Skip to main content
  • 1051 Accesses

Abstract

This is a method of programming based around the concept of an object. A software object stores its states, which may include data, as fields (variables or attributes) and its behaviours through methods (functions which contain the code). It is these which define the object’s interface with the external environment. The details of the internal implementation of the object are hidden and all communication with other objects is via its methods. An object’s procedures may interact with and change its data fields if so required. Objects exist as freestanding entities and their source code can be implemented, tested and debugged on its own independently of that of other objects. Individual objects which possess a common definition and therefore common properties, operations and behaviour belong to a class, a template which allows similar objects to be created. Classes may inherit commonly used state and behaviour from other classes and may themselves be grouped into a superclass. All methods defined by an interface must appear in the source code of a class before that class will successfully compile. A group of related classes and interfaces are organized as a package. A set of packages constitutes a class library (such as the Application Programming Interface in Java). Examples of OOP languages are C++ (Stroustrup 1985), Python (van Rossum 1995) and Java (Arnold and Gosling 1996).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Bibliography

  • ADCOCK, R.J. (1877). Note on the method of least squares. The Analyst (Des Moines, IA), 4, 183–184.

    Google Scholar 

  • ADCOCK, R.J. (1878). A problem in least squares. The Analyst (Des Moines, IA), 5, 53–54.

    Google Scholar 

  • ADRAIN, R. (1818). Investigation of the Figure of the Earth and of gravity in different latitudes. Transactions of the American Philosophical Society, 1, 119–135.

    Article  Google Scholar 

  • AGOCS, W.B. (1951). Least squares residual anomaly determination. Geophysics, 16, 686–696.

    Article  Google Scholar 

  • AGTERBERG, F.P. (1984a). Use of spatial analysis in mineral resource evaluation. Journal of the International Association for Mathematical Geology, 16, 565–589.

    Article  Google Scholar 

  • AGTERBERG, F.P. (1984b). Binomial and trinomial models in quantitative biostratigraphy. Computers & Geosciences, 10, 31–41.

    Article  Google Scholar 

  • AGTERBERG, F.P. (ed.) (1984c). Theory, application and comparison of stratigraphic correlation methods. Computers & Geosciences, 10 (1), 1–183.

    Google Scholar 

  • AGTERBERG, F. P. (1984d). Trend surface analysis. In: GAILE, G.L. and WILLMOTT, C.J. (eds). Spatial statistics and models. Theory and decision library, v. 40. D. Reidel, Boston, 147–171.

    Google Scholar 

  • AGTERBERG, F.P. and FABBRI, A.G. (1978). Spatial correlation of stratigraphic units quantified from geological maps. Computers & Geosciences, 4, 285–294.

    Article  Google Scholar 

  • AITCHISON, J. (1982). The statistical analysis of compositional data. Journal of the Royal Statistical Society, ser. B, 44, 139–177.

    Google Scholar 

  • AITCHISON, J. (1986). The statistical analysis of compositional data. London, Chapman and Hall.

    Book  Google Scholar 

  • AITCHISON, J. (2003). The statistical analysis of compositional data. 2nd edn., London, Chapman and Hall.

    Google Scholar 

  • ANONYMOUS (1830a). Abscissa. In: The Penny Cyclopaedia of the Society for the Diffusion of Useful Knowledge. London, Charles Knight, 1, 43.

    Google Scholar 

  • ANONYMOUS (1830b). Theory of algebraical expressions. In: The Library of Useful Knowledge. v. 3. London, Baldwin and Cradock, 1–26 [N.B. arts. separately paginated].

    Google Scholar 

  • ARCHIBALD, T, FRASER, C. and GRATTAN-GUINNESS, I. (2004). The history of differential equations, 1670–1950. Oberwolfach Report, 1, 2729–2794.

    Article  Google Scholar 

  • ARMITAGE, P. (1947). Some sequential tests of Student’s hypothesis. Supplement to the Journal of the Royal Statistical Society, 9, 250–263.

    Article  Google Scholar 

  • ARNOLD, K. and GOSLING, J. (1996). The Java programming language. Reading, MA, Addison-Wesley.

    Google Scholar 

  • BARNARD, G.A. (1949). Statistical inference. Journal of the Royal Statistical Society, ser. B, 11, 115–149.

    Google Scholar 

  • BARNETT, V. and LEWIS, T. (1994). Outliers in statistical data. 3rd edn., Chichester, John Wiley & Sons.

    Google Scholar 

  • BELLHOUSE, D. (2005). Decoding Cardano’s Liber de Ludo Aleae. Historia Mathematica, 32, 180–202.

