Skip to main content
  • 1087 Accesses

Abstract

Introduced by the American geologist, Chester Robert Pelto (1915–1984) (Pelto 1954), the D function expresses the relationship between the relative amount of each lithological component in a multi-component system (e.g. non-clastics, sand, shale for a lithofacies map) selected as an end-member. It divides a continuous three-component system into seven classes: three sectors with a one-component end-mixture; three sectors in which two components approach equal proportions; and one sector in which all three components approach equal proportions. See also: Fogotson (1960).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • ABRAMOWITZ, M and STEGUN, I.A. (eds.) (1965). Handbook of mathematical functions with formulas, graphs, and mathematical tables. 2nd edn., New York, NY, Dover Publications.

    Google Scholar 

  • ADAMS, W.M. and ALLEN, D.C. (1961). Reading seismograms with digital computers. Bulletin of the Seismological Society of America, 51, 515–525.

    Google Scholar 

  • AGARWAL, B.N.P. and LAL, T. (1969). Calculation of the second vertical derivative of gravity field. Pure and Applied Geophysics, 76, 5–16.

    Article  Google Scholar 

  • AGTERBERG, F.P. (2007). New applications of the model of de Wijs in regional geochemistry. Mathematical Geology, 39, 1–25.

    Article  Google Scholar 

  • AGTERBERG, F.P. and FABBRI, A.G. (1978). Spatial correlation of stratigraphic units quantified from geological maps. Computers & Geosciences, 4, 285–294.

    Article  Google Scholar 

  • AHO, A.V., ULLMAN, J.D. and HOPCROFT, J.E. (1983). Data structures and algorithms. Boston, MA, Addison-Wesley Longman.

    Google Scholar 

  • AHRENS, L.H. (1955a). The convergent lead ages of the oldest monazites and uraninites (Rhodesia, Manitoba, Madagascar, and Transvaal). Geochimica et Cosmochimica Acta, 7, 294–300.

    Article  Google Scholar 

  • AHRENS, L.H. (1955b). Implications of the Rhodesia age pattern. Geochimica et Cosmochimica Acta, 8, 1–15.

    Article  Google Scholar 

  • AITCHISON, J. (1984). The statistical analysis of geochemical compositions. Journal of the International Association for Mathematical Geology, 16, 531–564.

    Article  Google Scholar 

  • AITCHISON, J. (1986). The statistical analysis of compositional data. London, Chapman and Hall.

    Book  Google Scholar 

  • AITCHISON, J. (2003). The statistical analysis of compositional data. 2nd edn., London, Chapman and Hall.

    Google Scholar 

  • AL-BASSAM, A.M. and KHALIL, A.R. (2012). DurovPwin: A new version to plot the expanded Durov diagram for hydro-chemical data analysis. Computers & Geosciences, 42, 1–6.

    Article  Google Scholar 

  • ALSOP, L.E. (1968). An orthonormality relation for elastic body waves. Bulletin of the Seismological Society of America, 58, 1949–1954.

    Google Scholar 

  • ALTHUWAYNEE, O.F., PRADHAN, B. and LEE, S. (2012). Application of an evidential belief function model in landslide susceptibility mapping. Computers & Geosciences, 44, 120–135.

    Article  Google Scholar 

  • ANALYTICAL METHODS COMMITTEE (1987). Recommendations for the definition, estimation and use of the detection limit. The Analyst, 112, 199–204.

    Article  Google Scholar 

  • ANALYTICAL METHODS COMMITTEE (2001). Measurement of near zero concentrations: recording and reporting results that fall close to or below the detection limit. The Analyst, 126, 256–259.

    Article  Google Scholar 

  • ANDERSON, D.L., MILLER, W.F., LATHAM, G.V., NAKAMURA, Y., TOKSÖZ, M.N., DAINTY, A.M., DUENNEBIER, F.K., LAZAREWICZ, A.R., KOVACH, R.L. and KNIGHT, T.C.D. (1977). Seismology on Mars. Journal of Geophysical Research, 82, 4524–4546.

    Article  Google Scholar 

  • ANONYMOUS (1830a). Abscissa. In: The Penny Cyclopaedia of the Society for the Diffusion of Useful Knowledge. London, Charles Knight, 1, 43.

    Google Scholar 

  • ANONYMOUS (1830b). Theory of algebraical expressions. In: The Library of Useful Knowledge. v. 3. London, Baldwin and Cradock, 1–26 [N.B. arts. separately paginated].

    Google Scholar 

  • ANONYMOUS (1835). Report on certain experiments made at Akra, in the growth of Foreign cotton, sugar-cane and tobacco. Transactions of the Agricultural and Horticultural Society of India, 2, 373–426.

    Google Scholar 

  • ANONYMOUS (1992a). Standards for digital elevation models. Reston, VA, United States Geological Survey National Mapping Division [online: http://nationalmap.gov/standards/ pdf/1DEM0897.pdf; /2DEM0198.pdf; /3DEM0897.pdf and/PDEM0198.pdf].

  • ANONYMOUS (1992b). United States Geological Survey National Mapping Division. Standards for digital elevation models [online: http://nationalmap.gov/standards/ pdf/1DEM0897.PDF; /2DEM0198.PDF; /3DEM0897.PDF; /PDEM0198.PDF].

  • ANONYMOUS (2010b). United States Geological Survey: Rupture directions for selected Northern California earthquakes [online: http://earthquake.usgs.gov/regional/nca/rupture].

  • ARAYA, A., SHINOHARA, M., KANAZAWA, T., FUJIMOTO, H., YAMADA, T., ISHIHARA, T., IIZASA, K. and TSUKIOKA, S. (2015). Development and demonstration of a gravity gradiometer onboard an autonomous underwater vehicle for detecting massive seafloor deposits. Ocean Engineering, 105, 64–71.

    Article  Google Scholar 

  • ARCHIBALD, T, FRASER, C. and GRATTAN-GUINNESS, I. (2004). The history of differential equations, 1670–1950. Oberwolfach Report, 1, 2729–2794.

    Article  Google Scholar 

  • ARPS, J.J. and ROBERTS, T.G. (1958). Economics for drilling for Cretaceous oil on east flank of Denver-Julesburg basin. American Association of Petroleum Geologists Bulletin, 42, 2549–2566.

    Google Scholar 

  • ASPINALL, W.P. and LATCHMAN, J.L. (1983 ). A microprocessor-based system for digitizing seismic events from magnetic-tape recordings. Computers & Geosciences, 9, 113–122.

    Article  Google Scholar 

  • ATIYAH, M.F. (2007 [2014]). Duality in mathematics and physics. In: Conferències FME [Facultat de Matemàtiques i Estadística, Universitat Politècnica de Catalunya], Centrre de Recerca Matematica, , , Institut de Mathematica de la Universitat de Barcelona v. 15, 69–91 [In: Michael Atiyah Collected Works (2014). Volume 7. 2002–2013. Oxford, Oxford University Press, 215–240].

    Google Scholar 

  • AUBIN, D. (1998). A cultural history of catastrophes and chaos: Around the Institut des Hautes Études Scientifiques, France, 1858–1980. Doctoral dissertation, Princeton, NJ, Princeton University [online: http://webusers.imj-prg.fr/~david.aubin/These/].

  • BACHMAN, C.W. (1965). Integrated data store. Data Processing Management Association Quarterly, 1 (2), 10–29.

    Google Scholar 

  • BACHMAN, C.W. (1969). Data structure diagrams. DataBase: A Quarterly Newsletter of [ACM] SIGBDP, 1 (2), 4–10.

    Google Scholar 

  • BACKUS, M.M. (1959). Water reverberations, their nature and elimination. Geophysics, 24, 233–261.

    Article  Google Scholar 

  • BAIN, H.F. (1904). Reported ore deposits of the Wichita Mountains. In: TAFF, J.A. Preliminary report on the geology of the Arbuckle and Wichita Mountains in Indian territory and Oklahoma. United States Geological Survey Professional Paper 31. Washington, DC, United States Government Printing Office, 82–93.

    Google Scholar 

  • BAKUN, W.H. and EISENBERG, A. (1970). Fourier integrals and quadrature-introduced aliasing. Bulletin of the Seismological Society of America, 60, 1291–1296.

    Google Scholar 

  • BARRINGTON, G.V. (1986). The Delphi as a naturalistic evaluation tool. The Canadian Journal of Program Evaluation, 1, 81–88.

    Google Scholar 

  • BARTLETT, M.S. (1948). Smoothing periodograms from time series with continuous spectra. Nature, 161, 686–687.

    Article  Google Scholar 

  • BARTLETT, M.S. (1950). Periodogram analysis and continuous spectra. Biometrika, 37, 1–16.

    Article  Google Scholar 

  • BAXTER, G.G., CARGILL, S.M., CHIDESTER, A.H., HART, P.E., KAUFMAN, G.M. and URQUIDI-BARRAU, F. (1978). Workshop on the Delphi method. Journal of the International Association for Mathematical Geology, 10, 581–588.

    Article  Google Scholar 

  • BAXTER, G.G. and HORDER, M.F. (eds.) (1981). Databanks and databases in geology. Journal of the Geological Society of London, 138, 573–630.

    Google Scholar 

  • BEARD, C.N. (1959). Quantitative study of columnar jointing. Bulletin of the Geological Society of America, 70, 379–382.

    Article  Google Scholar 

  • BECKER, G.F. (1893). Finite homogeneous strain, flow and rupture of rocks. Bulletin of the Geological Society of America, 4, 13–90.

    Article  Google Scholar 

  • BEGIN, Z.B. (1987). ERFUS6 – A FORTRAN program for calculating the response of alluvial channels to base level lowering. Computers & Geosciences, 13, 389–398.

    Article  Google Scholar 

  • BELLHOUSE, D.R. (2011). Abraham De Moivre: Setting the stage for classical probability and applications. Boca Raton, FL, CRC Press.

    Book  Google Scholar 

  • BELLMAN, R.E. (1954). The theory of dynamic programming. Bulletin of the American Mathematical Society, 60, 503–516.

    Article  Google Scholar 

  • BELLMAN, R.E. (1957). Dynamic programming. Princeton, NJ, Princeton University Press.

    Google Scholar 

  • BELLMAN, R.E. (1984). History and development of dynamic programming. IEEE Control Systems Magazine, 4, 24–28.

    Article  Google Scholar 

  • BERGIN, T.J. and HAIGH, T. (2009). The commercialization of database management systems, 1969–1983. IEEE Annals of the History of Computing, 31 (4), 26–41.

    Article  Google Scholar 

  • BIRKHOFF, G.D. (1920). Recent advances in dynamics. Science, new ser., 51, 51-55.

    Google Scholar 

  • BIRKHOFF, G.D. (1927). Dynamical systems. American Mathematical Society Colloquium Publications 9. Providence, RI, American Mathematical Society.

    Google Scholar 

  • BIVAND, R.S., PEBESMA, E.J. and GÓMEZ-RUBIO, V. (2008). Applied spatial data analysis with R. New York, Springer-Verlag.

    Google Scholar 

  • BIVAND, R.S., PEBESMA, E. and GÓMEZ-RUBIO, V. (2013). Applied spatial data analysis with R. 2nd edn., New York, NY, Springer-Verlag.

    Book  Google Scholar 

  • BLACKMAN, R.B. and TUKEY, J.W. (1958). The measurement of power spectra from the point of view of communications engineering. Bell System Technical Journal, 37, 185–282, 485–569.

    Article  Google Scholar 

  • BOIS, P. (1975). Compatibilité entre la compression de l’information sismique et son traitement. Geophysical Prospecting, 23, 682–694.

