Skip to main content

Fuel Cells: An Overview with Emphasis on Polymer Electrolyte Fuel Cells

  • Chapter
  • First Online:
Electrochemical Science for a Sustainable Society

Abstract

A brief overview is presented of the general topic of fuel cells as it relates to the work of John Bockris and was inspired by him. We trace some of the historical development of the field, starting in 1839 with Sir William Grove, up to the present, with some comments on the proliferation of fuel cells in electric vehicles and residential electric power units. We also illustrate some of the development of the field with examples from our own research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bockris JOM, Srinivasan S (1969) Fuel cells: their electrochemistry. McGraw-Hill, New York

    Google Scholar 

  2. Bockris JOM, Reddy AKN (1970) Modern electrochemistry: an introduction to an interdisciplinary area, vol 1. Springer, US, New York

    Book  Google Scholar 

  3. Bockris JOM, Reddy AKN (1970) Modern electrochemistry: an introduction to an interdisciplinary area, vol 2. Springer, US, New York

    Book  Google Scholar 

  4. Bockris JOM (ed) (1972) Electrochemistry of cleaner environments. Springer US, New York. doi:10.1007/978-1-4684-1950-4

  5. Bockris JOM, Fredlein RA (1973) A workbook of electrochemistry. Springer US, New York. doi:10.1007/978-1-4613-4562-6

  6. Bockris JOM, Nagy Z (1974) Electrochemistry for ecologists. Springer US, New York. doi:10.1007/978-1-4684-2058-6

  7. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38. doi:10.1038/238037a0

    Article  CAS  Google Scholar 

  8. Bockris JOM, Reddy AKN (1970) Some electrochemical systems of technological interest. Modern electrochemistry: an introduction to an interdisciplinary area, vol 2, 1st edn. Springer, US, New York, pp 1265–1432

    Google Scholar 

  9. Grove WR (1839) XXIV. On voltaic series and the combination of gases by platinum. Philos Mag 3 14(86–87):127–130. doi:10.1080/14786443908649684

  10. Bockris JOM, Reddy AKN (2000) Modern electrochemistry 2B: electrodics in chemistry, engineering, biology, and environmental science. Springer, US, New York

    Google Scholar 

  11. Bockris JOM, Reddy AKN, Gamboa-Aldeco M (2000) Modern electrochemistry 2A: fundamentals of electrodics. Springer, US, New York

    Google Scholar 

  12. Bockris JOM, Reddy AKN (2000) Conversion and storage of electrochemical energy. Modern electrochemistry 2B: electrodics in chemistry, engineering, biology, and environmental science. Springer, US, New York, pp 1789–1901

    Google Scholar 

  13. Jalan VM, Landsman DA (1980) Noble metal-refractory metal alloys as catalysts and method for making. US Patent 4,186,110, 29 Jan 1980

    Google Scholar 

  14. Landsman DA, Luczak FJ (1982) Noble metal-chromium alloy catalysts and electrochemical cell. US Patent 4,316,944, 23 Feb 1982

    Google Scholar 

  15. Luczak FJ, Landsman DA (1984) Ternary fuel cell catalysts containing platinum, cobalt and chromium. USA Patent US Patent 4,447,506, 8 May 1984

    Google Scholar 

  16. Luczak FJ, Landsman DA (1987) Ordered ternary fuel cell catalysts containing platinum and cobalt and method for making the catalysts. USA Patent US Patent 4,677,092, 30 Jun 1987

    Google Scholar 

  17. Watanabe M, Uchida M, Motoo S (1987) Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol. J Electroanal Chem Interfac Electrochem 229(1–2):395–406. doi:10.1016/0022-0728(87)85156-2

    Article  CAS  Google Scholar 

  18. Watanabe M, Tsurumi K, Mizukami T, Nakamura T, Stonehart P (1994) Activity and stability of ordered and disordered Co-Pt alloys for phosphoric acid fuel cells. J Electrochem Soc 141(10):2659–2668. doi:10.1149/1.2059162

    Article  CAS  Google Scholar 

  19. Toda T, Igarashi H, Watanabe M (1998) Role of electronic property of Pt and Pt alloys on electrocatalytic reduction of oxygen. J Electrochem Soc 145(12):4185–4188. doi:10.1149/1.1838934

    Article  CAS  Google Scholar 

  20. Toda T, Igarashi H, Uchida H, Watanabe M (1999) Enhancement of the electroreduction of oxygen on Pt alloys with Fe, Ni, and Co. J Electrochem Soc 146(10):3750–3756. doi:10.1149/1.1392544

    Article  CAS  Google Scholar 

  21. Toda T, Igarashi H, Watanabe M (1999) Enhancement of the electrocatalytic O2 reduction on Pt-Fe alloys. J Electroanal Chem 460(1–2):258–262. doi:10.1016/S0022-0728(98)00361-1

    Article  CAS  Google Scholar 

  22. Watanabe M, Makita K, Usami H, Motoo S (1986) New preparation method of a high performance gas diffusion electrode working at 100% utilization of catalyst clusters and analysis of the reaction layer. J Electroanal Chem 197(1–2):195–208. doi:10.1016/0022-0728(86)80149-8

    Article  CAS  Google Scholar 

  23. Nishida R, Puengjinda P, Nishino H, Kakinuma K, Brito ME, Watanabe M, Uchida H (2014) High-performance electrodes for reversible solid oxide fuel cell/solid oxide electrolysis cell: Ni-Co dispersed ceria hydrogen electrodes. RSC Adv 4(31):16260–16266. doi:10.1039/C3RA47089J

