER, H. (1971). The finite element method in tectonic processes. Physics of the Earth and Planetary Interiors, 4, 301–321.

    Article  Google Scholar 

  • TAUXE, L., KYLSTRA, N. and CONSTABLE, C. (1991). Bootstrap statistics for paleomagnetic data. Journal of Geophysical Research. Solid Earth, 96 (B7), 11723–11740.

    Google Scholar 

  • THOMPSON, M. and FEARN, T. (1996). What exactly is fitness for purpose in analytical measurement? Analyst, 121, 275–278.

    Article  Google Scholar 

  • THOMPSON, M. and HALE, M. (1992). Objective evaluation of precision requirements for geochemical analysis using robust analysis of variance. Journal of Geochemical Exploration, 44, 23–36.

    Article  Google Scholar 

  • THOMPSON, M. and WOOD, R. (1995). Harmonised guidelines for internal quality control in analytical chemistry laboratories. Pure and Applied Chemistry, 67, 649–666.

    Article  Google Scholar 

  • THOMPSON, M., ELLISON, S.L.R. and WOOD, R. (2002). Harmonised guidelines for single laboratory validation of methods of analysis. Pure and Applied Chemistry, 74, 835–855.

    Article  Google Scholar 

  • THOMPSON, M., ELLISON, S.L.R. and WOOD, R. (2006). The international harmonised protocol for the proficiency testing of analytical chemistry laboratories. Pure and Applied Chemistry, 78, 145–196.

    Article  Google Scholar 

  • THOMSON, W. [Lord Kelvin] (1856). Elements of a mathematical theory of elasticity. Philosophical Transactions of the Royal Society, London, 146, 481–498.

    Article  Google Scholar 

  • THURSTONE, L.L. (1931). Multiple factor analysis. Psychological Revue, 38, 406–427.

    Article  Google Scholar 

  • TOOMS, J.S. (1959). Field performance of some analytical methods used in geochemical prospecting. Congreso Geologico Internacional. XXe Sesión, Cuidad de México, 1956. Symposium de Exploracion Geoquímica (Segundo Tomo), 377–388.

    Google Scholar 

  • TUKEY, J.W. (1959b). An introduction to the measurement of spectra. In: GRENANDER, U. (ed.). Probability and statistics. The Harald Cramér volume. New York, NY, John Wiley & Sons, 300–330.

    Google Scholar 

  • TUKEY, J.W. (1962). The future of data analysis. The Annals of Mathematical Statistics, 33, 1–67.

    Article  Google Scholar 

  • TUKEY, J.W. and HAMMING, R. W. (1949). Measuring noise color. I. Memorandum MM-49-110-119, 1 December 1949, Murray Hill, NJ, Bell Telephone Laboratory, 1–120 [Reprinted in: BRILLINGER, D.R. (ed.) (1984). The collected works of John W. Tukey. Vol. 1. Time series: 1949–1964. Wadsworth, Pacific Grove, CA, 1–127].

    Google Scholar 

  • TURCOTTE, D.L. (1992). Fractals and chaos in geology and geophysics. Cambridge, Cambridge University Press.

    Google Scholar 

  • TURCOTTE, D.L. (1997). Fractals and chaos in geology and geophysics. 2nd edn., Cambridge, Cambridge University Press.

    Book  Google Scholar 

  • TURNER, J.M., CLOUGH, R.W., MARTIN, H.C. and TOPP, L.J. (1956). Stiffness and deflection analysis of complex structures. Journal of Aeronautical Science, 23, 805–823.

    Article  Google Scholar 

  • UNWIN, D. (ed.) (1989). Fractals and the earth sciences. Computers & Geosciences, 15 (2), 163–235.

    Google Scholar 

  • USDANSKY, S.I. (1985). A BASIC program to aid in the construction of metamorphic facies diagrams. Computers & Geosciences, 11, 483–491.

    Article  Google Scholar 

  • van LOAN, C. (1992). Computational frameworks for the Fast Fourier Transform. Philadelphia, PA, Society for Industrial and Applied Mathematics.

    Book  Google Scholar 

  • VISTELIUS, A.B. (1961). Sedimentation time trend functions and their application for correlation of sedimentary deposits. Journal of Geology, 69, 703–728.

    Article  Google Scholar 

  • VRIEND, S.P., VAN GAANS, P.F.M., MIDDLEBURG, J. and DE NIJS, A. (1988). The application of fuzzy c-means cluster analysis and non-linear mapping to geochemical datasets: examples from Portugal. Applied Geochemistry, 3, 213–224.

    Article  Google Scholar 

  • WANG, Z. (2009). Mean squared error: Love it or leave it? A new look at signal fidelity measures. IEEE Signal Processing Magazine, 26, 98–117.