    Article  Google Scholar 

  • BEUTLER, F.J. (1960). Approximations to Wiener optimum filters and predictors. Journal of the Society for Industrial and Applied Mathematics, 8, 662–679.

    Article  Google Scholar 

  • BROMWICH, T.J. I’A. (1905). Theorems on the logarithmic potential. Proceedings of the London Mathematical Society, 3, 345–370.

    Google Scholar 

  • BROWN, W.F. (1956). Minimum variance in gravity analysis. Part II. Two-dimensional. Geophysics, 21, 107–141.

    Article  Google Scholar 

  • BUCCIANTI, A., MATEU-FIGUERAS, G. and PAWLOWSKY-GLAHN, V. (eds.) (2006). Compositional data analysis in the geosciences: From theory to practice. London, The Geological Society.

    Google Scholar 

  • BUTLER, J.C. (1975). Occurrence of negative open variances in ternary systems. Journal of the International Association for Mathematical Geology, 7, 31–45.

    Article  Google Scholar 

  • BUTTKUS, B. (1991). Spektralanalyse und Filtertheorie in der angewandten Geophysik. Berlin, Springer-Verlag.

    Book  Google Scholar 

  • BUTTKUS, B. (2000). Spectral analysis and filter theory in applied geophysics [translated by C NEWCOMB].. Berlin, Springer-Verlag.

    Google Scholar 

  • CAMINA, A.R. and JANACEK, G.J. (1984). Mathematics for seismic data processing and interpretation. London, Graham and Trotman.

    Book  Google Scholar 

  • CANTOR, G. (1874). Über eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen [On a property of the collection of all real algebraic numbers]. Journal für die reine und angewandte Mathematik, 77, 258–262.

    Google Scholar 

  • CAPORALI, A. (2003). Average strain rate in the Italian crust inferred from a permanent GPS network – 1. Statistical analysis of the time-series of permanent GPS stations. Geophysical Journal International, 155, 241–253.

    Article  Google Scholar 

  • CHAYES, F. (1960). On correlation between variables of constant sum. Journal of Geophysical Research, 65, 4185–4193.

    Article  Google Scholar 

  • CHAYES, F. (1962). Numerical correlation and petrographic variation. Journal of Geology, 70, 440–452.

    Article  Google Scholar 

  • CHAYES, F. and KRUSKAL, W. (1966). An approximate statistical test for correlations between proportions. Journal of Geology, 74, 692–702.

    Article  Google Scholar 

  • CHEBYSHEV, P.L. (1855). O nepreryvnyukh drobyakh [On continued fractions]. Uchennye zapiski Akademii Nauk po pervomu i tretemu otdlenyam, 3, 636–664.

    Google Scholar 

  • CHEBYSHEV, P.L. (1858). Sur les fractions continues [On continued fractions; translated by I.-J. BIENAYMÉ]. Journal de mathématiques pures et appliquées, ser. 2, 3 (for 1855), 289–323.

    Google Scholar 

  • CHEETHAM, A.H. and HAZEL, J.E. (1969). Binary (presence/absence) similarity coefficients. Journal of Palaeontology, 43, 1130–1136.

    Google Scholar 

  • CHERRY, N., SHAIK, K., MCDONALD, C. and CHOWDHURY, Z. (2010). Manganese, arsenic, and infant mortality in Bangladesh: An ecological analysis. Archives of Environmental and Occupational Health, 65, 148–153.

    Article  Google Scholar 

  • CLARK, A.L. (1976). Resource data bases – Resource assessment. Computers & Geosciences, 2, 309–311.

    Article  Google Scholar 

  • COBB, H. (1960). Operations research – a tool in oil exploration. Geophysics, 25, 1009–1022.

    Article  Google Scholar 

  • CRAIN, I.K. and BHATTACHARYYA, B.K. (1967). Treatment of nonequispaced two-dimensional data with a digital computer. Geoexploration, 5, 173–194.

    Article  Google Scholar 

  • DAVIS, J.C. (1970). Optical processing of microporous fabrics. In: CUTBILL, J.L. (ed.). Data processing in biology and geology. Special. v. 3. London, Systematics Association, 69–87.

    Google Scholar 

  • DE AGUILÓN, F. (1613). De orthographice primo projectionis genere, ex infinita oculi distantia [Orthographic projection of the first class, as though at an infinite distance from the eyes]. In: Opticorum libri sex: philosophis iuxtà ac mathematicis utiles [Optics in six books: Useful mathematics according to the philosophers]. Antwerp, Officina Plantiniana, 503–562.