    Article  CAS  Google Scholar 

  24. Bockris JOM (2011) An electrochemical life. J Solid State Electrochem 15:1763. doi:10.1007/s10008-011-1298-7

    Article  CAS  Google Scholar 

  25. Baranton S, Uchida H, Tryk DA, Dubois JL, Watanabe M (2013) Hydrolyzed polyoxymethylenedimethylethers as liquid fuels for direct oxidation fuel cells. Electrochim Acta 108:350–355. doi:10.1016/j.electacta.2013.06.138

    Article  CAS  Google Scholar 

  26. Watanabe M, Stonehart P, Tsurumi K, Yamamoto N, Hara N, Nakamura T (1993) Electrocatalyst and process of preparing same. US Patent 5,189,005, 23 Feb 1993

    Google Scholar 

  27. Markovic NM, Schmidt TJ, Stamenkovic V, Ross PN (2001) Oxygen reduction reaction on Pt and Pt bimetallic surfaces: a selective review. Fuel Cells 1(2):105–116. doi:10.1002/1615-6854(200107)1:2<105:AID-FUCE105>3.0.CO;2-9

    Article  CAS  Google Scholar 

  28. Paulus UA, Wokaun A, Scherer GG, Schmidt TJ, Stamenkovic V, Markovic NM, Ross PN (2002) Oxygen reduction on high surface area Pt-based alloy catalysts in comparison to well defined smooth bulk alloy electrodes. Electrochim Acta 47(22–23):3787–3798. doi:10.1016/S0013-4686(02)00349-3

    Article  CAS  Google Scholar 

  29. Stamenkovic V, Schmidt TJ, Ross PN, Markovic NM (2002) Surface composition effects in electrocatalysis: kinetics of oxygen reduction on well-defined Pt3Ni and Pt3Co alloy surfaces. J Phys Chem B 106(46):11970–11979. doi:10.1021/jp021182h

    Article  CAS  Google Scholar 

  30. Xu Y, Ruban AV, Mavrikakis M (2004) Adsorption and dissociation of O2 on Pt-Co and Pt-Fe alloys. J Am Chem Soc 126:4717–4725. doi:10.1021/ja031701+

    Article  CAS  Google Scholar 

  31. Kitchin JR, Norskov JK, Barteau MA, Chen JG (2004) Modification of the surface electronic and chemical properties of Pt(111) by subsurface 3d transition metals. J Chem Phys 120(21):10240–10246. doi:10.1063/1.1737365

    Article  CAS  Google Scholar 

  32. Wakisaka M, Mitsui S, Hirose Y, Kawashima K, Uchida H, Watanabe M (2006) Electronic structures of Pt-Co and Pt-Ru alloys for CO-tolerant anode catalysts in polymer electrolyte fuel cells studied by EC-XPS. J Phys Chem B 110(46):23489–23496. doi:10.1021/jp0653510

    Article  CAS  Google Scholar 

  33. Nilsson A, Hasselström J, Föhlisch A, Karis O, Pettersson LGM, Nyberg M, Triguero L (2000) Probing chemical bonding in adsorbates using X-ray emission spectroscopy. J Electron Spectrosc Relat Phenom 110–111:15–39. doi:10.1016/s0368-2048(00)00155-9

    Article  Google Scholar 

  34. Medford AJ, Vojvodic A, Hummelshøj JS, Voss J, Abild-Pedersen F, Studt F, Bligaard T, Nilsson A, Nørskov JK (2015) From the Sabatier principle to a predictive theory of transition-metal heterogeneous catalysis. J Catal 328:36–42. doi:10.1016/j.jcat.2014.12.033

    Article  CAS  Google Scholar 

  35. Wakisaka M, Suzuki H, Mitsui S, Uchida H, Watanabe M (2008) Increased oxygen coverage at Pt-Fe alloy cathode for the enhanced oxygen reduction reaction studied by EC-XPS. J Phys Chem C 112(7):2750–2755. doi:10.1021/jp0766499

    Article  CAS  Google Scholar 

  36. Watanabe M, Wakisaka M, Yano H, Uchida H (2008) Analyses of oxygen reduction reaction at Pt-based electrocatalysts. ECS Trans 16(2):199–206. doi:10.1149/1.2981855

    Article  Google Scholar 

  37. Wakisaka M, Watanabe M, Uchida H (2010) Mechanism of an enhanced oxygen reduction reaction at platinum-based electrocatalysts: identification and quantification of oxygen species adsorbed on electrodes by X-ray photoelectron spectroscopy. In: Wieckowski A, Nørskov JK (eds) Fuel cell science: theory, fundamentals, and biocatalysis. Wiley, Hoboken, NJ, USA, pp 147–168. doi:10.1002/9780470630693.ch4

  38. Uchida H, Yano H, Wakisaka M, Watanabe M (2011) Electrocatalysis of the oxygen reduction reaction at Pt and Pt-alloys. Electrochemistry 79(5):303–311

    Article  CAS  Google Scholar 

  39. Wakisaka M, Udagawa Y, Suzuki H, Uchida H, Watanabe M (2011) Structural effects on the surface oxidation processes at Pt single-crystal electrodes studied by X-ray photoelectron spectroscopy. Energy Env Sci 4:1662–1666. doi:10.1039/C0EE00756K

    Article  CAS  Google Scholar 

  40. Wakisaka M, Kobayashi S, Morishima S, Hyuga Y, Tryk DA, Watanabe M, Iiyama A, Uchida H (2016) Unprecedented dependence of the oxygen reduction activity on Co content at Pt skin/Pt-Co(111) single crystal electrodes. Electrochem Commun 67:47–50. doi:10.1016/j.elecom.2016.03.015