    Article  Google Scholar 

  • WEBB, J.S. (1970). Some geological applications of regional geochemical reconnaissance. Proceedings of the Geologists’ Association, 81, 585–594.

    Google Scholar 

  • WEBB, J.S. and THOMPSON, M. (1977). Analytical requirements in exploration geochemistry. Pure and Applied Chemistry, 49, 1507–1518.

    Article  Google Scholar 

  • WEEDON, G.P. (1989). The detection and illustration of regular sedimentary cycles using Walsh power spectra and filtering, with examples from the Lias of Switzerland. Journal of the Geological Society, London, 146, 133–144.

    Article  Google Scholar 

  • WEEDON, G.P. (2003). Time series analysis and cyclostratigraphy. Cambridge, Cambridge University Press.

    Book  Google Scholar 

  • WHELCHEL, J.E. and GUINN, D.F. (1968). The fast Fourier-Hadamard transform and its use in signal representation and classification. In: EASCON’68 record: Electronics and Aerospace Systems Convention, held at Washington, D.C., Sept. 9–11, 1968, New York, NY, Institute of Electrical and Electronics Engineers, 561–573.

    Google Scholar 

  • WHITTAKER, E.T. and ROBINSON, G. (1924). The calculus of observations. A treatise on numerical mathematics. London, Blackie & Son.

    Google Scholar 

  • WHITTEN, E.H.T. (1963). A surface-fitting program suitable for testing geological models which involve areally-distributed data. Technical Report no. 2 of ONR Task no. 389-135, Contract Nr. 1228(26). Office of Naval Research Geography Branch, Evanston, IL, Northwestern University.

    Google Scholar 

  • WIENER, N. (1949). Extrapolation, interpolation, and smoothing of stationary time series: with engineering applications. Cambridge, MA, Technology Press, Massachusetts Institute of Technology.

    Google Scholar 

  • WILK, M.B. and KEMPTHORNE, O. (1955). Fixed, mixed and random models. Journal of the American Statistical Association, 50, 1144–1167.

    Google Scholar 

  • WILLMORE, P.L. (1937). Some properties of heavily damped electromagnetic seismographs. Geophysical Journal International, 4, 389–404.

    Article  Google Scholar 

  • WILSON, E.L. (1970). SAP – A general structural analysis program. UCB/SESM Report no. 70/21, Berkeley, CA, University of California.

    Google Scholar 

  • WOOD, J.W. (1964). The cooling rates and parent planets of several iron meteorites. Icarus, 3, 429–459.

    Article  Google Scholar 

  • WORONOW, A. (1990). Methods for quantifying, statistically testing, and graphically displaying shifts in compositional abundances across data suites. Computers & Geosciences, 16, 1209–1233.

    Article  Google Scholar 

  • WORONOW, A. and LOVE, K.M. (1990). Quantifying and testing differences among means of compositional data suites. Mathematical Geology, 22, 837–852.

    Article  Google Scholar 

  • YATES, F. (1934). Contingency tables involving small numbers and the χ2 test. Supplement to the Journal of the Royal Statistical Society, 1 (2), 217–235.

    Article  Google Scholar 

  • YU, Z. (1998). Applications of vector and parallel supercomputers to ground-water flow modelling. Computers & Geosciences, 23, 917–927.

    Google Scholar 

  • ZADEH, L.A. (1965). Fuzzy sets. Journal of Information and Control, 8, 338–353.

    Article  Google Scholar 

  • ZADEH, L.A. (1975). Fuzzy logic and approximate reasoning. Synthese, 30, 407–428.

    Article  Google Scholar 

  • ZADEH, L.A. (1983). The role of fuzzy logic in the management of expert systems. Fuzzy Sets and Systems, 11, 199–228.

    Article  Google Scholar 

  • ZHAO, C., HOBBS, B.E. and ORD, A. (2008). Convective and advective heat transfer in geological systems. Berlin, Springer-Verlag.

    Google Scholar 

  • ZOBEL, O.J. (1923a). Electrical wave filter. United States Patent Office, Patent number 1,615,212 [filed 1923, granted 1927].

    Google Scholar 

  • ZOBEL, O.J. (1923b). Theory and design of uniform and composite electric wave filters. Bell Systems Technical Journal, 2, 1–46.

    Article  Google Scholar 

  • ZOBEL, O.J. (1923c). Transmission characteristics of electric wave filters. Bell System Technical Journal, 2, 567–620.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Howarth, R.J. (2017). F. In: Dictionary of Mathematical Geosciences . Springer, Cham. https://doi.org/10.1007/978-3-319-57315-1_6

Download citation

Publish with us

Policies and ethics