    Google Scholar 

  • DE PAOR, D.G. (1983). Orthographic analysis of geological structures. I. Deformation theory. In: COBBOLD, P.R. and SCHWERDTNER, W.M. (eds.). Strain patterns in rocks. A selection of papers presented at the International Workshop, Rennes, 13–14 May 1982. Oxford, Pergamon Press, 255–277.

    Google Scholar 

  • DIGGES, L. and DIGGES, T. (1571). A geometrical practise, named Pantometria, diuided into three bookes, longimetra, planimetra, and stereometria, containing rules manifolde for mensuration of all lines, superficies and solides. London, Henrie Bynneman.

    Google Scholar 

  • DIXON, W.J. (1953). Processing data for outliers. Biometrics, 9, 74–89.

    Article  Google Scholar 

  • DOBRIN, M.B., INGALLS, A.L. and LONG, J.A. (1965). Velocity and frequency filtering of seismic data using laser light. Geophysics, 30, 1144–1178.

    Article  Google Scholar 

  • DOBRIN, M.B. and RIMMER, W.G. (1964). Regionals and residuals in seismic prospecting for stratigraphic features. Geophysics, 29, 38–53.

    Article  Google Scholar 

  • DRAGOSET, W. (2005). A historical reflection on reflections. The Leading Edge, 24 [supplement], S46–S71.

    Google Scholar 

  • DUNSTAN, S.P. and MILL, A.J.B. (1989). Spatial indexing of geological models using linear octrees. Computers & Geosciences, 15, 1291–1301.

    Article  Google Scholar 

  • DUTKA, J. (1996). On Gauss’ priority in the discovery of the method of least squares. Archive for the History of Exact Sciences, 49, 355–370.

    Article  Google Scholar 

  • ECKERT-MAUCHLY COMPUTER CORP. (1949). The BINAC [Mimeographed trade brochure. online: http://www.computerhistory.org/collections/accession/102646200].

  • EDWARDS, D.E. (1986). Ptolemy’s ‘Peri analemmatos.’ An annotated transcription of Moerbeke’s Latin translation and of the surviving Greek fragments with an English version and commentary [doctoral dissertation, Brown University 1984]. Ann Arbor, MI, University Microfilms.

    Google Scholar 

  • EULER, L. (1729). Problematis traiectoriarum reciprocarum solutio [Solution to problems of reciprocal trajectories]. Commentarii Academiae Scientiarum Imperialis Petropolitanae, 2 (for 1727), 90–111.

    Google Scholar 

  • EVERETT, M.E. (2013). Near-surface applied geophysics. Cambridge, Cambridge University Press.

    Book  Google Scholar 

  • FELDHAUSEN, P.H. (1970). Ordination of sediments from the Cape Hatteras continental margin. Journal of the International Association for Mathematical Geology, 2, 113–130.

    Article  Google Scholar 

  • FISHER, R.A. (1925a). Statistical methods for research workers. Edinburgh, Oliver and Boyd.

    Google Scholar 

  • FISHER, R.A. (1925b). Theory of statistical estimation. Proceedings of the Cambridge Philosophical Society, 22, 700–725.

    Google Scholar 

  • FLETCHER, R. (1987). Practical methods of optimization. Chichester, John Wiley & Sons.

    Google Scholar 

  • FOURIER, J.-B.-J. (1821). Recherches statistiques sur la ville de Paris et le département de la Seine, recueil de tableaux dressés et réunis d’après les ordres de Monsieur le Comte de Chabrol. [Statistical research on the city of Paris and the Department of the Seine]. Paris, l’École Royale des Ponts et Chaussées & C. Ballard.

    Google Scholar 

  • FROBENIUS, F.G. (1878). Über linear Substitutionen und bilineare Formen [On linear substitutions and bilinear forms]. Journal für die reine und angewante Mathematik, 84, 1–63.

    Article  Google Scholar 

  • GALTON, F. (1875). Statistics by intercomparison with remarks on the law of frequency of error. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, ser. 4, 49, 35–46.

    Google Scholar 

  • GAUSS, C.F. (1809a). Theoria motus corporum coelestium in sectionibus conicis solem ambientium [Theory of the motion of the heavenly bodies moving about the Sun in conic sections]. Hamburg, F. Perthes and I.H. Besser.

    Google Scholar 

  • GAUSS, C.F. (1809b [1857]). Determination of an orbit satisfying as nearly as possible any number of observations whatever. In: Theory of the motion of the heavenly bodies moving about the Sun in conic sections [translated from Latin by C.H. DAVIS]. Boston, MS, Little, Brown & Co, 249–273.

    Google Scholar 

  • GOODEVE, C. (1948). Present and future of operational research. Nature, 161, 381–384.

    Article  Google Scholar 

  • GOOGLE RESEARCH (2012). Google Books Ngram Viewer (v. 2.0) [online: https://books.google.com/ ngrams/info].