  41. Omura J, Yano H, Tryk DA, Watanabe M, Uchida H (2014) Electrochemical quartz crystal microbalance analysis of the oxygen reduction reaction on Pt-based electrodes. Part 2: adsorption of oxygen species and ClO4 anions on Pt and Pt–Co alloy in HClO4 solutions. Langmuir 30(1):432–439. doi:10.1021/la404188p

    Article  CAS  Google Scholar 

  42. Wakisaka M, Hyuga Y, Abe K, Uchida H, Watanabe M (2011) Facile preparation and electrochemical behavior of Pt100−xCox(111) single-crystal electrodes in 0.1 M HClO4. Electrochem Commun 13(4):317–320. doi:10.1016/j.elecom.2011.01.013

    Article  CAS  Google Scholar 

  43. Watanabe M, Yano H, Tryk DA, Uchida H (2016) Highly durable and active PtCo alloy/graphitized carbon black cathode catalysts by controlled deposition of stabilized Pt skin layers. J Electrochem Soc 163(6):F455–F463. doi:10.1149/2.0331606jes

    Article  CAS  Google Scholar 

  44. Yoon W, Weber AZ (2011) Modeling low-platinum-loading effects in fuel-cell catalyst layers. J Electrochem Soc 158(8):B1007–B1018. doi:10.1149/1.3597644

    Article  CAS  Google Scholar 

  45. Hossain MS, Tryk D, Yeager E (1989) The electrochemistry of graphite and modified graphite surfaces: the reduction of O2. Electrochim Acta 34:1733–1737. doi:10.1016/0013-4686(89)85057-1

    Article  CAS  Google Scholar 

  46. Masa J, Xia W, Muhler M, Schuhmann W (2015) On the role of metals in nitrogen-doped carbon electrocatalysts for oxygen reduction. Angew Chem Int Ed 54(35):10102–10120. doi:10.1002/anie.201500569

    Article  CAS  Google Scholar 

  47. Gupta S, Tryk D, Bae I, Aldred W, Yeager E (1989) Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction. J Appl Electrochem 19:19–27. doi:10.1007/BF01039385

    Article  CAS  Google Scholar 

  48. Zhu Y, Zhang B, Liu X, Wang D-W, Su DS (2014) Unravelling the structure of electrocatalytically active Fe–N complexes in carbon for the oxygen reduction reaction. Angew Chem Int Ed 53(40):10673–10677. doi:10.1002/anie.201405314

    Article  CAS  Google Scholar 

  49. Zagal JH, Koper MTM (2016) Reactivity descriptors for the activity of molecular MN4 catalysts for the oxygen reduction reaction. Angew Chem Int Ed 55(47):14510–14521. doi:10.1002/anie.201604311

    Article  CAS  Google Scholar 

  50. Watanabe M, Motoo S (1975) Electrocatalysis by ad-atoms: Part III. Enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms. J Electroanal Chem 60(3):275–283. doi:10.1016/S0022-0728(75)80262-2

    Article  CAS  Google Scholar 

  51. Watanabe M, Motoo S (1976) Oxidation of CO-H2 gas mixtures on Ru electrodes and Pt with Ru and As adatoms (in Japanese). Denki Kagaku 44:602–607

    CAS  Google Scholar 

  52. Ross PN (1992) Trends in the bonding of CO to the surfaces of Pt3M alloys (M = Ti Co, and Sn). J Vac Sci Technol A: Vacuum Surf Films 10(4):2546–2550. doi:10.1116/1.578096

    Article  CAS  Google Scholar 

  53. Igarashi H, Fujino T, Zhu Y, Uchida H, Watanabe M (2001) CO tolerance of Pt alloy electrocatalysts for polymer electrolyte fuel cells and the detoxification mechanism. Phys Chem Chem Phys 3(3):306–314. doi:10.1039/B007768M

    Article  CAS  Google Scholar 

  54. Arenz M, Stamenkovic V, Blizanac BB, Mayrhofer KJ, Markovic NM, Ross PN (2005) Carbon-supported Pt-Sn electrocatalysts for the anodic oxidation of H2, CO, and H2/CO mixtures: part II: the structure-activity relationship. J Catal 232(2):402–410. doi:10.1016/j.jcat.2005.03.022

    Article  CAS  Google Scholar 

  55. Shi G, Yano H, Tryk DA, Watanabe M, Iiyama A, Uchida H (2016) A novel Pt-Co alloy hydrogen anode catalyst with superlative activity, CO-tolerance and robustness. Nanoscale 8(29):13893–13897. doi:10.1039/c6nr00778c

    Article  CAS  Google Scholar 

  56. Shi G, Yano H, Tryk DA, Iiyama A, Uchida H (2017) Highly active, CO-tolerant, and robust hydrogen anode catalysts: Pt-M(M = Fe Co, Ni) alloys with stabilized Pt-skin layers. ACS Catal 7(1):267–274. doi:10.1021/acscatal.6b02794

    Article  CAS  Google Scholar 

  57. Strmcnik D, Uchimura M, Wang C, Subbaraman R, Danilovic N, van der Vliet D, Paulikas AP, Stamenkovic VR, Markovic NM (2013) Improving the hydrogen oxidation reaction rate by promotion of hydroxyl adsorption. Nat Chem 5(4):300–306. doi:10.1038/nchem.1574

    Article  CAS  Google Scholar 

  58. Durst J, Siebel A, Simon C, Hasche F, Herranz J, Gasteiger HA (2014) New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Env Sci 7(7):2255–2260. doi:10.1039/C4EE00440J

    Article  CAS  Google Scholar 

  59. Wang Y, Wang G, Li G, Huang B, Pan J, Liu Q, Han J, Xiao L, Lu J, Zhuang L (2015) Pt-Ru catalyzed hydrogen oxidation in alkaline media: oxophilic effect or electronic effect? Energy Env Sci 8(1):177–181. doi:10.1039/C4EE02564D