    Article  Google Scholar 

  • BOLIVAR, S.L., FREEMAN, S.B. and WEAVER, T.A. (1983). Evaluation of integrated data sets – Four examples. Computers & Geosciences, 9, 7–15.

    Article  Google Scholar 

  • BOLT, B.A. and NIAZI, M. (1964). Dispersion of Rayleigh waves across Australia. Geophysical Journal International, 9, 21–35.

    Article  Google Scholar 

  • BOOTS, B.N. and JONES, D.J. (1983). The spatial arrangement of random Voronoï polygons. Computers & Geosciences, 9, 351–365.

    Article  Google Scholar 

  • BORTOLUZZI, G. and LIGI, M. (1986). DIGMAP: a computer program for accurate acquisition by digitizer of geographical coordinates from conformal projections. Computers & Geosciences, 12, 175–197.

    Article  Google Scholar 

  • BÖTTCHER, J. and STREBEL, O. (1990). Quantification of deterministic and stochastic variability components of solute concentrations at the groundwater table in sandy soils. In: ROTH, K., FLÜHLER, H., JURY, W.A. and PARKER, J.C. (eds.). Field scale water and solute flux in soils. Basel, Birkhäuser, 129–140.

    Chapter  Google Scholar 

  • BOUILLÉ, F. (1976a). A model of scientific data bank and its applications to geological data. Computers & Geosciences, 2, 279–291.

    Article  Google Scholar 

  • BOWEN, R.W. and BOTBOL, J.M. (1975). The Geologic Retrieval and Synopsis Program (GRASP). United States Geological Survey Professional Paper 966, Washington, DC, United States Government Printing Office.

    Google Scholar 

  • BRIDGMAN, P.W. (1922). Dimensional analysis. New Haven, CT, Yale University Press.

    Google Scholar 

  • BRIGGS, L.I., MCCULLOCH, D.S. and MOSER, F. (1962). The hydraulic shape of sand particles. Journal of Sedimentary Research, 82, 645–656.

    Google Scholar 

  • BRINCK, J. (1971). MIMIC, the prediction of mineral resources and long-term price trends in the non-ferrous metal mining industry is no longer Utopian. Eurospectra, 10, 46–56.

    Google Scholar 

  • BRINER, A.P., KRONENBERG, H., MAZUREK, M., HORN, H., ENGI, M. and PETERS, T. (1999). FieldBook and GeoDatabase: tools for field data acquisition and analysis. Computers & Geosciences, 25, 1101–1111.

    Article  Google Scholar 

  • BRISBIN, W.C. and EDIGER, N.W. (eds.) (1967). A national system for storage and retrieval of geological data in Canada: A report by the ad-hoc Committee on Storage and Retrieval of Geological Data in Canada. Ottawa, Geological Survey of Canada.

    Google Scholar 

  • BRISKEY, J.A. and SCHULZ, K.J. (eds.) (2007). Proceedings for a Workshop on deposit modeling, mineral resource assessment, and their role in sustainable development: Proceedings of a workshop that followed the 31st International Geological Congress, Rio de Janeiro, Brazil, August 18–19, 2000. United States Geological Survey Circular 1294, Reston, VA, United States Geological Survey.

    Google Scholar 

  • BRODING, R.A. and POOLE, J.L. (1960). Collection and processing of digitized acoustic log data. Geophysics, 25, 939–947.

    Article  Google Scholar 

  • BROWN, G.O. (2002). Henry Darcy and the making of a law. Water Resources Research, 38 (7), 11.1–11.12.

    Article  Google Scholar 

  • BULLEN, K.E. (1947). An introduction to the theory of seismology. Cambridge, Cambridge University Press.

    Google Scholar 

  • BURDON, D.J. and MAZLOUM, S. (1958). Some chemical types of groundwater from Syria. In: Salinity Problems in the Arid Zones, Proceedings of the Teheran Symposium, Paris, UNESCO, 73–90.

    Google Scholar 

  • BURK, C.F. (ed.) (1975). Computer-based systems for geological field data. An international state-of-the-art review for 1973 conducted by COGEODATA. Geological Survey of Canada Paper 74-63, Ottawa, Geological Survey of Canada.

    Google Scholar 

  • BUTLER, J.C. (1987). Survey of membership of the IAMG and MGUS – 1986. Computers & Geosciences, 13, 313–315.

    Article  Google Scholar 

  • BUTTKUS, B. (1991). Spektralanalyse und Filtertheorie in der angewandten Geophysik. Berlin, Springer-Verlag.

    Book  Google Scholar 

  • CAMINA, A.R. and JANACEK, G.J. (1984). Mathematics for seismic data processing and interpretation. London, Graham and Trotman.

    Book  Google Scholar 

  • CAMPBELL, N.A. (1980). Robust procedures in multivariate analysis. Robust covariance estimation. Applied Statistics, 29, 231–237.

    Google Scholar 

  • CAMPBELL, N.A. (1982). Robust procedures in multivariate analysis. II. Robust canonical multivariate analysis. Applied Statistics, 31, 1–8.

    Article  Google Scholar 

  • CAMPBELL, N.A. and ATCHLEY, W.R. (1981). The geometry of canonical variate analysis. Systematic Zoology, 30, 268–280.

    Article  Google Scholar 

  • CAMPBELL, S. (2005). Signatures from marine airgun source library. In: Acquisition Report. M/V Orient Explorer. Shearwater 3D & 2D survey, Victoria, Australia. PGS Job number 2005120, Singapore, PGS Geophysical & Origin Energy Resources Ltd. [online: http://www.mrt.tas.gov.au/mrtdoc/petxplor/ download/OR_0718/Shearwater2Dand3DSeismicSurveyAcquisitionReport.pdf].

  • CANNING, R.G. (1956). Electronic data processing for business and industry. Hoboken, NJ, John Wiley & Sons.

    Google Scholar 

  • CANTOR, G. (1895). Beiträge zur Begründung der transfiniten Mengenlehre [Contribution in support of transfinite set theory] 1. Mathematische Annalen, 46, 481–512.

    Article  Google Scholar 

  • CANTOR, G. (1897). Beiträge zur Begründung der transfiniten Mengenlehre [Contribution in support of transfinite set theory] 2. Mathematische Annalen, 49, 207–246.

    Article  Google Scholar 

  • CANTOR, G. (1915). Contributions to the founding of the theory of transfinite numbers by Georg Cantor [translated by P.E.B JOURDAIN]. . Chicago, IL, Open Court Publishing.

    Google Scholar 

  • CAUCHY, A.-L. (1815). Mémoire sur les fonctions qui ne peuvent obtenir que deux valeurs égales et de signes contraires par suite des transpositions opérées entre les variables qu’elles renferment [Note on functions that can only take two equal and opposite values.]. Journal de l’École Polytéchnique, 17 (10).

    Google Scholar 

  • CAUCHY, A.-L. (1823). Recherches sur l'equilibre et le mouvement intérieur des corps solides ou fluides, élastiques ou non-élastiques [Researches on the equilibrium and interior movement of solid, fluid, elastic or inelastic bodies]. Bulletin des sciences par la Société Philomatique de Paris, new ser., 1823, 9–13.

    Google Scholar 

  • CAYLEY, A. (1879). Function. In: Encyclopaedia Britannica, v. 9. 9th edn., Edinburgh, A. & C. Black, 818–824.

    Google Scholar 

  • CHAEL, E.P. and ANDERSON, D.L. (1982). Global Q estimates from antipodal Rayleigh waves. Journal of Geophysical Research, 87, B2840–B2850.

    Article  Google Scholar 

  • CHAMBERS, J.M.; CLEVELAND, W.S., KLEINER, B. and TUKEY, P.A. (1983). Graphical methods for data analysis. Belmont, CA , Wadsworth International.

    Google Scholar 

  • CHÁVEZ-GARCIA, F.J., RAMOS-MARTÍNEZ, J. and ROMERO-JIMÉNEZ, E. (1995). Surface-wave dispersion analysis in Mexico City. Bulletin of the Seismological Society of America, 85, 1116–1126.

    Google Scholar 

  • CHAYES, F. (1960). On correlation between variables of constant sum. Journal of Geophysical Research, 65, 4185–4193.

    Article  Google Scholar 

  • CHAYES, F. (1962). Numerical correlation and petrographic variation. Journal of Geology, 70, 440–452.

    Article  Google Scholar 

  • CHAYES, F. (1970). On locating field boundaries in simple phase diagrams by means of discriminant functions. In: ROMANOVA, M.A. and SARMANOV, O.V. (ed.). Topics in mathematical geology. New York, NY, Springer-Verlag, 85–92.

    Chapter  Google Scholar 

  • CHAYES, F. (ed.). (1983a). Igneous petrology database – Design and development. Computers & Geosciences, 9, 485–556.

    Google Scholar 

  • CHAYES, F. (1983b). A FORTRAN decoder and evaluator for use at operation time. Computers & Geosciences, 9, 537–549.

    Article  Google Scholar 

  • CHAYES, F. (1983c). Detecting nonrandom associations between proportions by tests of remaining-space variables. Journal of the International Association for Mathematical Geology, 15, 197–206.

    Article  Google Scholar 

  • CHAYES, F. and FAIRBAIRN, H.W. (1951). A test of the precision of thin-section analysis by point counter. American Mineralogist, 36, 704–712.

    Google Scholar 

  • CHAYES, F. and KRUSKAL, W. (1966). An approximate statistical test for correlations between proportions. Journal of Geology, 74, 692–702.

    Article  Google Scholar 

  • CHEENEY, R.F. (1983). Statistical methods in geology. London, George Allen & Unwin.

    Google Scholar 

  • CHEETHAM, A.H. and HAZEL, J.E. (1969). Binary (presence/absence) similarity coefficients. Journal of Palaeontology, 43, 1130–1136.

    Google Scholar 

  • CHEN, T.C. and ALSOP, L.E. (1979). Reflection and transmission of obliquely incident Rayleigh waves at a vertical discontinuity between two welded quarter-spaces. Bulletin of the Seismological Society of America, 69, 1409–1423.

    Google Scholar 

  • CHORK, C.Y. and ROUSSEEUW, P.J. (1992). Integrating a high-breakdown option into discriminant analysis in exploration geochemistry. Journal of Geochemical Exploration, 43, 191–203.

    Article  Google Scholar 

  • CHUNG, C.-J. F. (1989b). FORTRAN77 program for constructing and plotting confidence bands for the distribution and quantile functions for truncated data. Computers & Geosciences, 15, 625–643.

    Google Scholar 

  • CHUNG, C.-J. F. (1989c). FORTRAN77 program for constructing and plotting confidence bands for the distribution and quantile functions for randomly censored data. Computers & Geosciences, 15, 645–668.

    Google Scholar 

  • CLARK, R.G. (1989). REFORMATTER: A raster data-partition program. Computers & Geosciences, 15, 837–842.

    Article  Google Scholar 

  • CLARK, R.M. (1985). A FORTRAN program for constrained sequence-slotting based on minimum combined path length. Computers & Geosciences, 11, 605–617.

    Article  Google Scholar 

  • CLIFFORD, W.K. (1878–87). Elements of dynamic. An introduction to the study of motion and rest in solid and fluid bodies. 2 vols. London, Macmillan.

    Google Scholar 

  • CODD, E.F. (1970). A relational model of data for large shared data banks. Communications of the ACM, 13, 377–387.

    Article  Google Scholar 

  • COLLINS, W.D. (1923). Graphic representation of water analyses. Industrial and Engineering Chemistry, 15, 394.

    Article  Google Scholar 

  • COOLEY, J.W. (1990). How the FFT gained acceptance. In: NASH, S.G. (ed.). A history of scientific computing. New York, NY, ACM Press, 133–140.