  • GOULD, S.J. (1966). Allometry and size in ontogeny and phylogeny. Biological Reviews, 41, 587–640.

    Article  Google Scholar 

  • GRIFFITHS, J.C. and ROSENFELD, M.A. (1954). Operator variation in experimental research. Journal of Geology, 62, 74–91.

    Article  Google Scholar 

  • GRUBBS, F.E. (1950). Sample criteria for testing outlying observations. Annals of Mathematical Statistics, 21, 27–58.

    Article  Google Scholar 

  • GUBBINS, D. (2004). Time series analysis and inverse theory for geophysicists. Cambridge, Cambridge University Press.

    Book  Google Scholar 

  • HAMILTON, W.R. (1852). Appendix I. Philosophical. In: Discussions on philosophy and literature, education and university reform: chiefly from the Edinburgh Review; corrected, vindicated, enlarged, in notes and appendices. London, Longman, Brown, Green and Longmans, 577–600.

    Google Scholar 

  • HARVEY, G. (1822). On the method of minimum squares, employed in the reduction of experiments, being a translation of the appendix to an essay of Legendre’s entitled, “Nouvelles methodes pour la determination des orbites des cometes,” with remarks. The Edinburgh Philosophical Journal, 7, 292–301.

    Google Scholar 

  • HARVEY, P.K. (1974). The detection and correction of outlying determinations that may occur during geochemical analysis. Geochimica et Cosmochimica Acta, 38, 435–451.

    Article  Google Scholar 

  • HERMITE, C. (1855). Remarques sur un théorème de M. Cauchy [Remarks on a theorem of M. Cauchy]. Comptes Rendus des Séances de l’Académie des Sciences, Paris, 41, 181–183.

    Google Scholar 

  • HILTON, H. (1917). The use of the orthographic projection in crystallography. Mineralogical Magazine, 18, 122–129.

    Article  Google Scholar 

  • HOCHSTRASSER, U.W. (1965). Orthogonal polynomials. In: ABRAMOWITZ, M. and STEGUN, I.A. (eds.). Handbook of mathematical functions. 2nd edn., New York, NY, Dover Publications, 733–802.

    Google Scholar 

  • HOLLIGER, K. (1996). Fault scaling and 1/f noise scaling of seismic velocity fluctuations in the upper crystalline crust. Geology, 24, 1103–1106.

    Article  Google Scholar 

  • HOLLIGER, K. and GOFF, J.A. (2002). A generalised model for 1/f scaling of seismic velocity fluctuations. In: GOFF, J.A. and HOLLIGER, K. (eds.). Heterogeneity in the crust and upper mantle: Nature, scaling, and seismic properties. New York, NY, Kluwer Academic, 131–154.

    Google Scholar 

  • HOWARTH, R.J. (2001a). A history of regression and related model-fitting in the earth sciences (1636?–2000). Natural Resources Research, 10, 241–286.

    Article  Google Scholar 

  • IMBRIE, J. (1963). Factor and vector analysis programs for analyzing geologic data. United States Office of Naval Research, Geography Branch, Technical Report 6, ONR Task No. 389-135 [AD0420466], Evanston, IL, Northwestern University.

    Google Scholar 

  • IMBRIE, J. and PURDY, E.G. (1962). Classification of modern Bahamian carbonate sediments. In: HAM, W.E. (ed.). Classification of carbonate rocks: A symposium arranged by the Research Committee of the American Association of Petroleum Geologists. Including papers presented orally at Denver, Colorado, April 27, 1961. AAPG Memoir 1. Tulsa, OK, The American Association of Petroleum Geologists, 253–272.

    Google Scholar 

  • IMBRIE, J. and VAN ANDEL, T.H. (1964). Vector analysis of heavy-mineral data. Bulletin of the Geological Society of America, 75, 1131–1156.

    Article  Google Scholar 

  • JACKSON, P.L. (1965). Analysis of variable-density seismograms by means of optical diffraction. Geophysics, 30, 5–23.

    Article  Google Scholar 

  • JOHNSON, J.B. (1925). The Schottky effect in low frequency circuits. Physical Review, 26, 71–85.

    Article  Google Scholar 

  • JONES, H.E. (1937). Some geometrical considerations in the general theory of fitting lines and planes. Metron, 13, 21–30.

    Google Scholar 

  • KAESLER, R.L. (1969a). Aspects of quantitative distributional paleoecology. In: MERRIAM, D.F. (ed.). Computer applications in the earth sciences: An international symposium. New York, NY, Plenum, 99–120.