    Article  CAS  Google Scholar 

  60. Sheng W, Bivens AP, Myint M, Zhuang Z, Forest RV, Fang Q, Chen JG, Yan Y (2014) Non-precious metal electrocatalysts with high activity for hydrogen oxidation reaction in alkaline electrolytes. Energy Env Sci 7(5):1719–1724. doi:10.1039/C3EE43899F

    Article  CAS  Google Scholar 

  61. Miller HA, Lavacchi A, Vizza F, Marelli M, Di Benedetto F, D’Acapito F, Paska Y, Page M, Dekel DR (2016) A Pd/C-CeO2 anode catalyst for high-performance platinum-free anion exchange membrane fuel cells. Angew Chem Int Ed 55(20):6004–6007. doi:10.1002/anie.201600647

    Article  CAS  Google Scholar 

  62. Serov A, Padilla M, Roy AJ, Atanassov P, Sakamoto T, Asazawa K, Tanaka H (2014) Anode catalysts for direct hydrazine fuel cells: from laboratory test to an electric vehicle. Angew Chem Int Ed 53(39):10336–10339. doi:10.1002/anie.201404734

    Article  CAS  Google Scholar 

  63. Jeon T-Y, Watanabe M, Miyatake K (2014) Carbon segregation-induced highly metallic Ni nanoparticles for electrocatalytic oxidation of hydrazine in alkaline media. ACS Appl Mater Interfaces 6(21):18445–18449. doi:10.1021/am5058635

    Article  CAS  Google Scholar 

  64. Shao Y, Liu J, Wang Y, Lin Y (2009) Novel catalyst support materials for PEM fuel cells: current status and future prospects. J Mater Chem 19(1):46–59. doi:10.1039/B808370C

    Article  CAS  Google Scholar 

  65. Yano H, Kataoka M, Yamashita H, Uchida H, Watanabe M (2007) Oxygen reduction activity of carbon-supported Pt-M (M = V, Ni, Cr Co, and Fe) alloys prepared by nanocapsule method. Langmuir 23(11):6438–6445. doi:10.1021/la070078u

    Article  CAS  Google Scholar 

  66. Chen M, Nikles DE (2002) Synthesis, self-assembly, and magnetic properties of FexCoyPt100-x-y nanoparticles. Nano Lett 2(3):211–214. doi:10.1021/nl015649w

    Article  CAS  Google Scholar 

  67. Sun S, Anders S, Thomson T, Baglin JEE, Toney MF, Hamann HF, Murray CB, Terris BD (2003) Controlled synthesis and assembly of FePt nanoparticles. J Phys Chem B 107(23):5419–5425. doi:10.1021/jp027314o

    Article  CAS  Google Scholar 

  68. Yano H, Akiyama T, Uchida H, Watanabe M (2010) Temperature dependence of oxygen reduction activity at Nafion-coated Pt/graphitized carbon black catalysts prepared by the nanocapsule method. Energy Environ Sci 3(10). doi:10.1039/C0EE00106F

  69. Yano H, Akiyama T, Bele P, Uchida H, Watanabe M (2010) Durability of Pt/graphitized carbon catalysts for the oxygen reduction reaction prepared by the nanocapsule method. Phys Chem Chem Phys 12(15):3806–3814. doi:10.1039/B923460H

    Article  CAS  Google Scholar 

  70. Yano H, Akiyama T, Watanabe M, Uchida H (2013) High durability of Pt/graphitized carbon catalysts for polymer electrolyte fuel cells prepared by the nanocapsule method. J Electroanal Chem 688:137–142. doi:10.1016/j.jelechem.2012.09.028

    Article  CAS  Google Scholar 

  71. Yano H, Song JM, Uchida H, Watanabe M (2008) Temperature dependence of oxygen reduction activity at carbon-supported PtxCo (x = 1, 2, and 3) alloy catalysts prepared by the nanocapsule method. J Phys Chem C 112(22):8372–8380. doi:10.1021/jp712025q

    Article  CAS  Google Scholar 

  72. Okaya K, Yano H, Uchida H, Watanabe M (2010) Control of particle size of Pt and Pt alloy electrocatalysts supported on carbon black by the nanocapsule method. ACS Appl Mater Interf 2(3):888–895. doi:10.1021/am9008693

    Article  CAS  Google Scholar 

  73. Wang J, Swain GM (2003) Fabrication and evaluation of platinum/diamond composite electrodes for electrocatalysis—preliminary studies of the oxygen-reduction reaction. J Electrochem Soc 150(1):E24–E32. doi:10.1149/1.1524612

    Article  CAS  Google Scholar 

  74. Spataru N, Zhang XT, Spataru T, Tryk DA, Fujishima A (2008) Platinum electrodeposition on conductive diamond powder and its application to methanol oxidation in acidic media. J Electrochem Soc 155(3):B264–B269. doi:10.1149/1.2830857

    Article  CAS  Google Scholar 

  75. La-Torre-Riveros L, Abel-Tatis E, Mendez-Torres AE, Tryk DA, Prelas M, Cabrera CR (2011) Synthesis of platinum and platinum-ruthenium-modified diamond nanoparticles. J Nanopart Res 13(7):2997–3009. doi:10.1007/s11051-010-0196-8

    Article  CAS  Google Scholar 

  76. La-Torre-Riyeros L, Guzman-Bas R, Mendez-Torres AE, Prelas M, Tryk DA, Cabrera CR (2012) Diamond nanoparticles as a support for Pt and PtRu catalysts for direct methanol fuel cells. ACS Appl Mater Interf 4(2):1134–1147. doi:10.1021/am2018628