    Google Scholar 

  • COOLEY, J.W. (1992). How the FFT gained acceptance. IEEE Transactions on Signal Processing, 9, 10–13.

    Article  Google Scholar 

  • COOLEY, J.W. and TUKEY, J.W. (1965). An algorithm for the machine computation of complex Fourier series. Mathematics of Computation, 19, 297–301.

    Article  Google Scholar 

  • COXETER, H.S.M. (1948). Regular polytopes. London, Methuen.

    Google Scholar 

  • CRACKNELL, M.J. and READING, A.M. (2014). Geological mapping using remote sensing data: A comparison of five machine learning algorithms, their response to variations in the spatial distribution of training data and the use of explicit spatial information. Computers & Geosciences, 63, 22–33.

    Article  Google Scholar 

  • CRAIN, I.K. (1976). Statistical analysis of geotectonics. In: MERRIAM, D.F. (ed.). Random processes in geology. Berlin, Springer-Verlag, 3–15.

    Chapter  Google Scholar 

  • CRUDEN, D.M. and KRAHN, J. (1973). A reexamination of the geology of the Frank Slide. Canadian Geotechnical Journal, 10, 581–591.

    Article  Google Scholar 

  • CURRIE, L.A. (1995). Nomenclature in evaluation of analytical methods including detection and quantification capabilities. Pure and Applied Chemistry, 67, 1699–1723.

    Article  Google Scholar 

  • CURRIE, L.A. (2004). Uncertainty in measurements close to detection limits: Detection and quantification capabilities. In: Quantifying uncertainty in nuclear analytical measurements. IAEA-TECDOC-1401. Vienna, International Atomic Energy Agency, 9–33.

    Google Scholar 

  • DALKEY, N. and HELMER, O. (1951). The use of experts for the estimation of bombing requirements – a project Delphi experiment. Report R-1283-PR [Classified], Santa Monica, CA, The Rand Corporation.

    Google Scholar 

  • DAMPNEY, C.N.G., PILKINGTON, G. and PRATT, D.A. (1985). ASEG-GDF: The ASEG standard for digital transfer of geophysical data. Exploration Geophysics, 16, 123–138.

    Article  Google Scholar 

  • DAMSLETH, E., HAGE, A. and VOLDEN, R. (1992). Maximum information at minimum cost: A North Sea field development study with an experimental design. Journal of Petroleum Technology, 44, 1350–1356.

    Article  Google Scholar 

  • DANIELL, P.J. (1946). Discussion on the symposium on autocorrelation in time series. Journal of the Royal Statistical Society (Supplement), 8, 88–90.

    Google Scholar 

  • DANIELSON, G.C. and LANCZOS, C. (1942). Some improvements in practical Fourier analysis and their application to X-ray scattering from liquids. Journal of the Franklin Institute, 233, 365–380, 435–452.

    Article  Google Scholar 

  • DARCY, H. (1856). Les Fontaines Publiques de la ville de Dijon [The public fountains of the town of Dijon]. Paris, Libraire des Corps Impériaux des Ponts et Chaussées et des Mines.

    Google Scholar 

  • DAVIDON, W.C. (1959). Variable metric method for minimization. AEC Research and Development Report ANL-5990, Lemont, IL, Argonne National Laboratory.

    Google Scholar 

  • DAVIDON, W.C. (1991). Variable metric method for minimization. SIAM Journal on Optimization, 1, 1–17.

    Article  Google Scholar 

  • DAVIES, T.A., BALDAUF, J.G. and KIDD, R.B. (1992). A simple spreadsheet routine for calculating depth/age relations. Computers & Geosciences, 18, 579–585.

    Article  Google Scholar 

  • DE BREMAECKER, J.C., DONOHO, P. and MICHEL, J.G. (1962). A direct digitizing seismograph. Bulletin of the Seismological Society of America, 52, 661–672.

    Google Scholar 

  • DE MORGAN, A. (1849). Trigonometry and double algebra. London, Walton and Maberly.

    Google Scholar 

  • DE WIJS, H.J. (1951). Statistics of ore distribution. Geologie en Mijnbouw, 30, 365–375.

    Google Scholar 

  • DEAN, W.C. (1958). Frequency analysis for gravity and magnetic interpretation. Geophysics, 23, 97–127.

    Article  Google Scholar 

  • DELAUNAY, B. (1934). Sur la sphère vide [On the hollow sphere]. Izvestia Akademii Nauk SSSR, Otdelenie Matematicheskikh i Estestvennykh Nauk, 7, 793–800.

    Google Scholar 

  • DEMPSTER, A.P. (1966). New methods for reasoning towards posterior distributions based on sample data. The Annals of Mathematical Statistics, 37, 355–374.

    Article  Google Scholar 

  • DEMPSTER, A.P. (1967). Upper and lower probabilities induced by a multivalued mapping. The Annals of Mathematical Statistics, 38, 325–339.

    Article  Google Scholar 

  • DICE, L. R. (1945). Measures of the Amount of Ecologic Association Between Species. Ecology, 26, 297–302.

    Article  Google Scholar 

  • DICKINSON, G.C. (1973). Statistical mapping and the presentation of statistics. London, Edward Arnold.

    Google Scholar 

  • DILLON, E.L. (1964). Electronic storage, retrieval, and processing of well data. AAPG Bulletin, 48, 1828–1836.

    Google Scholar 

  • DINIZ, P.S.R. (2013). Adaptive filtering: Algorithms and practical implementation. 4th edn., Boston, MS, Springer.

    Book  Google Scholar 

  • DIRAC, P.A.M. (1930). The principles of quantum mechanics. Oxford, Clarendon Press.

    Google Scholar 

  • DIRICHLET, G.L. (1829). Sur la convergence des séries trigonométriques qui servent à représenter une fonction arbitraire entre des limites données [On the convergence of trigonometric series which represent an arbitrary function between given limits]. Journal für die reine und angewandte Mathematik, 4 (June), 157–169.

    Article  Google Scholar 

  • DIRICHLET, G.L. (1850). Über die Reduction der positiven quadratischen Formen mit drei unbestimmten ganzen Zahlen [On the reduction of positive quadratic forms with three undetermined integers]. Journal für die reine und angewandte Mathematik, 40, 209–234.

    Article  Google Scholar 

  • DIVI, S.R. (1980). Deposit modeling and resource estimation of stratiform massive sulphide deposits in Canada. Computers & Geosciences, 6, 163–174.

    Article  Google Scholar 

  • DIXON, W.J. (1953). Processing data for outliers. Biometrics, 9, 74–89.

    Article  Google Scholar 

  • DORN, G.A., COLE, M.J. and TUBMAN, K.M. (1995). Visualization in 3-D seismic interpretation. The Leading Edge, 14, 1045–1050.

    Article  Google Scholar 

  • DORSETT, D. and WEBSTER, J.T. (1983). Guidelines for variable selection problems when dummy variables are used. The American Statistician, 37, 337–339.

    Google Scholar 

  • DRAGOSET, W. (2005). A historical reflection on reflections. The Leading Edge , 24 [supplement], S46–S71.

    Google Scholar 

  • DREW, L.J. (1990). Oil and gas forecasting. Oxford, Oxford University Press.

    Google Scholar 

  • DREW, L.J., SCHUENEMEYER, J.H. and ROOT, D.H. (1980). Petroleum-resource appraisal and discovery rate forecasting in partially explored regions – An application to the Denver Basin. United States Geological Survey Professional Paper 1138-A. Washington, DC, United States Government Printing Office.

    Google Scholar 

  • ELKINS, T.A. (1951). The second derivative method of gravity interpretation. Geophysics, 16, 29–50.

    Article  Google Scholar 

  • ELLIOTT, D. (1970). Determination of finite strain and initial shape from deformed elliptical objects. Bulletin of the Geological Society of America, 81, 2221–2236.

    Article  Google Scholar 

  • ELLIOTT, D. (1972). Deformation paths in structural geology. Bulletin of the Geological Society of America, 83, 2621–2638.

    Article  Google Scholar 

  • ELLIS, J., HARRIS, D.P. and VAN WIE, N. (1975). A subjective probability appraisal of uranium resources in the state of New Mexico. Report GJO-110(76), Grand Junction, CO, United States Energy Research and Development Administration.

    Google Scholar 

  • EVANS, D.G. and JONES, S.M. (1987). Detecting Voronoï (area-of-influence) polygons. Mathematical Geology, 19, 523–537.

    Article  Google Scholar 

  • EVANS, J.R. (1982). Running median filters and a general despiker. Bulletin of the Seismological Society of America, 72, 331–338.

    Google Scholar 

  • EVERITT, B.S. (2002). The Cambridge dictionary of statistics. 2nd edn., Cambridge, Cambridge University Press.

    Google Scholar 

  • FAN, J., HAN, Q., WANG, Z. and DAI, N. (2015). The south-pointing needle and compass. In: LU, Y. (ed.). A History of Chinese Science and Technology. Vol. 2. Heidelberg, Springer-Verlag, 270–300.

    Google Scholar 

  • FEDEROV, E.S. (1902). Zonale Verhältnisse des Berylls und der Krystalle des hypohexagonalen Typus überhaupt. Zeitschrift für Kristallographie und Mineralogie, 35, 75–148.

    Google Scholar 

  • FEIGL, F. (1923). Tüpfel- und Farbreaktionen als mikro-chemische Arbeitsmethoden [Spot and colour reactions as microchemical tools]. Mikrochemie, 1, 4–20.

    Article  Google Scholar 

  • FERBER, R.-G. (1984). Stabilization of normal-incidence seismogram inversion removing the noise-induced bias. Geophysical Prospecting, 33, 212–233.

    Article  Google Scholar 

  • FIELLER, N.R., FLENLEY, E.C. and OLBRICHT, W. (1992). Statistics of particle size data. Applied Statistics, 41, 127–146.

    Article  Google Scholar 

  • FISHER, N.I., LEWIS, T. and EMBLETON, B.J.J. (1993). Statistical analysis of spherical data. Cambridge, Cambridge University Press.

    Google Scholar 

  • FISHER, R.A. (1925a). Statistical methods for research workers. Edinburgh, Oliver and Boyd.

    Google Scholar 

  • FISHER, R.A. (1935). The design of experiments. London, Oliver & Boyd.

    Google Scholar 

  • FISHER, R.A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7, 179–188.

    Article  Google Scholar 

  • FLETCHER, R. and POWELL, M.J.D. (1963). A rapidly convergent descent method for minimization. Computer Journal, 6, 163–168.

    Article  Google Scholar 

  • FLINN, D. (1962). On folding during three-dimensional progressive deformation. Quarterly Journal of the Geological Society, London, 118, 385–433.

    Article  Google Scholar 

  • FORGOTSON, J.M. (1960). Review and classification of quantitative mapping techniques. Bulletin of the American Association of Petroleum Geologists, 44, 83–100.

    Google Scholar 

  • FRANK, A.U. (1992). Spatial concepts, geometric data models, and geometric data structures. Computers & Geosciences, 18, 409–417.

    Article  Google Scholar 

  • FRANK, H.R. and DOTY, E.N. (1953). Signal-to-noise ratio improvements by filtering and mixing. Geophysics, 18, 587–604.

    Article  Google Scholar 

  • FREEZE, R.A. (1994). Henry Darcy and the fountains of Dijon. Ground Water, 32, 23–30.

    Article  Google Scholar 

  • GAA’L, G., KOISTINEN, E., LEHTONEN, M. and TONTTI, M. (1978). Deposit modeling of a nickel belt in Finland. Journal of the International Association for Mathematical Geology, 10, 543–554.