    Chapter  Google Scholar 

  • KAESLER, R.L. (1969b). Ordination and character correlations of selected Recent British ostracoda. Journal of the International Association for Mathematical Geology, 1, 97–112.

    Article  Google Scholar 

  • KHRUSHCHEV, S. (2008). Orthogonal polynomials and continued fractions from Euler’s point of view. Encyclopaedia of mathematics and its applications, v. 122. Cambridge, Cambridge University Press.

    Book  Google Scholar 

  • KING, T. (1996). Quantifying nonlinearity and geometry in time series of climate. Quaternary Science Reviews, 15, 247–266.

    Article  Google Scholar 

  • KITTEL, C. (1947). The nature and development of operations research. Science, 105, 150–153.

    Article  Google Scholar 

  • KOENEMANN, F. (1986). A sorting program for orientation analysis of data on a sphere. Computers & Geosciences, 12, 731–747.

    Article  Google Scholar 

  • KRUMBEIN, W.C. and GRAYBILL, F.A. (1965). An introduction to statistical models in geology. New York, NY, McGraw-Hill.

    Google Scholar 

  • KRUMBEIN, W.C. and PETTIJOHN, F.J. (1938). Manual of sedimentary petrography.. New York, NY, NY, Appleton-Century.

    Google Scholar 

  • KRUMBEIN, W.C. and WATSON, G.S. (1972). Effects of trends on correlation in open and closed three component systems. Journal of the International Association for Mathematical Geology, 4, 317–330.

    Article  Google Scholar 

  • KRUSKAL, W.H. (1953). On the uniqueness of the line of organic correlation. Biometrics, 9, 47–58.

    Article  Google Scholar 

  • LAWRANCE, A.J. and KOTTEGODA, N.T. (1977). Stochastic modelling of river flow time series. Journal of the Royal Statistical Society, ser. A, 140, 1–47.

    Google Scholar 

  • LEGENDRE, A.-M. (1805). Appendice sur la méthode des moindres quarrés [Appendix on the method of minimum squares]. In: Nouvelles méthodes pour la détermination des orbites des comètes [New methods for the determination of the orbits of comets]. Paris, Courcier, 72–80.

    Google Scholar 

  • LEGGE, J.A. and RUPNIK, J.J. (1943). Least squares determination of the velocity function V = V 0 + kz for any set of time depth data. Geophysics, 8, 356–361.

    Article  Google Scholar 

  • LEIBNIZ, G.W. (1684). Nova methodus pro maximis et minimis, itemque tangentibus, quae nec fractas nec irrationales quantitates moratur, et singulare pro illis calculi genus [A new method for maxima and minima as well as tangents, which is neither impeded by fractional nor irrational quantities, and a remarkable type of calculus for them]. Acta Eruditorum, 3, 467–473 [partial English translation in STRUIK (1986), 271–280; see also PARMENTIER (1995), 96–117].

    Google Scholar 

  • LEIBNIZ, G.W. (1692). De linea ex lineis numero infinitis ordinatim ductis inter se concurrentibus formata easque omnes tangente, ac de novo in ea re analyseos infinitorum usu [Construction from an infinite number of ordered and concurrent curves, from the tangent to each curve; a new application to undertake this analysis of infinities]. Acta Eruditorum, 11, 168–171 [French translation in PARMENTIER (1995), 210–222].

    Google Scholar 

  • LI, J., WU, H.; YANG, C., WONG, D.W. and XIE, J. (2011). Visualizing dynamic geosciences phenomena using an octree-based view-dependent LOD [level of detail] strategy within virtual globes. Computers & Geosciences, 37, 1295–1302.

    Article  Google Scholar 

  • LISLE, R.J. (1980). Block diagrams with the orthographic net – a simplified work scheme. Journal of Geological Education, 29, 81–83.

    Article  Google Scholar 

  • LIU, J., PEREIRA, G.G., LIU, Q. and REGENAUER-LIEB, K. (2016). Computational challenges in the analyses of petrophysics using microtomography and upscaling: A review. Computers & Geosciences, 89, 107–117.

    Article  Google Scholar 

  • LOUDON, T.V. (1964). Computer analysis of orientation data in structural geology. Technical Report No. 13 of ONR [Office of Naval Research] Task No. 389-135 Contract Nonr 1228(26), Evanston, IL, Geography Branch, Northwestern University [online: http://nora.nerc.ac.uk/19528/1/ONRrep13.pdf].

  • LOWAN, A.N. (1933). On the cooling of a radioactive sphere. Physical Review, 44, 769–775.

    Article  Google Scholar 

  • MANDELBROT, B.B. and WALLIS, J.R. (1969). Some long-run properties of geophysical records. Water Resources Research, 5, 321–340.