    Article  CAS  Google Scholar 

  77. LaTorre-Riveros L, Tryk DA, Cabrera CR (2005) Chemical purification and characterization of diamond nanoparticles for electrophoretically coated electrodes. Rev Adv Mater Sci 3(10):256–260

    Google Scholar 

  78. Chen G, Bare SR, Mallouk TE (2002) Development of supported bifunctional electrocatalysts for unitized regenerative fuel cells. J Electrochem Soc 149(8):A1092–A1099. doi:10.1149/1.1491237

    Article  CAS  Google Scholar 

  79. Shintani H, Kojima Y, Kakinuma K, Watanabe M, Uchida M (2015) Novel strategy to mitigate cathode catalyst degradation during air/air startup cycling via the atmospheric resistive switching mechanism of a hydrogen anode with a platinum catalyst supported on tantalum-doped titanium dioxide. J Power Sources 294:292–298. doi:10.1016/j.jpowsour.2015.06.072

    Article  CAS  Google Scholar 

  80. Parrondo J, Han T, Niangar E, Wang C, Dale N, Adjemian K, Ramani V (2014) Platinum supported on titanium–ruthenium oxide is a remarkably stable electrocatayst for hydrogen fuel cell vehicles. PNAS 111(1):45–50. doi:10.1073/pnas.1319663111

    Article  CAS  Google Scholar 

  81. Chhina H, Campbell S, Kesler O (2006) An oxidation-resistant indium tin oxide catalyst support for proton exchange membrane fuel cells. J Power Sources 161(2):893–900. doi:10.1016/j.jpowsour.2006.05.014

    Article  CAS  Google Scholar 

  82. Senoo Y, Kakinuma K, Uchida M, Uchida H, Deki S, Watanabe M (2014) Improvements in electrical and electrochemical properties of Nb-doped SnO2-δ supports for fuel cell cathodes due to aggregation and Pt loading. RSC Adv 4(61):32180–32188. doi:10.1039/C4RA03988B

    Article  CAS  Google Scholar 

  83. Chino Y, Kakinuma K, Tryk DA, Watanabe M, Uchida M (2016) Influence of Pt loading and cell potential on the HF ohmic resistance of an Nb-doped SnO2-supported Pt cathode for PEFCs. J Electrochem Soc 163(2):F97–F105. doi:10.1149/2.0571602jes

    Article  CAS  Google Scholar 

  84. Chino Y, Taniguchi K, Senoo Y, Kakinuma K, Hara M, Watanabe M, Uchida M (2015) Effect of added graphitized CB on both performance and durability of Pt/Nb-SnO2 cathodes for PEFCs. J Electrochem Soc 162(7):F736–F743. doi:10.1149/2.0651507jes

    Article  CAS  Google Scholar 

  85. Senoo Y, Taniguchi K, Kakinuma K, Uchida M, Uchida H, Deki S, Watanabe M (2015) Cathodic performance and high potential durability of Ta-SnO2-δ-supported Pt catalysts for PEFC cathodes. Electrochem Commun 51:37–40. doi:10.1016/j.elecom.2014.12.005

    Article  CAS  Google Scholar 

  86. Chiwata M, Kakinuma K, Wakisaka M, Uchida M, Deki S, Watanabe M, Uchida H (2015) Oxygen reduction reaction activity and durability of Pt catalysts supported on titanium carbide. Catalysts 5(2):966–980. doi:10.3390/catal5020966

    Article  CAS  Google Scholar 

  87. Shintani H, Kakinuma K, Uchida H, Watanabe M, Uchida M (2015) Performance of practical-sized membrane-electrode assemblies using titanium nitride-supported platinum catalysts mixed with acetylene black as the cathode catalyst layer. J Power Sources 280:593–599. doi:10.1016/j.jpowsour.2015.01.132

    Article  CAS  Google Scholar 

  88. Miyatake K (2015) Membrane electrolytes, from perfluorosulfonic acid (PFSA) to hydrocarbon ionomers. In: Meyers RA (ed) Encyclopedia of sustainability science and technology. Springer Science + Business Media, New York, pp 1–32. doi:10.1007/978-1-4939-2493-6_146-3

  89. Singh RK, Tsuneda T, Miyatake K, Watanabe M (2014) Theoretical investigation of local proton conductance in the proton exchange membranes. Chem Phys Lett 608:11–16. doi:10.1016/j.cplett.2014.05.076

    Article  CAS  Google Scholar 

  90. Singh RK, Kunimatsu K, Miyatake K, Tsuneda T (2016) Experimental and theoretical infrared spectroscopic study on hydrated Nafion membrane. Macromolecules 49(17):6621–6629. doi:10.1021/acs.macromol.6b00999

    Article  CAS  Google Scholar 

  91. Asano N, Aoki M, Suzuki S, Miyatake K, Uchida H, Watanabe M (2006) Aliphatic/aromatic polyimide ionomers as a proton conductive membrane for fuel cell applications. J Am Chem Soc 128(5):1762–1769. doi:10.1021/ja0571491

    Article  CAS  Google Scholar 

  92. Tian S, Meng Y, Hay AS (2009) Membranes from poly(aryl ether)-based ionomers containing randomly distributed nanoclusters of 6 or 12 sulfonic acid groups. Macromolecules 42:1153–1160. doi:10.1021/ma802456m

    Article  CAS  Google Scholar 

  93. Bae B, Yoda T, Miyatake K, Uchida H, Watanabe M (2010) Proton-conductive aromatic ionomers containing highly sulfonated blocks for high-temperature-operable fuel cells. Angew Chem Int Ed 49(2):317–320. doi:10.1002/anie.200905355