    Article  Google Scholar 

  • GAUSS, C.F. (1813 [1867]). Theoria attractionis corporum sphaeroidicorum ellipticorum homogeneorum: methodo novo tractata [A new method to determine the attraction of an elliptical spheroidal body]. In: Carl Friedrich Gauss Werke herausgegeben von der Königliche Gesellschaft der wissenschaften zu Gottingen. Göttingen, W.F. Kaestner. v. V, 1–22.

    Google Scholar 

  • GAUSS, C.F. (1830). Principia generalia theoriae figurae fluidorum in statu aequilibrii [The principles of general theories concerning fluids in a state of equilibrium]. Göttingen, Dieterichschen Buchhandlung.

    Google Scholar 

  • GIBBS, J.W. (1881–84). Elements of vector analysis: arranged for the use of students in physics. 2 vols. New Haven, CO, Privately printed [reprinted in: Bumstead, H.A. and Van Naafe, R.G. (eds.). 1906. The scientific papers of J. Willard Gibbs. Longmans, Green & Co., London].

    Google Scholar 

  • GILBERT, E.N. (1962). Random subdivisions of space into crystals. The Annals of Mathematical Statistics, 33, 958–972.

    Article  Google Scholar 

  • GOODIN, E.V. (1968). Re-integration: Synthesis. EDP in geology. Gulf Coast Association of Geological Societies Transactions, 18, 357–372.

    Google Scholar 

  • GOOGLE RESEARCH (2012). Google Books Ngram Viewer (v. 2.0) [online: https://books.google.com/ ngrams/info].

  • GORDON, T. and MARTIN, G. (1974). File management systems and geological field data. In: Computer use in projects of the Geological Survey of Canada. Geological Survey of Canada Paper 74-60. Ottawa, Geological Survey of Canada, 23–28.

    Google Scholar 

  • GREEN, G. (1828). An essay on the application of mathematical analysis to the theories of electricity and magnetism. Nottingham, T. Wheelhouse.

    Google Scholar 

  • GUBBINS, D. (2004). Time series analysis and inverse theory for geophysicists. Cambridge, Cambridge University Press.

    Book  Google Scholar 

  • GUEST, T. and CURTIS, A. (2009). Iteratively constructive sequential design of experiments and surveys with nonlinear parameter-data relationships. Journal of Geophysical Research. Solid Earth, 114 (B4), 2156–2202.

    Google Scholar 

  • GUNDUZ, O. and ARAL, M.M. (2005). A Dirac Delta function notation for source/sink terms in groundwater flow. Journal of Hydrological Engineering, 10, 420–427.

    Article  Google Scholar 

  • HAIGH, T. (2009). How data got its base: Information storage software in the 1950s and 1960s. IEEE Annals of the History of Computing, 31 (4), 6–25.

    Article  Google Scholar 

  • HALL, W.A. (1956). An analytical derivation of the Darcy equation. Eos, Transactions of the American Geophysical Union, 37, 185–188.

    Article  Google Scholar 

  • HAMILTON, W.R. (1837). On differences and differentials of functions of zero. Transactions of the Royal Irish Academy, 17, 235–236

    Google Scholar 

  • HANSEN, M.V., BOTBOL, J.M., ECKSTRAND, O.R., GAA’L, G., MAIGNAN, M., PANTASIS, T. and SINDING-LARSEN, R. (1978). Workshop on deposit modeling. Journal of the International Association for Mathematical Geology, 10, 519–532.

    Article  Google Scholar 

  • HARBAUGH, J.W. (1972). An integrated oil-exploration decision system : an outline of the Kansas Oil Exploration System Plan. Kansas Geological Survey Technical Report, Lawrence, KS, University of Kansas.

    Google Scholar 

  • HARBAUGH, J.W. (1977). Integrated oil exploration decision systems. Journal of the International Association for Mathematical Geology, 9, 441–450.

    Article  Google Scholar 

  • HARBAUGH, J.W., DOVETON, J.H. and DAVIS, J.C. (1977). Probability methods in oil exploration. New York, NY, Wiley-Interscience.

    Google Scholar 

  • HARDING, J.E. (1920). Calculation of ore tonnage and grade from drill-hole samples. Transactions of the American Institute of Mining Engineers, 66, 117–126.

    Google Scholar 

  • HARDING, J.E. (1923). How to calculate tonnage and grade of an ore-body. Engineering and Mining Journal-Press, 116, 445–448.

    Google Scholar 

  • HARRADON, H.D. (1943b). Some early contributions to the history of geomagnetism. IV. Terrestrial Magnetism and Atmospheric Electricity, 48, 127–130.

    Article  Google Scholar 

  • HARRIS, D.P. (1984). Mineral resources appraisal. Oxford, Clarendon Press.

    Google Scholar 

  • HARRIS, F.J. (1978). On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the IEEE, 66, 51–83.

    Google Scholar 

  • HARVEY, A.P. and DIMENT, J.A., (eds.). (1979). Geoscience information. A state-of-the-art review. In: Proceedings of the 1st International Conference on Geological Information. London, 10–12 April, 1978, The Broad Oak Press, Heathfield, Sussex.

    Google Scholar 

  • HASTINGS, N.A.J. and PEACOCK, J.B. (1974). Statistical distributions. New York, NY, John Wiley & Sons.

    Google Scholar 

  • HATTINGH, M. (1988). A new data adaptive filtering program to remove noise from geophysical time- or space-series data. Computers & Geosciences, 14, 467–480.

    Article  Google Scholar 

  • HATTINGH, M. (1989). The use of data-adaptive filtering for noise removal on magnetotelluric data. Physics of the Earth and Planetary Interiors, 53, 239–254.

    Article  Google Scholar 

  • HATTINGH, M. (1990). Robust, data‐adaptive filtering algorithms for geophysical noise problems. In: SEG Technical Program Expanded Abstracts 1990. Tulsa, OK, Society of Exploration Geophysicists, 1715–1718.

    Chapter  Google Scholar 

  • HAWKINS, D.M. (1984). A method for stratigraphic correlation of several boreholes. Journal of the International Association for Mathematical Geology, 16, 393–406.

    Article  Google Scholar 

  • HAWKINS, D.M. and ten KROODEN, J.A. (1979). Zonation of sequences of heteroscedastic multivariate data. Computers & Geosciences, 5, 189–194.

    Article  Google Scholar 

  • HEAVISIDE, O. ( 1892b). Electrical papers. v. 1. London, Macmillan.

    Google Scholar 

  • HEIDEMAN, M.T., JOHNSON, D.H. and BURRUS, C.S. (1984). Gauss and the history of the FFT. IEEE Transactions on Acoustics, Speech and Signal Processing, 1, 14–21.

    Google Scholar 

  • HELSEL, D.R. (2005). Nondetects and data analysis. Hoboken, NJ, Wiley-Interscience.

    Google Scholar 

  • HENDERSON, R.G. (1960). A comprehensive system of automatic computation in magnetic and gravity interpretation. Geophysics, 25, 569–585.

    Article  Google Scholar 

  • HERTZ, H. (1887). Ueber sehr schnelle electrische Schwingungen [On very rapid electric oscillations]. Wiedemann’s Annalen der Physik und Chemie, neue Fassung, 31, 421–448.

    Article  Google Scholar 

  • HERTZ, H. (1893). Electric waves. Being researches on the propagation of electric action with finite velocity through space [translated by D.E. JONES]. London, Macmillan.

    Google Scholar 

  • HESSE, M.A. (2012). A finite volume method for trace element diffusion and partitioning during crystal growth. Computers & Geosciences, 46, 96–106.

    Article  Google Scholar 

  • HISCOCK, K.M. and BENSE, V.F. (2014). Hydrogeology. Principles and practice. 2nd edn., Hoboken, NJ, Wiley-Blackwell.

    Google Scholar 

  • HOBBS, B.E., MEANS, W.D. and WILLIAMS, P.F. (1976). An outline of structural geology. New York, NY, John Wiley & Sons.

    Google Scholar 

  • HORTON, R.E. (1945). Erosional development of streams and their drainage basins: hydrophysical approach to quantitative geomorphology. Bulletin of the Geological Society of America, 56, 275–370.

    Article  Google Scholar 

  • HOTELLING, H. (1930). The consistency and ultimate distribution of optimum statistics. Transactions of the American Mathematical Society, 32, 847–859.

    Article  Google Scholar 

  • HOULISTON, D.J., LAUGHLIN, J., WAUGH, G. and RIDDICK, J.C. (1983). A high-speed data logger for geomagnetic applications. Computers & Geosciences, 9, 471–480.

    Article  Google Scholar 

  • HOWARTH, R.J. (1971a). An empirical discriminant method applied to sedimentary rock classification. Journal of the International Association for Mathematical Geology, 3, 51–60.

    Article  Google Scholar 

  • HOWARTH, R.J. (1973b). Preliminary assessment of a nonlinear mapping algorithm in a geological context. Journal of the International Association for Mathematical Geology, 5, 39–57.

    Article  Google Scholar 

  • HOWARTH, R.J. (1984). Statistical applications in geochemical prospecting: A survey of recent methods. Journal of Geochemical Exploration, 21, 41–61.

    Article  Google Scholar 

  • HOWARTH, R.J. (1996a). Sources for the history of the ternary diagram. British Journal for the History of Science, 29, 337–356.

    Article  Google Scholar 

  • HOWARTH, R.J. (1996b). History of the stereographic projection and its early use in geology. Terra Nova, 8, 499–513.

    Article  Google Scholar 

  • HOWARTH, R.J. (1998a). Graphical methods in mineralogy and igneous petrology (1800–1935). In: FRITSCHER, B. and HENDERSON, F. (eds.). Toward a history of mineralogy, petrology and geochemistry. Proceedings of the International Symposium on the History of Mineralogy, Petrology and Geochemistry, Munich, March 8–9, 1996. Studien zur Geschichte der Mathematik und der Naturwissenschaften 23. Munich, Institut für Geschichte der Naturwissenschaften, 281–307.

    Google Scholar 

  • HOWARTH, R.J. (1999). Measurement, portrayal and analysis of orientation data in structural geology (1670–1967). Proceedings of the Geologists’ Association, 110, 273–309.

    Google Scholar 

  • HOWARTH, R.J. (2001b). Measurement, portrayal and analysis of orientation data in structural geology (1670–1967): Corrections and additions. Proceedings of the Geologists' Association, 112, 187–190.

    Google Scholar 

  • HOWARTH, R.J. (2009). Making the invisible visible: Early data display in the geological sciences. Open University Geological Society Journal, 29 (2), 70–80.

    Google Scholar 

  • HOWARTH, R.J. and GARRETT, R.G. (2010). Statistical analysis and data display at the Geochemical Prospecting Research Centre and Applied Geochemistry Research Group, Imperial College, London. Geochemistry: Exploration, Environment, Analysis, 10, 289–315.

    Google Scholar 

  • HRUŠKA, J. (1976). Current data-management systems: Problems of application in economic geology. Computers & Geosciences, 2, 299–304.

    Article  Google Scholar 

  • HUBAUX, A. (1969). Archival files of geological data. Journal of the International Association for Mathematical Geology, 1, 41–52.

    Article  Google Scholar 

  • HUBBERT, M.K. (1987). Darcy’s Law: Its physical theory and application to entrapment of oil and gas. In: LANDA, E.R. and INCE, S. (eds.). The history of hydrology. History of Geophysics, v. 3. Washington, DC, American Geophysical Union, 1–26.

    Google Scholar 

  • HUENI, A., MALTHUS, T., KNEUBUEHLER, M. and SCHAEPMAN, M. (2011). Data exchange between distributed spectral databases. Computers & Geosciences, 37, 861–873.

    Article  Google Scholar 

  • HUMBOLDT, A. von. (1811). Atlas géographique et physique du royaume de la Nouvelle-Espagne [Geographical and physical atlas of New Spain]. Paris, F. Schoell.