    Article  Google Scholar 

  • McINTYRE, D.B. and WEISS, L.E. (1956). Construction of block diagrams to scale in orthographic projection. Proceedings of the Geologists Association, 67, 142–155.

    Google Scholar 

  • MEAGHER, D. (1982a). Octree generation, analysis and manipulation. Report IPL-TR-027, Troy, NY, Image Processing Laboratory, Computer and Systems Engineering Department, Rensselaer Polytechnic Institute [online: http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA117450].

  • MEAGHER, D.J. (1982b). Geometric modeling using octree encoding. Computer Graphics and Image Processing, 19, 129–147.

    Article  Google Scholar 

  • MIESCH, A.T. (1976a). Geochemical survey of Missouri – Methods of sampling, laboratory analysis and statistical reduction of data: with sections on laboratory methods. United States Geological Survey Professional Paper 954-A, Washington, DC, United States Government Printing Office.

    Google Scholar 

  • MIESCH, A.T. (1976b). Q-mode factor analysis of geochemical and petrologic data matrices with constant row-sums. United States Geological Survey Professional Paper 574-G, Washington, DC, United States Government Printing Office.

    Google Scholar 

  • MILLER, J. (ed.) (2015a). Earliest known uses of some of the words of mathematics [online: http://jeff560.tripod.com/mathword.html].

  • MILLER, R.L. and KAHN, J.S. (1962). Statistical analysis in the geological sciences. New York, John Wiley & Sons.

    Google Scholar 

  • MINKOWSKI, H. (1901). Ueber die begriffe, länge, oberfläche und vlumen [On the terms length, surface and volume.]. Jahresbericht der Deutschen Mathematikervereinigung, 9, 115–121.

    Google Scholar 

  • MORSE, P.M. and KIMBALL, G.E. (1958). Methods of operations research. Cambridge, MS, Technology Press, Massachusetts Institute of Technology.

    Google Scholar 

  • OCHIAI, A. (1957). Zoogeographical studies on the Soleoid fishes found in Japan and its neighbouring regions. II. Bulletin of the Japanese Society of Scientific Fisheries, 22, 526–530.

    Google Scholar 

  • OHM, G.S. (1839). Bemerkungen über Combinationstöne und Stosse [Remarks on combination tones and pulses]. Poggendorff’s Annalen der Physik und Chemie, 47, 463–466.

    Article  Google Scholar 

  • OLDHAM, C.H.G. and SUTHERLAND, D.B. (1955). Orthogonal polynomials: Their use in estimating the regional effect. Geophysics, 20, 295–306.

    Article  Google Scholar 

  • ORE, Ø (1953). Cardano: The gambling scholar. Princeton, NJ, Princeton University Press.

    Google Scholar 

  • PAN, X., DAY, H.W., WANG, W., BECKETT, L.A. and SCHENKER, M.B. (2005). Residential proximity to naturally occurring asbestos and mesothelioma risk in California. American Journal of Respiratory and Critical Care Medicine, 172, 1019–1025.

    Article  Google Scholar 

  • PARSONS, T., TODA, S., STEIN, R.S., BARKA, A. and DIETERICH, J.H. (2000). Heightened odds of large earthquakes near Istanbul: an interaction-based probability calculation. Science, 288, 661–665.

    Article  Google Scholar 

  • PAULSON, E. and WALLIS, W.A. (1947). Selected techniques of statistical analysis. New York, NY, McGraw-Hill.

    Google Scholar 

  • PEARSON, E.S. and CHANDRA SEKAR, C. (1936). The efficiency of statistical tools and a criterion for the rejection of outlying observations. Biometrika, 28, 308–320.

    Article  Google Scholar 

  • PEARSON, K. (1894). Contributions to the mathematical theory of evolution. I. On the dissection of asymmetrical frequency curves. Philosophical Transactions of the Royal Society, London, ser. A, 185, 71–110.

    Google Scholar 

  • PEARSON, K. (1896b). Mathematical contributions to the theory of evolution – On a form of spurious correlation which may arise when indices are used in the measurement of organs. Proceedings of the Royal Society, London, 60, 489–498.

    Google Scholar 

  • PEARSON, K. (1901). On lines and planes of closest fit to systems of points in space. The London, Edinburgh and Dublin Philosophical Magazine and Journal of Science, ser. 6, 2, 559–572.

    Article  Google Scholar 

  • PEARSON, K. (1925). The fifteen constant bivariate frequency surface. Biometrika, 17, 268–313.

    Article  Google Scholar 

  • PEARSON, K. and LEE, A. (1903). On the laws of inheritance in man. I. Inheritance of physical characteristics. Biometrika, 2, 357–462.