    Article  CAS  Google Scholar 

  94. Savinell R, Yeager E, Tryk D, Landau U, Wainright J, Weng D, Lux K, Litt M, Rogers C (1994) A polymer electrolyte for operation at temperatures up to 200 °C. J Electrochem Soc 141(4):L46–L48. doi:10.1149/1.2054875

    Article  CAS  Google Scholar 

  95. Wainright JS, Wang J-T, Weng D, Savinell RF, Litt M (1995) Acid-doped polybenzimidazoles: a new polymer electrolyte. J Electrochem Soc 142(7):L121–L123. doi:10.1149/1.2044337

    Article  CAS  Google Scholar 

  96. Berber MR, Fujigaya T, Sasaki K, Nakashima N (2013) Remarkably durable high temperature polymer electrolyte fuel cell based on poly(vinylphosphonic acid)-doped polybenzimidazole. Sci Rep 3:1764. doi:10.1038/srep01764

    Article  CAS  Google Scholar 

  97. Merle G, Wessling M, Nijmeijer K (2011) Anion exchange membranes for alkaline fuel cells: a review. J Membrane Sci 377(1–2):1–35. doi:10.1016/j.memsci.2011.04.043

    Article  CAS  Google Scholar 

  98. Cheng J, He G, Zhang F (2015) A mini-review on anion exchange membranes for fuel cell applications: stability issue and addressing strategies. Int J Hydrogen Energy 40(23):7348–7360. doi:10.1016/j.ijhydene.2015.04.040

    Article  CAS  Google Scholar 

  99. Hibbs MR, Fujimoto CH, Cornelius CJ (2009) Synthesis and characterization of poly(phenylene)-based anion exchange membranes for alkaline fuel cells. Macromolecules 42(21):8316–8321. doi:10.1021/ma901538c

    Article  CAS  Google Scholar 

  100. Luo Y, Guo J, Wang C, Chu D (2010) Quaternized poly(methyl methacrylate-co-butyl acrylate-co-vinylbenzyl chloride) membrane for alkaline fuel cells. J Power Sources 195(12):3765–3771. doi:10.1016/j.jpowsour.2009.12.106

    Article  CAS  Google Scholar 

  101. Li N, Leng Y, Hickner MA, Wang C-Y (2013) Highly stable, anion conductive, comb-shaped copolymers for alkaline fuel cells. J Am Chem Soc 135(27):10124–10133. doi:10.1021/ja403671u

    Article  CAS  Google Scholar 

  102. Shimada M, Shimada S, Miyake J, Uchida M, Miyatake K (2016) Anion conductive aromatic polymers containing fluorenyl groups: effect of the position and number of ammonium groups. J Polym Sci A: Polym Chem 54(7):935–944. doi:10.1002/pola.27928

    Article  CAS  Google Scholar 

  103. Bockris JOM, Cahan BD (1969) Effect of a finite-contact-angle meniscus on kinetics in porous electrode systems. J Chem Phys 50(3):1307–1324. doi:10.1063/1.1671193

    Article  CAS  Google Scholar 

  104. Eikerling M, Ioselevich AS, Kornyshev AA (2004) How good are the electrodes we use in PEFC? Fuel Cells 4(3):131–140. doi:10.1002/fuce.200400029

    Article  CAS  Google Scholar 

  105. Xia Z, Wang Q, Eikerling M, Liu Z (2008) Effectiveness factor of Pt utilization in cathode catalyst layer of polymer electrolyte fuel cells. Can J Chem 86(7):657–667. doi:10.1139/V08-053

    Article  CAS  Google Scholar 

  106. Xie Z, Navessin T, Shi K, Chow R, Wang Q, Song D, Andreaus B, Eikerling M, Liu Z, Holdcroft S (2005) Functionally graded cathode catalyst layers for polymer electrolyte fuel cells. J Electrochem Soc 152(6):A1171–A1179. doi:10.1149/1.1904990

    Article  CAS  Google Scholar 

  107. Motoo S, Watanabe M, Furuya N (1984) Gas diffusion electrode of high performance. J Electroanal Chem 160:351–357. doi:10.1016/S0022-0728(84)80139-4

    Article  CAS  Google Scholar 

  108. Watanabe M, Tomikawa M, Motoo S (1985) Preparation of a high performance gas diffusion electrode. J Electroanal Chem 182(1):193–196. doi:10.1016/0368-1874(85)85453-8

    Article  CAS  Google Scholar 

  109. Watanabe M, Tozawa M, Motoo S (1985) A gas diffusion electrode for oxygen reduction working at 100% utilization of catalyst clusters. J Electroanal Chem 183(1–2):391–394. doi:10.1016/0368-1874(85)85505-2

    Article  CAS  Google Scholar 

  110. Song JM, Suzuki S, Uchida H, Watanabe M (2006) Preparation of high catalyst utilization electrodes for polymer electrolyte fuel cells. Langmuir 22(14):6422–6428. doi:10.1021/la060671w

    Article  CAS  Google Scholar 

  111. Lee M, Uchida M, Yano H, Tryk DA, Uchida H, Watanabe M (2010) New evaluation method for the effectiveness of platinum/carbon electrocatalysts under operating conditions. Electrochim Acta 55(28):8504–8512. doi:10.1016/j.electacta.2010.07.071

    Article  CAS  Google Scholar 

  112. Lee M, Uchida M, Tryk DA, Uchida H, Watanabe M (2011) The effectiveness of platinum/carbon electrocatalysts: dependence on catalyst layer thickness and Pt alloy catalytic effects. Electrochim Acta 56(13):4783–4790. doi:10.1016/j.electacta.2011.03.072