    Google Scholar 

  • IANÂS, M. and ZORILESCU, D. (1968). Solution of the direct problem in gravimetry by means of the Monte Carlo method. Geoexploration, 6, 245–249.

    Article  Google Scholar 

  • IVANHOE, L.F. (1956). Integration of geological data on seismic sections. AAPG Bulletin, 40, 1016–1023.

    Google Scholar 

  • JEFFREYS, H. (1931). Damping in bodily seismic waves. Monthly Notices of the Royal Astronomical Society, London. Geophysical Supplement, 2, 318–323.

    Article  Google Scholar 

  • JIN, D.J. and COLBY, R.J. (1991). A BASIC program to compute seismic surface-wave group-velocity dispersion curves. Computers & Geosciences, 17, 777–799.

    Article  Google Scholar 

  • JOHNSON, M.E., MONASH, E.A. and WATERMAN, M.S. (1979). Modeling and optimizing a gas-water reservoir: Enhanced recovery with waterflooding. Journal of the International Association for Mathematical Geology, 11, 63–74.

    Article  Google Scholar 

  • JOHNSON, N.L., KEMP, A.W. and KOTZ, S. (2005). Univariate discrete distributions. 3rd edn., Hoboken, NJ, Wiley-Interscience.

    Book  Google Scholar 

  • JONES, T.A. (1977). A computer method to calculate the convolution of statistical distributions. Journal of the International Association for Mathematical Geology, 9, 635–648.

    Article  Google Scholar 

  • JOURNEL, A.G. and HUIJBREGTS, C. J. (1978). Mining geostatistics. London, Academic Press.

    Google Scholar 

  • KACHNIC, M. and SADURSKI, A. (2005). Probabilistic evaluation of the extent of the unconfined aquifer. Przegląd Geologiczny, 53, 930–934.

    Google Scholar 

  • KAESLER, R.L. and MULVANY, P.S. (1976). FORTRAN IV program to compute diversity indices from information theory. Computers & Geosciences, 2, 509–514.

    Article  Google Scholar 

  • KAISER, H. (1947). Die Berechnung der Nachweisempfindlichkeit [The calculation of detection sensitivity]. Spectrochimica Acta, 3, 40–67.

    Article  Google Scholar 

  • KAISER, H. (1965). Zur Problem der Nachweisgrenze [On the problem of the limit of detection]. Zeitschrift für analytische Chemie, 209, 1–18.

    Article  Google Scholar 

  • KAISER, H. and SPECKER, H. (1956). Berwertung und vergleich von Analysenverfahren [Evaluation and comparison of analytical methods]. Zeitschrift für analytische Chemie, 149, 46–66.

    Article  Google Scholar 

  • KANTARDZIC, M. (2011). Data mining. Concepts, models, methods and algorithms. 2nd edn., Hoboken, NJ, John Wiley & Sons.

    Google Scholar 

  • KASENOW, M. (2001). Applied ground-water hydrology and well hydraulics. 2nd edn., Highlands Ranch, CO, Water Resources Publications.

    Google Scholar 

  • KENDALL, M.G. (1949b). The estimation of parameters in linear autoregressive time series. Econometrica: Journal of the Econometric Society, 17 (Supplement: report of the Washington meeting), 44–57.

    Google Scholar 

  • KENDALL, M.G. and BUCKLAND, W.R. (1982). A dictionary of statistical terms. 4th edn., London, Longman.

    Google Scholar 

  • KETCHAM, R.A. and CATLSON, W.D. (2001). Acquisition, optimization and interpretation of X-ray computed tomographic imagery: applications to the earth sciences. Computers & Geosciences, 27, 381–400.

    Article  Google Scholar 

  • KIDNER, D.B. and SMITH, D.H. (1992). Compression of digital elevation models by Huffman coding. Computers & Geosciences, 18, 1013–1034.

    Article  Google Scholar 

  • KILBURN, T. (1949). The University of Manchester universal high-speed digital computing machine. Nature, 164, 684–687.

    Article  Google Scholar 

  • KILIAN, J., HAALA, N. and ENGLICH, M. (1996). Capture and evaluation of airborne laser scanner data. International Archives of Photogrammetry and Remote Sensing, 31, 383–388.

    Google Scholar 

  • KING, T. (1996). Quantifying nonlinearity and geometry in time series of climate. Quaternary Science Reviews, 15, 247–266.

    Article  Google Scholar 

  • KLEIN, F. (1888). Lectures on the ikosahedron and the solution of equations of the fifth degree. London, Trübner.

    Google Scholar 

  • KLEINER, B. and GRAEDEL, T.E. (1980). Exploratory data analysis in the geophysical sciences. Reviews of Geophysics, 18, 699–717.

    Article  Google Scholar 

  • KOCH, G.S. and LINK, R.F. (1970–71). Statistical analysis of geological data. v. 2. New York, NY, John Wiley & Sons.

    Google Scholar 

  • KOCH, G.S. and LINK, R.F. (1971). The coefficient of variation – a guide to the sampling of ore deposits. Economic Geology, 66, 293–301.

    Article  Google Scholar 

  • KOENIG, H.D. (1933). Calculation of characteristic values for periodic potentials. Physics Review, 44, 657–665.

    Article  Google Scholar 

  • KRIGE, D.G. (1951). A statistical approach to some basic mine valuation problems on the Witwatersrand. Journal of the Chemical Metallurgical and Mining Society of South Africa, 52, 119–139.

    Google Scholar 

  • KRIGE, D.G. (1966). A study of gold and uranium distribution in the Klerkdorp goldfield. Geoexploration, 4, 43–53.

    Article  Google Scholar 

  • KRINITZSKY, E.L. (1993). Earthquake probability in engineering – Part 1: The use and misuse of expert opinion. Engineering Geology, 33, 257–288.

    Article  Google Scholar 

  • KRUMBEIN, W.C. (1942). Settling velocity and flume behaviour of non-spherical particles. Transactions of the American Geophysical Union, 23, 621–633.

    Article  Google Scholar 

  • KRUMBEIN, W.C. (1943). Fundamental attributes of sedimentary particles. In: HOWE, J.W., ROUSE, H. and HOWE, J.W. (eds.). Proceedings of the Second Hydraulics Conference: June 1–4, 1942. University of Iowa Studies in Engineering 27. Iowa City, IA, University of Iowa, 318–331.

    Google Scholar 

  • KRUMBEIN, W.C. (1953a). Statistical designs for sampling beach sand. Transactions of the American Geophysical Union, 34, 857–868.

    Article  Google Scholar 

  • KRUMBEIN, W.C. (1953b). Statistical problems of sample size and spacing on Lake Michigan (Ill.) beaches. In: JOHNSON, J.W. (ed.). Proceedings of the Fourth Conference on Coastal Engineering, October 1953, Chicago, Illinois. Berkeley, CA, Council on Wave Research, Engineering Field Station, University of California, 147–162.

    Google Scholar 

  • KRUMBEIN, W.C. (1959b). Trend surface analysis of contour-type maps with irregular control-point spacing. Journal of Geophysical Research, 64,823–834.

    Article  Google Scholar 

  • KRUMBEIN, W.C. and GRAYBILL, F.A. (1965). An introduction to statistical models in geology. New York, NY, McGraw-Hill.

    Google Scholar 

  • KRUMBEIN, W.C. and MILLER, R.L. (1953). Design of experiments for statistical analysis of geological data. Journal of Geology, 61, 510–532.

    Article  Google Scholar 

  • LACHENBRUCH, A.H. (1962). Mechanics of thermal contraction cracks and ice-wedge polygons in permafrost. Geological Society of America, Special Paper, 70, 1–66.

    Article  Google Scholar 

  • LANDGREBE, T.C.W., MERDITH, A., DUTKIEWICZ, A. and MÜLLER, R.D. (2013). Relationships between palaeogeography and opal occurrence in Australia: A data-mining approach. Computers & Geosciences, 56, 76–82.

    Article  Google Scholar 

  • LAPLACE, P.-S. (1781). Mémoire sur les probabilités [Memoir on probabilities.]. Memoires de l’Académie Royale des Sciences, Paris, 1778, 227–332.

    Google Scholar 

  • Le BAS, M.J. and DURHAM, J. (1989). Scientific communication of geochemical data and the use of computer databases. Journal of Documentation, 45, 124–138.

    Article  Google Scholar 

  • LEAKE, B.E., HENDRY, G.L., PLANT, G., AUCOTT, G. and HOWARTH, R.J. (1969). The chemical analysis of rock powders by automatic X-ray fluoresence. Chemical Geology, 5, 7–86.

    Article  Google Scholar 

  • LEE, S., SUH, J. and PARK, H.-D. (2013). Smart Compass-Clinometer: A smartphone application for easy and rapid geological site investigation. Computers & Geosciences, 61, 32–42.

    Article  Google Scholar 

  • LEET, L.D. (1950). Earth waves. Cambridge, MS, Harvard University Press.

    Book  Google Scholar 

  • LEIBNIZ, G.W. (1684). Nova methodus pro maximis et minimis, itemque tangentibus, quae nec fractas nec irrationales quantitates moratur, et singulare pro illis calculi genus [A new method for maxima and minima as well as tangents, which is neither impeded by fractional nor irrational quantities, and a remarkable type of calculus for them]. Acta Eruditorum, 3, 467–473 [partial English translation in STRUIK (1986), 271–280; see also PARMENTIER (1995), 96–117].

    Google Scholar 

  • LEIBNIZ, G.W. (1686). De geometria recondita et analysi indivisibilium atque infinitorum [On a hidden geometry and analysis of indivisibles and infinites]. Acta Eruditorum, 6, 292–300 [French translation in PARMENTIER (1995), 126–143].

    Google Scholar 

  • LENNES, N.J. (1911). Theorems on the simple finite polygon and polyhedron. American Journal of Mathematics, 33, 37–62.

    Article  Google Scholar 

  • LI, Z., ZHU, Q. and GOLD, C. (2005). Digital terrain modeling: principles and methodology. Boca Raton, FL, CRC Press.

    Google Scholar 

  • LINDSEY, J.P. (1960). Elimination of seismic ghost reflections by means of a linear filter. Geophysics, 25, 130–140.

    Article  Google Scholar 

  • LINDSTONE, H.A. and TUROFF, M. (eds.) (1975). The Delphi method – techniques and applications. Reading, MS, Addison-Wesley.

    Google Scholar 

  • LIU, X., ZHANG, C., LIU, Q. and BIRKHOLZER, J. (2009). Multiple-point statistical prediction on fracture networks at Yucca Mountain. Environmental Geology, 57, 1361–1370.

    Article  Google Scholar 

  • LIU, Y.-C. and CHEN, C.-S. (2007). A new approach for application of rock mass classification on rock slope stability assessment. Engineering Geology, 89, 129–143.

    Article  Google Scholar 

  • LLOYD, J.W. (1965). The hydrochemistry of the aquifers of north-eastern Jordan. Journal of Hydrology, 3, 319–330.

    Article  Google Scholar 

  • LOHMANN, G.P. (1983). Eigenshape analysis of microfossils: A general morphometric procedure for describing changes in shape. Journal of the International Association for Mathematical Geology, 15, 659–672.

    Article  Google Scholar 

  • LOUDON, T.V. (1964). Computer analysis of orientation data in structural geology. Technical Report No. 13 of ONR [Office of Naval Research] Task No. 389-135 Contract Nonr 1228(26), Evanston, IL, Geography Branch, Northwestern University [online: http://nora.nerc.ac.uk/19528/1/ONRrep13.pdf].

  • LOVE, A.E.H. (1906). A treatise on the mathematical theory of elasticity. 2nd edn., Cambridge, Cambridge University Press.