    Google Scholar 

  • PETERS, J.A. (1968). A computer program for calculating degree of biogeographical resemblance between areas. Systematic Zoology, 17, 64–69.

    Article  Google Scholar 

  • PHINNEY, R.A. and SMITH, S.W. (1963). Processing of seismic data from an automatic digital recorder. Bulletin of the Seismological Society of America, 53, 549–562.

    Google Scholar 

  • PINCUS, H.J. and DOBRIN, M.B. (1966). Geological applications of optical data processing. Journal of Geophysical Research, 71, 4861–4869.

    Article  Google Scholar 

  • PLANTZ, A.R. and BERMAN, M. (1971). Adoption of the octal number system. IEEE Transactions on Computers, 20, 593–598.

    Article  Google Scholar 

  • POLYANIN, A.D. and ZAITSEV, V.F. (2003). Handbook of exact solutions for ordinary differential equations. 2nd edn., Boca Raton, FL, Chapman and Hall/CRC Press.

    Google Scholar 

  • PRESS, F., EWING, M. and TOLSTOY, I. (1950). The Airy phase of shallow-focus submarine earthquakes. Bulletin of the Seismological Society of America, 40, 111–148.

    Google Scholar 

  • REIMANN, C., FILZMOSER, P. and GARRETT, R.G. (2005). Background and threshold: critical comparison of methods of determination. Science of the Total Environment, 346, 1–16.

    Article  Google Scholar 

  • RICKER, N. (1945). The computation of output disturbances from amplifiers for true wavelet inputs. Geophysics, 10, 207–220.

    Article  Google Scholar 

  • ROBINSON, E.A. (1962). Extremal representation of stationary stochastic processes. Arkiv för Matematik, 4, 379–384.

    Article  Google Scholar 

  • ROBINSON, E.A. (1967b). Statistical communication and detection with special reference to digital signal processing of radar and seismic signals. London, Griffin.

    Google Scholar 

  • ROBINSON, E.A. and TREITEL, S. (1964). Principals of digital filtering. Geophysics, 29, 395–404.

    Article  Google Scholar 

  • SAHOO, N.R. and PANDALAI, H.S. (1999). Integration of sparse geologic information in gold targeting using logistic regression analysis in the Hutti-Maski shist belt, Raichor, Karnataka, India – a case study. Natural Resources Research, 8, 233–250.

    Article  Google Scholar 

  • SAMET, H. (2005). Multidimensional spatial data structures. In: MEHTA, D.P. and SAHNI, S. (eds.). Handbook of data structures and applications. Boca Raton, FL, Chapman & Hall/CRC Press, 16.1–16.29.

    Google Scholar 

  • SANDIFER, C.E. (2007). The early mathematics of Leonhard Euler. Washington, DC, The Mathematical Association of America.

    Google Scholar 

  • SARMA, D.D. and SELVARAJ, J.B. (1990). Two-dimensional orthonormal trend surfaces for prospecting. Computers & Geosciences, 16, 897–909.

    Article  Google Scholar 

  • SCHEFFÉ, H. (1943). Statistical inference in the non-parametric case. Annals of Mathematical Statistics, 305–332.

    Google Scholar 

  • SCHEFFÉ, H. (1959). The analysis of variance. New York, NY, John Wiley & Sons.

    Google Scholar 

  • SCHOTTKY, W. (1926). Small shot effect and flicker effect [translated by J.B. JOHNSON]. Physical Review, 28, 74–103.

    Google Scholar 

  • SHERIFF, R.E.(1984). Encyclopedic dictionary of exploration geophysics. 2nd edn., Tulsa, Society of Exploration Geophysicists.

    Google Scholar 

  • SIMPSON, S.M. (1954). Least squares polynomial fitting to gravitational data and density plotting by digital computer. Geophysics, 19, 255–269.

    Article  Google Scholar 

  • SNYDER, J.P. (1987). Map projections – A working manual. United States Geological Survey Professional Paper 1395, Washington, DC, United States Government Printing Office.

    Google Scholar 

  • SOETAERT, K., CASH, J. and MAZZIA, F. (2012). Solving differential equations in R. Berlin, Springer-Verlag.

    Book  Google Scholar 

  • SOKAL, R.R. and SNEATH, P.H.A. (1963). Principles of numerical taxonomy. San Francisco, CA, Freeman.

    Google Scholar 

  • SPEARMAN, C.E. (1904b). ‘General intelligence’ objectively determined and measured. American Journal of Psychology, 15, 201–293.

    Article  Google Scholar 

  • STROUSTRUP, B. (1985). The C++ Programming Language. Reading, MA, Addison-Wesley.