    Article  CAS  Google Scholar 

  113. Watanabe M, Sei H, Stonehart P (1989) The influence of platinum crystallite size on the electroreduction of oxygen. J Electroanal Chem 261:375–387. doi:10.1016/0022-0728(89)85006-5

    Article  CAS  Google Scholar 

  114. Weber AZ, Newman J (2004) Modeling transport in polymer-electrolyte fuel cells. Chem Rev 104(10):4679–4726. doi:10.1021/cr020729l

    Article  CAS  Google Scholar 

  115. Uchida H, Song JM, Suzuki S, Nakazawa E, Baba N, Watanabe M (2006) Electron tomography of Nafion ionomer coated on Pt/carbon black in high utilization electrode for PEFCs. J Phys Chem B 110(27):13319–13321. doi:10.1021/jp062678s

    Article  CAS  Google Scholar 

  116. Chisaka M, Daiguji H (2006) Design of ordered-catalyst layers for polymer electrolyte membrane fuel cell cathodes. Electrochem Commun 8(8):1304–1308. doi:10.1016/j.elecom.2006.06.009

    Article  CAS  Google Scholar 

  117. Yano H, Watanabe M, Iiyama A, Uchida H (2016) Particle-size effect of Pt cathode catalysts on durability in fuel cells. Nano Energy 29:323–333. doi:10.1016/j.nanoen.2016.02.016

    Article  CAS  Google Scholar 

  118. Takahashi K, Kakinuma K, Uchida M (2016) Improvement of cell performance in low-Pt-loading PEFC cathode catalyst layers prepared by the electrospray method. J Electrochem Soc 163(10):F1182–F1188. doi:10.1149/2.0611610jes

    Article  CAS  Google Scholar 

  119. Park Y-C, Tokiwa H, Kakinuma K, Watanabe M, Uchida M (2016) Effects of carbon supports on Pt distribution, ionomer coverage and cathode performance for polymer electrolyte fuel cells. J Power Sources 315:179–191. doi:10.1016/j.jpowsour.2016.02.091

    Article  CAS  Google Scholar 

  120. Zhang XF, Kamino T (2006) Imaging gas-solid interactions in an atomic resolution environmental TEM. Microsc Today 14(5):16–18

    CAS  Google Scholar 

  121. Axnanda S, Zhu Z, Zhou W, Mao B, Chang R, Rani S, Crumlin E, Somorjai G, Liu Z (2014) In situ characterizations of nanostructured SnOx/Pt(111) surfaces using ambient-pressure XPS (APXPS) and high-pressure scanning tunneling microscopy (HPSTM). J Phys Chem C 118(4):1935–1943. doi:10.1021/jp409272j

    Article  CAS  Google Scholar 

  122. Beden B, Lamy C, Bewick A, Kunimatsu K (1981) Electrosorption of methanol on a platinum electrode. IR spectroscopic evidence for adsorbed CO species. J Electroanal Chem 121:343–347. doi:10.1016/S0022-0728(81)80590-6

    Article  CAS  Google Scholar 

  123. Sato T, Kunimatsu K, Uchida H, Watanabe M (2007) Adsorption/oxidation of CO on highly dispersed Pt catalyst studied by combined electrochemical and ATR-FTIRAS methods: Part 1. ATR-FTIRAS spectra of CO adsorbed on highly dispersed Pt catalyst on carbon black and carbon un-supported Pt black. Electrochim Acta 53(3):1265–1278. doi:10.1016/j.electacta.2007.05.007

    Article  CAS  Google Scholar 

  124. Kunimatsu K, Sato T, Uchida H, Watanabe M (2008) Adsorption/oxidation of CO on highly dispersed Pt catalyst studied by combined electrochemical and ATR-FTIRAS methods: oxidation of CO adsorbed on carbon-supported Pt catalyst and unsupported Pt black. Langmuir 24(7):3590–3601. doi:10.1021/la702441x

    Article  CAS  Google Scholar 

  125. Watanabe M, Sato T, Kunimatsu K, Uchida H (2008) Temperature dependence of co-adsorption of carbon monoxide and water on highly dispersed Pt/C and PtRu/C electrodes studied by in-situ ATR-FTIRAS. Electrochim Acta 53:6928–6937. doi:10.1016/j.electacta.2008.02.023

    Article  CAS  Google Scholar 

  126. Kunimatsu K, Yoda T, Tryk DA, Uchida H, Watanabe M (2010) In situ ATR-FTIR study of oxygen reduction at the Pt/Nafion interface. Phys Chem Chem Phys 12(3):621–629. doi:10.1039/B917306D

    Article  CAS  Google Scholar 

  127. Hanawa H, Kunimatsu K, Watanabe M, Uchida H (2012) In situ ATR-FTIR analysis of the structure of Nafion-Pt/C and Nafion-Pt3Co/C interfaces in fuel cell. J Phys Chem C 116(40):21401–21406. doi:10.1021/jp306955q

    Article  CAS  Google Scholar 

  128. Kunimatsu K, Bae B, Miyatake K, Uchida H, Watanabe M (2011) ATR-FTIR study of water in Nafion membrane combined with proton conductivity measurements during hydration/dehydration cycle. J Phys Chem B 115(15):4315–4321. doi:10.1021/jp112300c

    Article  CAS  Google Scholar 

  129. Hara M, Inukai J, Bae B, Hoshi T, Miyatake K, Uchida M, Uchida H, Watanabe M (2012) Micro-Raman study on water distribution Inside a Nafion membrane during operation of polymer electrolyte fuel cell. Electrochim Acta 82:277–283. doi:10.1016/j.electacta.2012.04.099