    Google Scholar 

  • LOVEJOY, S. and SCHERTZER, D. (2007). Scaling and multifractal fields in the solid earth and topography. Nonlinear Processes in Geophysics, 14, 465–502.

    Article  Google Scholar 

  • LYMAN, B.S. (1870). General report on the Punjab oil lands. Lahore, Public Works Department, Government of India.

    Google Scholar 

  • MACAGNO, E.O. (1971). Historico-critical review of dimensional analysis. Journal of the Franklin Institute, 292, 391–402.

    Article  Google Scholar 

  • MACELWANE, J.B. 1932. Introduction to theoretical seismology. Part 1. Geodynamics. Saint Louis, MO, St. Louis University.

    Google Scholar 

  • MAGURRAN, A.E. (2004). Measuring biological diversity. Oxford, Blackwell Science.

    Google Scholar 

  • MANDELBROT, B. (1975a). Les objects fractales: Forme, hasard, et dimension [Fractals: Form, chance and dimension]. Paris, Flammarion.

    Google Scholar 

  • MANDELBROT, B. (1977). Fractals: Form chance and dimension. San Francisco, CA, W.H. Freeman.

    Google Scholar 

  • MANDELBROT, B.B. (1982). The fractal geometry of nature. San Francisco, CA, W.H. Freeman.

    Google Scholar 

  • MAO, W.J. and GUBBINS, D. (1995). Simultaneous determination of time delays and stacking weights in seismic array beamforming. Geophysics, 80, 491–502.

    Article  Google Scholar 

  • MARKETOS, G., THEODORIDIS, Y. and KALOGERAS, I.S. (2008). Seismological data warehousing and mining: a survey. International Journal of Data Warehousing and Mining, 4, 1–16.

    Article  Google Scholar 

  • MARTIN, G. and GORDON, T. (1977). Data-base management systems – Data models and query languages. Computers & Geosciences, 3, 387–393.

    Article  Google Scholar 

  • MARTIN, W.H. (1929). Decibel – The name for the transmission unit. Bell System Technical Journal, 8, 1–2.

    Article  Google Scholar 

  • MATHERON, G. (1960). Krigeage d’un panneau rectangulaire par sa périphérie [Kriging of a rectangular panel via its periphery]. Note géostatistique No. 28, Fontainebleau, Centre de Géostatistique, École des Mines de Paris.

    Google Scholar 

  • MATHERON, G. (1962–63). Traité de géostatistique appliquée [Treatise on applied geostatistics]. Mémoires du Bureau des Recherches Géologiques Minières, 14. Paris, Technip.

    Google Scholar 

  • MATHERON, G. (1965). Les variables régionalisées et leur estimation [Regionalised variables and their estimation]. Paris, Masson.

    Google Scholar 

  • MATHERON, G. (1973a). Le krigage disjonctif [Disjunctive kriging]. Note interne N-360, Fontainebleau, Centre de Géostatistique, École des Mines de Paris.

    Google Scholar 

  • MATHERON, G. (1976). Le choix des modèles en géostatistique [The choice of models in geostatistics]. In: GUARASCIO, M., DAVID, M. and HUIJBREGTS, C. (eds.). Advanced geostatistics in the mining industry, Advanced geostatistics in the mining industry. Proceedings of the NATO Advanced Study Institute held at the Istituto di Geologia Applicata of the University of Rome, Italy, 13–25 October 1975. Dordrecht, Reidel, 11–27.

    Chapter  Google Scholar 

  • MATHON, B.R., OZBEK, M.M. and PINDER, G.F. (2010). Dempster-Shafer Theory applied to uncertainty surrounding permeability. Mathematical Geosciences, 42, 293–307.

    Article  Google Scholar 

  • MAYNE, W.H. (1956). Seismic surveying. United States Patent Office, Patent number 2,732,906.

    Google Scholar 

  • MAYNE, W.H. (1962). Common-reflection-point horizontal data-stacking techniques. Geophysics, 27, 927–938.

    Article  Google Scholar 

  • McCARN, D.W. and CARR, J.R. (1992). Influence of numerical precision and equation solution algorithm on computation of kriging weights. Computers & Geosciences, 18, 1127–1167.

    Article  Google Scholar 

  • McCRACKEN, D.D. (1963). A guide to Fortran programming. New York, NY, John Wiley & Sons.

    Google Scholar 

  • McEWEN, R.B. and JACKNOW, H.R. (1980). USGS Digital cartographic data base. In: AANGEENBRUG, R.T., (ed.). Auto Carto IV. Proceedings of the International Symposium on Cartography and Computing: Applications in Health and Environment, Reston, VA, November 4–8, 1979, Gaithersburg, MD. American Congress on Surveying and Mapping, 225–235.

    Google Scholar 

  • MERRIAM, D.F. (1974). Resource and environmental data analysis. In: Earth Science in the Public Service. A symposium presented during dedication ceremonies, United States Geological Survey National Center, Reston, Virginia, July 10–13, 1974. United States Geological Survey Professional Paper 921, Washington, DC, United States Government Printing Office. 37–45.

    Google Scholar 

  • METROPOLIS, N. and ULAM, S. (1949). The Monte Carlo method. Journal of the American Statistical Association, 44, 335–341.

    Article  Google Scholar 

  • MILLER, R.L. and KAHN, J.S. (1962). Statistical analysis in the geological sciences. New York, John Wiley & Sons.

    Google Scholar 

  • MILLER, W.F. (1963). The Caltech digital seismograph. Journal of Geophysical Research, 68, 841–847.

    Article  Google Scholar 

  • MINKOWSKI, H. (1901). Ueber die begriffe, länge, oberfläche und vlumen [On the terms length, surface and volume.]. Jahresbericht der Deutschen Mathematikervereinigung, 9, 115–121.

    Google Scholar 

  • MISSALLATI, A., PRELAT, A.E. and LYON, R.J.P. (1979). Simultaneous use of geological, geophysical, and LANDSAT digital data in uranium exploration. Remote Sensing of Environment, 8, 189–210.

    Article  Google Scholar 

  • MONTGOMERY, D.C. (1991b). Design and analysis of experiments. New York, NY, John Wiley & Sons.

    Google Scholar 

  • MORGAN, C.O., McNELLIS, J.M. and LOWELL, B.H. (1969). Computer applications in hydrology in Kansas. In: ZELLER, E.D. (ed.). Short Papers on Research 1968. Kansas Geological Survey Bulletin 194, Part 1. Lawrence, KS, Kansas Geological Survey, 3–7.

    Google Scholar 

  • MUKHOPADHYAY, A., SAHA, D. and SAHA, A.K. (1994). Development of a groundwater-management model using the dBASE facility. Computers & Geosciences, 20, 1065–1102.

    Article  Google Scholar 

  • NÁDAI, A. (1927). Der bildsame Zustand der Werkstoffe [The plastic state of materials]. Berlin, Springer-Verlag.

    Google Scholar 

  • NÁDAI, A. (1931). Plasticity. A mechanics of the plastic state of matter [translated by A.M. WAHL]. Engineering Societies Monograph. New York, NY, McGraw-Hill.

    Google Scholar 

  • NEEDHAM, J. (1959). Science and Civilisation in China: Volume 3, Mathematics and the Sciences of the Heavens and the Earth. Cambridge, Cambridge University Press.

    Google Scholar 

  • NEIDELL, N.S. (1972). Deterministic deconvolution operators – 3 point or 4 point? Geophysics, 37, 1039–1042.

    Article  Google Scholar 

  • NETTLETON, L.L. (1940). Geophysical prospecting for oil. New York, McGraw-Hill Book Company.

    Google Scholar 

  • NOWELL, D.A.G., JONES, C.M. and PYLE, D.M. (2006). Episodic Quaternary volcanism in France and Germany. Journal of Quaternary Science, 21, 645–675.

    Article  Google Scholar 

  • OHM, G.S. (1839). Bemerkungen über Combinationstöne und Stosse [Remarks on combination tones and pulses]. Poggendorff’s Annalen der Physik und Chemie, 47, 463–466.

    Article  Google Scholar 

  • ONCESCU, M.C., RIZESCU, M. and BONJER, K.-P. (1996). SAPS – An automated and networked seismological acquisition and processing system. Computers & Geosciences, 22, 89–97.

    Article  Google Scholar 

  • ONG, C.G., DAHLGREN, R.A. and TANJI, K.K. (1992). X-ray diffraction pattern reduction and computer-rendered line peak spectra for mineral analysis. Computers & Geosciences, 18, 517–529.

    Article  Google Scholar 

  • ORD, J.K. (1972). Families of frequency distributions. London, Griffin.

    Google Scholar 

  • ORDEN, A. (1952). Solution of systems of linear inequalities on a digital computer. In: Proceedings of the 1952 ACM National Meeting, Pittsburgh, New York, Association for Computing Machinery, 91–95.

    Google Scholar 

  • OSTER, G. (1976). Internal variables in population dynamics. In: LEVIN, S.A. (ed.). Some mathematical questions in biology. VII. Proceedings of the Ninth Symposium on Mathematical Biology, New York, January 1975. Lectures on mathematics in the life sciences, v. 8. Providence, RI, The American Mathematical Society, 37–68.

    Google Scholar 

  • PANCHANATHAN, P.V. (1987). A FORTRAN 77 scheme for dot-density plots. Computers & Geosciences, 13, 417–419.

    Article  Google Scholar 

  • PARKER, R.L. (1972). Inverse theory with grossly inadequate data. Geophysical Journal of the Royal Astronomical Society, 29, 123–138.

    Article  Google Scholar 

  • PARKER, R.L. (1977). Understanding inverse theory. Annual Review of Earth and Planetary Sciences, 5, 35–64.

    Article  Google Scholar 

  • PELTO, C.R. (1954). Mapping of multicomponent systems. Journal of Geology, 62, 501–511.

    Article  Google Scholar 

  • PELTO, C.R., ELKINS, T.A. and BOYD, H.A. (1968). Automatic contouring of irregularly spaced data. Geophysics, 33, 424–430.

    Article  Google Scholar 

  • PERCIVAL, D.B. and WALDEN, A.T. (1993). Spectral analysis for physical applications. Multitaper and conventional univariate techniques. Cambridge, Cambridge University Press.

    Book  Google Scholar 

  • PERGOLA, N., PIETRAPERTOSA, C., LACAVA, T. and TRAMUTOLI, V. (2001). Robust satellite techniques for monitoring volcanic eruptions. Annals of Geophysics, 44, 167–177.

    Google Scholar 

  • PETERS, L.J. (1949). The direct approach to magnetic interpretation and its practical application. Geophysics, 14, 290–320.

    Article  Google Scholar 

  • PETRUS, J.A. and KAMBER, B.S. (2012). VizualAge: A novel approach to Laser Ablation ICP-MS U-Pb geochronology data reduction. Geostandards and Geoanalytical Research, 36, 247–270.

    Article  Google Scholar 

  • PLAYFAIR, W. and CORRY, J. (1786). The commercial and political atlas; representing, by means of stained copper-plate charts, the exports, imports, and general trade of England at a single view. To which are added, Charts of the revenue and debts of Ireland, done in the same manner. London, J. Debrett, G.G. and J. Robinson, J. Sewell.

    Google Scholar 

  • PLUMB, G.A. (1993). Compression of continuous spatial data in the raster digital format. Computers & Geosciences, 19, 493–497.

    Article  Google Scholar 

  • POINCARÉ, H. (1890). Sur le problème des trois corps et les équations de la dynamique [On the three body problem and dynamic equations]. Acta Mathematica, 13, 1–270.