    Google Scholar 

  • SWEDBERG [SWEDENBORG], E. (1941). A new system of reckoning which turns at 8 instead of the usual turning at the number 10. Philadelphia, PA [English translation by A. ACTON], Swedenborg Scientific Association.

    Google Scholar 

  • SZEGÖ, G. (1939). Orthogonal polynomials. American Mathematical Society Colloquium Publications, v. 23. Providence, RI, American Mathematical Society.

    Google Scholar 

  • TABER, H. (1890). On certain properties of symmetric, skew symmetric, and orthogonal matrices. Proceedings of the London Mathematical Society, 1, 449–469.

    Google Scholar 

  • THOMPSON, G.T. (1992). The grand unified theory of least squares: f2(N) = f (2N). Computers & Geosciences, 18, 815–822.

    Article  Google Scholar 

  • THOMSON, W. [Lord Kelvin] (1856). Elements of a mathematical theory of elasticity. Philosophical Transactions of the Royal Society, London, 146, 481–498.

    Article  Google Scholar 

  • THURSTONE, L.L. (1931). Multiple factor analysis. Psychological Revue, 38, 406–427.

    Article  Google Scholar 

  • TEISSIER, G. (1948). La relation d’allometrie sa signification statistique et biologique [The allometric relationship: its statistical and biological significance]. Biometrics, 4, 14–53.

    Article  Google Scholar 

  • van ROSSUM, G. (1995). Python tutorial. Technical Report CS-R9526, Amsterdam, Centrum voor Wiskunde en Informatica.

    Google Scholar 

  • VERMA, S.P. (1997). Sixteen statistical tests for outlier detection and rejection in evaluation of International Geochemical Reference Materials: Example of microgabbro PM-S. Geostandards Newsletter, 21, 59–75.

    Article  Google Scholar 

  • WAGENMAKERS, E.J., FARRELL, S. and RATCLIFFE, R. (2004). Estimation and interpretation of 1/f α noise in human cognition. Psychonomic Bulletin and Review, 11, 579–615.

    Google Scholar 

  • WATSON, G.S. (1965). Equatorial distributions on the sphere. 52, 193–201.

    Google Scholar 

  • WATSON, G.S. (1966). The statistics of orientation data. Journal of Geology, 74, 786–797.

    Article  Google Scholar 

  • WATTIMENA, R.K. (2013). Predicting probability stability of rock slopes using logistic regression. International Journal of the Japanese Committee for Rock Mechanics, 9, 1–6.

    Google Scholar 

  • WEEDON, G.P. (2003). Time series analysis and cyclostratigraphy. Cambridge, Cambridge University Press.

    Book  Google Scholar 

  • WENNER, F. (1932). Development of seismological instruments at the Bureau of Standards. Bulletin of the Seismological Society of America, 22, 60–67.

    Google Scholar 

  • WHITTEN, E.H.T. (1970). Orthogonal polynomial trend surfaces for irregularly spaced data. Journal of the International Association for Mathematical Geology, 2, 141–152.

    Article  Google Scholar 

  • WIENER, N. (1942). The extrapolation, interpolation and smoothing of stationary time series with engineering applications. D.I.C. Contract 6037, A research pursued on behalf of the National Defence Research Council (Section D) February 1, 1942. Cambridge, MA, The Massachusetts Institute of Technology.

    Google Scholar 

  • WILKS, S.S. (1948). Order statistics. Bulletin of the American Mathematical Society, 54, 6–50.

    Article  Google Scholar 

  • WILSON, E.B. (1901). Vector analysis, founded upon the lectures of J. Willard Gibbs. New York, NY, Charles Scribner’s Sons.

    Google Scholar 

  • WORONOW, A. and BUTLER, J.C. (1986). Complete subcompositional independence testing of closed arrays. Computers & Geosciences, 12, 267–279.

    Article  Google Scholar 

  • WRIGHT, F.E. (1911). The methods of petrographic-microscopic research, their relative accuracy and range of application. Monograph 158, Washington, DC, The Carnegie Institution of Washington.

    Google Scholar 

  • WRIGLEY, N. and DUNN, R. (1986). Graphical diagnostics for logistic oil exploration models. Mathematical Geology, 18, 355–374.

    Article  Google Scholar 

  • YULE, G.U. (1906). On the influence of bias and personal equation in statistics of ill-defined qualities. Journal of the Anthropological Institute of Great Britain and Ireland, 36, 325–381.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Howarth, R.J. (2017). O. In: Dictionary of Mathematical Geosciences . Springer, Cham. https://doi.org/10.1007/978-3-319-57315-1_15

Download citation

Publish with us

Policies and ethics