    Article  CAS  Google Scholar 

  130. Hara M, Hattori D, Inukai J, Hara M, Miyatake K, Watanabe M (2014) Reversible/irreversible increase in proton-conductive areas on proton-exchange-membrane surface by applying voltage using current-sensing atomic force microscope. J Electroanal Chem 716:158–163. doi:10.1016/j.jelechem.2013.11.035

    Article  CAS  Google Scholar 

  131. Hara M, Hara M, Miyatake K, Inukai J, Watanabe M (2014) Effects of hot liquid-water treatment on local proton conductivity at surfaces of sulfonated poly(arylene ketone) block copolymer membrane for fuel cells studied by current-sensing atomic force microscopy. Electrochim Acta 143:383–389. doi:10.1016/j.electacta.2014.08.031

    Article  CAS  Google Scholar 

  132. Hara M, Kimura T, Nakamura T, Shimada M, Ono H, Shimada S, Miyatake K, Uchida M, Inukai J, Watanabe M (2016) Effect of surface ion conductivity of anion exchange membranes on fuel cell performance. Langmuir 32(37):9557–9565. doi:10.1021/acs.langmuir.6b01747

    Article  CAS  Google Scholar 

  133. Ishigami Y, Waskitoaji W, Yoneda M, Takada K, Hyakutake T, Suga T, Uchida M, Nagumo Y, J.Inukai, Nishide H, Watanabe M (2014) Oxygen partial pressures on gas-diffusion layer surface and gas-flow channel wall in polymer electrolyte fuel cell during power generation studied by visualization technique combined with numerical simulation. J Power Sources 269:556–564. doi:10.1016/j.jpowsour.2014.07.017

  134. Nagase K, Suga T, Nagumo Y, Uchida M, Inukai J, Nishide H, Watanabe M (2015) Real-time visualization of oxygen partial pressures in straight channels of running polymer electrolyte fuel cell with water plugging. J Power Sources 273:873–877. doi:10.1016/j.jpowsour.2014.09.169

    Article  CAS  Google Scholar 

  135. Nagase K, Motegi H, Yoneda M, Nagumo Y, Suga T, Uchida M, Inukai J, NIshide H, Watanabe M (2015) Visualization of oxygen partial pressure and numerical simulation of a running polymer electrolyte fuel cell with straight flow channels to elucidate reaction distributions. ChemElectroChem 2(10):1495–1501. doi:10.1002/celc.201402385

  136. Kordesch K, Gsellmann J, Cifrain M, Voss S, Hacker V, Aronson RR, Fabjan C, Hejze T, Daniel-Ivad J (1999) Intermittent use of a low-cost alkaline fuel cell-hybrid system for electric vehicles. J Power Sources 80(1–2):190–197. doi:10.1016/S0378-7753(98)00261-4

    Article  CAS  Google Scholar 

  137. Kordesch K, Hacker V, Gsellmann J, Cifrain M, Faleschini G, Enzinger P, Fankhauser R, Ortner M, Muhr M, Aronson RR (2000) Alkaline fuel cells applications. J Power Sources 86(1–2):162–165. doi:10.1016/S0378-7753(99)00429-2

    Article  CAS  Google Scholar 

  138. Hejze T, Besenhard JO, Kordesch K, Cifrain M, Aronsson RR (2008) Current status of combined systems using alkaline fuel cells and ammonia as a hydrogen carrier. J Power Sources 176(2):490–493. doi:10.1016/j.jpowsour.2007.08.117

    Article  CAS  Google Scholar 

  139. Information Distribution Centre CaMB, Industry Canada (2003) The practice of innovation: seven canadian firms in profile

    Google Scholar 

  140. Ballard News Releases (2017) http://ballard.com/about-ballard/newsroom/news-releases/news-releases-2017.aspx. Accessed January 2017

  141. Kröger H (2016) The fuel cell gets a plug https://www.mercedes-benz.com/en/mercedes-benz/next/e-mobility/the-fuel-cell-gets-a-plug/. Accessed January 2017

  142. Edelstein S (2016) Nikola one hydrogen range-extended electric truck to be unveiled tonight. http://www.greencarreports.com/news/1107560_nikola-one-hydrogen-range-extended-electric-truck-to-be-unveiled-tonight. Accessed January 2017

  143. Omata T (2016) Specific country reports: Japan. In: Fuel cells: data, facts and figures. Wiley-VCH Verlag GmbH & Co. KGaA, pp 270–275. doi:10.1002/9783527693924.ch27

Download references

Acknowledgements

The authors wish would like to express gratitude for financial support via several National projects, including those from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, and from the New Energy and Industrial Technology Development Organization (NEDO) of Japan for the projects “Nanotechnology for High Performance Fuel Cells” and “Superlative, Stable, and Scalable Performance Fuel Cells.” We also would like to express great appreciation of the contributions of Professors Hiroyuki Uchida, Kenji Miyatake, Makoto Uchida, Kazutoshi Higashiyama, Tomio Omata, Shigehito Deki, Junji Inukai, Hiroshi Yano, Katsuyoshi Kakinuma, Toshiro Miyao, Takao Tsuneda, Mitsuru Wakisaka, Masanori Hara, Kiyoshi Yagi, Keiji Kunimatsu and Takeo Kamino, as well as many students and researchers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masahiro Watanabe .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Watanabe, M., Tryk, D.A. (2017). Fuel Cells: An Overview with Emphasis on Polymer Electrolyte Fuel Cells. In: Uosaki, K. (eds) Electrochemical Science for a Sustainable Society. Springer, Cham. https://doi.org/10.1007/978-3-319-57310-6_3

Download citation

Publish with us

Policies and ethics