    Google Scholar 

  • POLYANIN, A.D. and ZAITSEV, V.F. (2003). Handbook of exact solutions for ordinary differential equations. 2nd edn., Boca Raton, FL, Chapman and Hall/CRC Press.

    Google Scholar 

  • PRESS, F., HARKRIDER, D. and SEAFELDT, C.A. (1961). A fast, convenient program for computation of surface-wave dispersion curves in multilayered media. Bulletin of the Seismological Society of America, 51, 495–502.

    Google Scholar 

  • PROTHERO, W.A. (1974). An ocean-bottom seismometer capsule. Bulletin of the Seismological Society of America, 64, 1251–1262.

    Google Scholar 

  • QUENOUILLE, M.H. (1949b). Problems in plane sampling. The Annals of Mathematical Statistics, 20, 355–375.

    Article  Google Scholar 

  • RAKOWSKY, U.K. (2007). Fundamentals of the Dempster-Shafer theory and its applications to system safety and reliability modelling. Reliability: Theory and Applications, 3 (4), 173–185.

    Google Scholar 

  • RAMBERG, H. (1975). Particle paths, displacement, and progressive strain applicable to rocks. Tectonophysics, 28, 1–37.

    Article  Google Scholar 

  • RAMSAY, J.G. (1967). Folding and fracturing of rocks. New York, McGraw-Hill.

    Google Scholar 

  • RAMSAY, J.G. and HUBER, M.I. (1983). The techniques of modern structural geology. Vol. 1: Strain analysis. London, Academic Press.

    Google Scholar 

  • RAUP, D.M. and CRICK, R.E. (1979). Measurement of faunal similarity in palaeontology. Journal of Palaeontology, 53, 1213–1227.

    Google Scholar 

  • REYMENT, R.A. (1980). Multivariate analysis in statistical paleoecology. In: ORLOCI, L., RAO, C.R. and STITELER, W.M. (eds.). Multivariate methods in ecological work. Statistical Ecology Series Volume 7. Fairland, MA, International Co-operative Publishing House, 211–235.

    Google Scholar 

  • RICE, J.R. (1964). The approximation of functions. v. 1. Reading, MA, Addison-Wesley.

    Google Scholar 

  • RICH, A. (1890). A dictionary of Roman and Greek antiquities. 3rd edn., London, Longmans, Green & Co.

    Google Scholar 

  • RIVOIRARD, J. (1994). Introduction to disjunctive kriging and non-linear geostatistics. Oxford, Oxford University Press.

    Google Scholar 

  • ROBINSON, E.A. (1967b). Statistical communication and detection with special reference to digital signal processing of radar and seismic signals. London, Griffin.

    Google Scholar 

  • ROBINSON, E.A. (2015). MIT and the birth of digital signal processing. Scientist and Science series, v. 4. Houston, TX, Goose Pond Press.

    Google Scholar 

  • ROBINSON, E.A. and TREITEL, S. (1980). Geophysical signal analysis. New York, NY, Prentice-Hall.

    Google Scholar 

  • ROBINSON, E.A. and TREITEL, S. (2008). Digital imaging and deconvolution: the ABCs of seismic exploration and processing. Geophysical Reference Series, v. 15. Tulsa, OK, Society of Exploration Geophysicists.

    Book  Google Scholar 

  • ROBINSON, P. (1963). Preparation of Beta diagrams in structural geology by digital computer. American Journal of Science, 261, 913–928.

    Article  Google Scholar 

  • ROERO, C.S. (2005). Gottfried Wilhelm Leibniz first three papers on the calculus (1684, 1686, 1693). In: GRATTAN-GUINNES, I. (ed.). Landmark writings in Western mathematics (1640–1940). Amsterdam, Elsevier, 46–58.

    Chapter  Google Scholar 

  • RUTHERFORD, E. (1937). The search for isotopes of hydrogen and helium of mass 3. Nature, 140, 303–305.

    Article  Google Scholar 

  • SACKMAN, H. (1974). Delphi assessment: Expert opinion, forecasting, and group process. Report R-1283-PR, Santa Monica, CA, The Rand Corporation [online: http://www.rand.org/content/dam/rand/pubs/reports/2006/R1283.pdf].

  • SALOMON, D. and MOTTA, G. (2010). Handbook of data compression. New York, NY, Springer-Verlag.

    Book  Google Scholar 

  • SAMSON, J.C. (1983). The spectral matrix, eigenvalues, and principal components in the analysis of multichannel geophysical data. Annales Geophysicae, 1, 115–119.

    Google Scholar 

  • SCHEUCH, G. and HEYDER, J. (1990). Dynamic shape factor of nonspherical aerosol particles in the diffusion regime. Aerosol Science and Technology, 12, 270–277.

    Article  Google Scholar 

  • SCHUENEMEYER, J.H. and DREW, L.J. (1983). A procedure to estimate the parent populastion of the size of oil and gas fields as revealed by a study of economic truncation. Journal of the International Association for Mathematical Geology, 15, 145–162.

    Article  Google Scholar 

  • SCHULTZ, P.S. (1985). Seismic data processing: Current industry practice and new directions. Geophysics, 50, 2452–2457.

    Article  Google Scholar 

  • SCHUSTER, A. (1894). On interference phenomena. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, ser. 5, 37, 509–545.

    Article  Google Scholar 

  • SCHUSTER, H.G. and JUST, W. (2005). Deterministic chaos. An introduction. Weinheim, Wiley-VCH.

    Google Scholar 

  • SHAFER, G. (1976). A mathematical theory of evidence. Princeton, NJ, Princeton University Press.

    Google Scholar 

  • SHANNON, C.E. (1948). A mathematical theory of communication. The Bell System Technical Journal, 27, 379–423, 623–656.

    Article  Google Scholar 

  • SHANNON, C.E. and WEAVER, W. (1949). The mathematical theory of communication. Urbana, IL, University of Illinois Press.

    Google Scholar 

  • SHEN, W., DAVIS, T., LIN, D.K.J. and NACHTSHEIM, C.J. (2014). Dimensional analysis and its applications in statistics. Journal of Quality Technology, 46, 185–198.

    Google Scholar 

  • SHERIFF, R.E.(1984). Encyclopedic dictionary of exploration geophysics. 2nd edn., Tulsa, Society of Exploration Geophysicists.

    Google Scholar 

  • SIMONS, R.S. (1968). A surface wave particle motion discrimination process. Bulletin of the Seismological Society of America, 58, 629–637.

    Google Scholar 

  • SINDING-LARSEN, R. and VOKES, F.M. (1978). The use of deposit modeling in the assessment of potential resources as exemplified by Caledonian stratabound sulfide deposits. Journal of the International Association for Mathematical Geology, 10, 565–580.

    Article  Google Scholar 

  • SLEPIAN, D. (1978). Prolate spheroidal wave functions, Fourier analysis, and uncertainty.V: The discrete case. Bell System Technical Journal , 57, 1371–1430.

    Article  Google Scholar 

  • SLEPIAN, D. and POLLAK, H.O. (1961). Prolate spheroidal wave functions, Fourier analysis, and uncertainty. I. Bell System Technical Journal, 40, 43–64.

    Article  Google Scholar 

  • SLOTNICK, M.M. (1959). Lessons in seismic computing. Tulsa, OK, Society of Exploration Geophysicists.

    Google Scholar 

  • SMITH, A.B. (1994a). Systematics and the fossil record: Documenting evolutionary patterns. Oxford, Blackwell.

    Book  Google Scholar 

  • SMITH, M.K. (1958). A review of methods of filtering seismic data. Geophysics, 23, 44–57.

    Article  Google Scholar 

  • SOETAERT, K., CASH, J. and MAZZIA, F. (2012). Solving differential equations in R. Berlin, Springer-Verlag.

    Book  Google Scholar 

  • SOKAL, R.R. and SNEATH, P.H.A. (1963). Principles of numerical taxonomy. San Francisco, CA, Freeman.

    Google Scholar 

  • SOLLER, D.R. and BERG, T.M. (1997). The National Geologic Map Database – A progress report. Geotimes, 42 (12), 29–31.

    Google Scholar 

  • SORENSEN, H.V., BURRUS, C.S. and HEIDEMAN, M.T. (1995). Fast Fourier Transform database. Boston, MA, PWS Publishing.

    Google Scholar 

  • SOTO, J.I. (1997). A general deformation matrix for three-dimensions. Mathematical Geology, 29, 93–130.

    Article  Google Scholar 

  • SPANIAS, A.S., JONSSON, S.B. and STEARNS, S.D. (1991). Transform methods for seismic data compression. IEEE Tranactions on Geoscience and Remote Sensing, 29, 407–416.

    Article  Google Scholar 

  • SPECHT, D.F. (1967). Generation of polynomial discriminant functions for pattern recognition. IEEE Transactions on Electronic Computers, EC16, 308–319.

    Google Scholar 

  • STAUFT, D.L. (1968). Computer applications in an oil-exploration company. Bulletin of Canadian Petroleum Geology, 16, 64–86.

    Google Scholar 

  • STOLORZ, P. and DEAN, C. (1996). Quakefinder: A scalable data mining system for detecting earthquakes from space. In: SIMOUDIS, E. and FAYYAD, U. (eds.). Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, Portland, Oregon. Menlo Park, CA, AAAI Press, 208–213.

    Google Scholar 

  • STRAHLER, A.N. (1958). Dimensional analysis applied to fluvially eroded landforms. Geological Society of America Bulletin, 69, 279–300.

    Article  Google Scholar 

  • STRAHLER, A.N. (1992). Quantitative/dynamic geomorphology at Columbia 1945–60: A retrospective. Progress in Physical Geography, 16, 65–84.

    Article  Google Scholar 

  • STRAUSS, D. and SADLER, P.M. (1989). Classical confidence intervals and Bayesian probability estimates for ends of local taxon ranges. Mathematical Geology, 21, 411–427.

    Article  Google Scholar 

  • SUITS, D.B. (1957). Use of dummy variables in regression equations. Journal of the American Statistical Association, 52, 548–551.

    Article  Google Scholar 

  • SUTCLIFFE, P.R. and YUMOTO, K. (1989). Dayside Pi2 pulsations at low latitudes. Geophysical Research Letters, 16, 887–890.

    Article  Google Scholar 

  • SUTTERLIN, P.G., JEFFERY, K.G. and GILL, E.M. (1977). FILEMATCH: A format for the interchange of computer-based files of structured data. Computers & Geosciences, 3, 429–441.

    Article  Google Scholar 

  • TAIT, P.G. (1867). An elementary treatise on quaternions. Oxford, Clarendon Press.

    Google Scholar 

  • TAIT, P.G. (1890). An elementary treatise on quaternions. 3rd edn., Cambridge, Cambridge University Press.

    Google Scholar 

  • TAYLOR, J.G. and RYDER, S.D. (2003). Use of the Delphi method in resolving complex water resources issues. Journal of the American Water Resources Association, 39, 183–189.

    Article  Google Scholar 

  • THIBAULT, P.A. and KLINK, K. (1997). Analog-to-digital conversion of circular chart data. Computers & Geosciences, 23, 329–332.

    Article  Google Scholar 

  • THIESSEN, A.H. (1911). Precipitation averages for large areas. Monthly Weather Review, 39, 1082–1084.

    Article  Google Scholar 

  • THOMPSON, M., WALTON, S.J. and WOOD, S.J. (1979). Statistical appraisal of interference effects in the determination of trace elements by atomic-absorption spectrophotometry in applied geochemistry. The Analyst, 104, 299–312.

    Article  Google Scholar 

  • THOMSON, W. [Lord Kelvin] (1856). Elements of a mathematical theory of elasticity. Philosophical Transactions of the Royal Society, London, 146, 481–498.

    Article  Google Scholar 

  • THONG, T. and LIU, B. (1977). Floating point fast Fourier transform computation using double precision floating point accumulators. ACM Transactions on Mathematical Software, 3, 54–59.

    Article  Google Scholar 

  • TIKOFF, B. and FOSSEN, H. (1993). Simultaneous pure and simple shear: the unifying deformation matrix. Tectonophysics, 217, 267–283.

    Article  Google Scholar 

  • TODHUNTER, I. (1861). A history of the progress of the calculus of variations during the Nineteenth Century. Cambridge, Macmillan.

    Google Scholar 

  • TOMKINS, M.R., BALDOCK, T.E. and NIELSEN, P. (2005). Hindered settling of sand grains. Sedimentology, 52, 1425–1432.

    Article  Google Scholar 

  • TREITEL, S. and ROBINSON, E.A. (1966). The design of high-resolution digital filters. IEEE Transactions on Geoscience Electronics, 4, 25–38.

    Article  Google Scholar 

  • TREJO, C.A. (1954). A note on downward continuation of gravity. Geophysics, 19, 71–75.

    Article  Google Scholar 

  • TRYON, R.C. (1939). Cluster analysis. Ann Arbor, MI, Edwards Brothers.

    Google Scholar 

  • TSAI, V.J.D. (1993). Fast topological construction of Delaunay triangulations and Voronoi diagrams. Computers & Geosciences, 19, 1463–1474.

    Article  Google Scholar 

  • TSICHIRITZIS, T.C. and LOCHOVSKY, F.H. (1977). Data base management systems. New York, NY, Academic Press.

    Google Scholar 

  • TUFTE, E.R. (1983). The visual display of quantitative information. Cheshire, CT, Graphics Press.

    Google Scholar 

  • TUFTE, E.R. (2001). Envisioning information. 2nd edn., Cheshire, CT, Graphics Press.

    Google Scholar 

  • TUKEY, J.W. (1950). The sampling theory of power spectrum estimates. In: Symposium on applications of autocorrelation analysis to physical problems. NAVEXOS P-735, Washington, DC, United States Office of Naval Research, 47–67 [reprinted in: BRILLINGER, D.R. (ed.) The collected works of John W. Tukey. Vol. 1. Time series: 1949–1964. Wadsworth, Pacific Grove, CA., 129–160].

    Google Scholar 

  • TUKEY, J.W. (1959b). An introduction to the measurement of spectra. In: GRENANDER, U. (ed.). Probability and statistics. The Harald Cramér volume. New York, NY, John Wiley & Sons, 300–330.

    Google Scholar 

  • TUKEY, J.W. (1962). The future of data analysis. The Annals of Mathematical Statistics, 33, 1–67.

    Article  Google Scholar 

  • TUKEY, J.W. (1977). Exploratory data analysis. Reading, MS, Addison-Wesley.

    Google Scholar 

  • TUKEY, J.W. and HAMMING, R. W. (1949). Measuring noise color. I. Memorandum MM-49-110-119, 1 December 1949, Murray Hill, NJ, Bell Telephone Laboratory, 1–120 [Reprinted in: BRILLINGER, D.R. (ed.) (1984). The collected works of John W. Tukey. Vol. 1. Time series: 1949–1964. Wadsworth, Pacific Grove, CA, 1–127].

    Google Scholar 

  • TURCOTTE, D.L. (1992). Fractals and chaos in geology and geophysics. Cambridge, Cambridge University Press.

    Google Scholar 

  • TURCOTTE, D.L. (1997). Fractals and chaos in geology and geophysics. 2nd edn., Cambridge, Cambridge University Press.

    Book  Google Scholar 

  • VACQUIER, V., STEENLAND, N.C., HENDERSON, R.G. and ZEITZ, I. (1951). Interpretation of aeromagnetic maps. Geological Society of America Memoir 47, Boulder, CO, Geological Society of America.

    Google Scholar 

  • VALENTINE, J.W. and PEDDICORD, R.G. (1967). Evaluation of fossil assemblages by cluster analysis. Journal of Palaeontology, 4, 502–507.

    Google Scholar 

  • VISTELIUS, A.B. (1950). O mineralnom sostave tyazheloi chasti peskov nizhnego otdela produktivnoi tolshchi Apsheronskogo poluostrova, Chokraka yuzhnogo Dagestana i allyuviya Volgi [About the mineral composition of the heavy part of sands from the lower section of the Productive sequence in the Apsheron Peninsula, the Chokrak of south Dagestan, and the Volga alluvium] Doklady Akademii Nauk SSSR, 71, 367–370.

    Google Scholar 

  • VISTELIUS, A.B. (1980). Osnovy matematičeskoj geologii [Essential mathematical geology]. Leningrad, AN SSSR Izdatel’stvo nauk.

    Google Scholar 

  • VISTELIUS, A.B. (1992). Principles of mathematical geology [translated by S.N. BANERGEE]. Dordrecht, Kluwer.

    Google Scholar 

  • VITA-FINZI, C., HOWARTH, R.J., TAPPER, S.W. and ROBINSON, C.A. (2005). Venusian craters, size distribution and the origin of coronae. In: FOULGER, G.R., NATLAND, J.H., PRESNALL, D.C. and ANDERSON, D.L. (eds.). Plates, plumes and paradigms. Geological Society of America Special paper 388. Boulder, CO, Geological Society of America, 815–823.

    Google Scholar 

  • WAINER, H. (1997). Visual revelations. Graphical tales of fate from Napoleon Bonaparte to Ross Perot. New York, NY, Copernicus.

    Google Scholar 

  • WALDEN, A.T. and HOSKEN, J.W.J. (1986). The nature of the non-Gaussianity of primary reflection coefficients and its significance for deconvolution. Geophysical Prospecting, 34, 1038–1066.

    Article  Google Scholar 

  • WASHINGTON, H.S. (1919). Manual of the chemical analysis of rocks. New York, NJ, John Wiley & Sons.

    Google Scholar 

  • WATSON, D.F. and PHILIP, G.M. (1984). Triangle based interpolation. Journal of the International Association for Mathematical Geology, 16, 779–795.

    Article  Google Scholar 

  • WATSON, G.S. (1965). Equatorial distributions on the sphere. 52, 193–201.

    Google Scholar 

  • WATSON, G.S. (1966). The statistics of orientation data. Journal of Geology, 74, 786–797.

    Article  Google Scholar 

  • WEEDON, G.P. (2003). Time series analysis and cyclostratigraphy. Cambridge, Cambridge University Press.

    Book  Google Scholar 

  • WEGMAN, E.J. (1972). Nonparametric probability density estimation: I. A summary of available methods. Technometrics, 14, 533–546.

    Google Scholar 

  • WEST, M. (2011). Developing high quality data models. Amsterdam, Elsevier.

    Google Scholar 

  • WETHERILL, G.W. (1955). An interpretation of the Rhodesia and Witwatersrand age patterns. Geochimica et Cosmochemica Acta, 9, 290–292.

    Article  Google Scholar 

  • WETHERILL, G.W. (1956). Discordant uranium-lead ages. I. Transactions of the American Geophysical Union, 37, 320–326.

    Google Scholar 

  • WHITTEN, E.H.T. (1963). A surface-fitting program suitable for testing geological models which involve areally-distributed data. Technical Report no. 2 of ONR Task no. 389-135, Contract Nr. 1228(26). Office of Naval Research Geography Branch, Evanston, IL, Northwestern University.

    Google Scholar 

  • WHITTEN, E.H.T. (1968). FORTRAN IV CDC 6400 computer program to analyse subsurface fold geometry. Kansas Geological Survey Computer Contribution 25, Lawrence, KS, Kansas Geological Survey.

    Google Scholar 

  • WHITTEN, T.A. and SANDER, L.M. (1981). Diffusion limited aggregation, a kinetic critical phenomenon. Physical Review Letters, 47, 1400–1403.

    Article  Google Scholar 

  • WIDROW, B. and HOFF, M.E. (1960). Adaptive switching circuits. In: IRE WESCON Convention Record: at the Western Electronic Show and Convention, Los Angeles, California, August 23–26, 1960, Institute of Radio Engineers, 96–104.

    Google Scholar 

  • WIDROW, B., McCOOL, J.M., GLOVER, J.R. Jr., KAUNITZ, J., WILLIAMS, C., HEARN, R.H., ZEIDLER, J.R., DONG, E., JR. and GOODLIN, R.C. (1975). Adaptive noise cancelling: Principles and applications. Proceedings of the IEEE, 63, 1692–1716.

    Google Scholar 

  • WIENER, N. (1933). The Fourier integral and certain of its applications. Cambridge, Cambridge University Press.

    Google Scholar 

  • WIENER, N. (1942). The extrapolation, interpolation and smoothing of stationary time series with engineering applications. D.I.C. Contract 6037, A research pursued on behalf of the National Defence Research Council (Section D) February 1, 1942. Cambridge, MA, The Massachusetts Institute of Technology.

    Google Scholar 

  • WIENER, N. (1949). Extrapolation, interpolation, and smoothing of stationary time series: with engineering applications. Cambridge, MA, Technology Press, Massachusetts Institute of Technology.

    Google Scholar 

  • WILLMORE, P.L. (1937). Some properties of heavily damped electromagnetic seismographs. Geophysical Journal International, 4, 389–404.

    Article  Google Scholar 

  • WILSON, E.B. (1901). Vector analysis, founded upon the lectures of J. Willard Gibbs. New York, NY, Charles Scribner’s Sons.

    Google Scholar 

  • WINCHELL, N.H. and WINCHELL, H.V. (1891). The iron ores of Minnesota. Their geology, discovery, development, qualities and origin, and comparison with those of other Iron Districts. Geological and Natural History Survey of Minnesota. Bulletin 6, Minneapolis, MN, Harrison & Smith.

    Google Scholar 

  • WINTNER, A. (1934). On analytic convolutions of Bernoulli distributions. American Journal of Mathematics, 56, 659–663.

    Article  Google Scholar 

  • WOOD, D.S. (1974a). Current views of the development of slaty cleavage. Annual Reviews of Earth and Planetary Science, 2, 369–401.

    Article  Google Scholar 

  • WOOD, L.C. (1974b). Seismic data compression methods. Geophysics, 39, 499–525.

    Article  Google Scholar 

  • WOODCOCK, N.H. (1976). The accuracy of structural field measurements. The Journal of Geology, 84, 350–355.

    Article  Google Scholar 

  • WOODHOUSE, R. (1809). A treatise on plane and spherical trigonometry. London, Black, Parry & Kingsbury.

    Google Scholar 

  • WOUDENBERG, F. (1991). An evaluation of Delphi. Technological Forecasting and Social Change, 40, 131–150.

    Article  Google Scholar 

  • XU, Y. and XU, T. (2014). An interactive program on digitizing historical seismograms. Computers & Geosciences, 63, 88–95.

    Article  Google Scholar 

  • YAKOWITZ, S. (1982). Dynamic programming applications in water resources. Water Resources Research, 18, 673–696.

    Article  Google Scholar 

  • YOUDEN, W.J. (1954). Instrumental drift. Science, 120, 627–631.

    Article  Google Scholar 

  • YUEN, D.A. (ed.) (1992). Chaotic processes in the geological sciences. The IMA Volumes in Mathematics and its Applications. 41. New York, NY, Springer-Verlag.

    Google Scholar 

  • ZHUANG, J. (2011). Next-day earthquake forecasts for the Japan region generated by the ETAS model. Earth Planets Space, 63, 207–216.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Howarth, R.J. (2017). D. In: Dictionary of Mathematical Geosciences . Springer, Cham. https://doi.org/10.1007/978-3-319-57315-1_4

Download citation

Publish with us

Policies and ethics