Skip to main content

Compositional Falsification of Cyber-Physical Systems with Machine Learning Components

  • Conference paper
  • First Online:
NASA Formal Methods (NFM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 10227))

Included in the following conference series:

Abstract

Cyber-physical systems (CPS), such as automotive systems, are starting to include sophisticated machine learning (ML) components. Their correctness, therefore, depends on properties of the inner ML modules. While learning algorithms aim to generalize from examples, they are only as good as the examples provided, and recent efforts have shown that they can produce inconsistent output under small adversarial perturbations. This raises the question: can the output from learning components can lead to a failure of the entire CPS? In this work, we address this question by formulating it as a problem of falsifying signal temporal logic (STL) specifications for CPS with ML components. We propose a compositional falsification framework where a temporal logic falsifier and a machine learning analyzer cooperate with the aim of finding falsifying executions of the considered model. The efficacy of the proposed technique is shown on an automatic emergency braking system model with a perception component based on deep neural networks.

This work is funded in part by the DARPA BRASS program under agreement number FA8750-16-C-0043, NSF grants CNS-1646208 and CCF-1139138, and by TerraSwarm, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA. The second author did much of the work while affiliated with UC Berkeley.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://image-net.org/.

References

  1. Annpureddy, Y., Liu, C., Fainekos, G., Sankaranarayanan, S.: S-TaLiRo: a tool for temporal logic falsification for hybrid systems. In: Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 254–257. Springer, Heidelberg (2011). doi:10.1007/978-3-642-19835-9_21

    Chapter  Google Scholar 

  2. Blum, A.L., Langley, P.: Selection of relevant features and examples in machine learning. Artif. Intell. 97(1), 245–271 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bojarski, M., et al.: End to end learning for self-driving cars. arXiv:1604.07316 (2016)

  4. Donzé, A.: Breach, a toolbox for verification and parameter synthesis of hybrid systems. In: Touili, T., Cook, B., Jackson, P. (eds.) CAV 2010. LNCS, vol. 6174, pp. 167–170. Springer, Heidelberg (2010). doi:10.1007/978-3-642-14295-6_17

    Chapter  Google Scholar 

  5. Dreossi, T., Dang, T., Donzé, A., Kapinski, J., Jin, X., Deshmukh, J.V.: Efficient guiding strategies for testing of temporal properties of hybrid systems. In: Havelund, K., Holzmann, G., Joshi, R. (eds.) NFM 2015. LNCS, vol. 9058, pp. 127–142. Springer, Cham (2015). doi:10.1007/978-3-319-17524-9_10

    Google Scholar 

  6. Duggirala, P.S., Mitra, S., Viswanathan, M., Potok, M.: C2E2: a verification tool for stateflow models. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 68–82. Springer, Heidelberg (2015). doi:10.1007/978-3-662-46681-0_5

    Google Scholar 

  7. Fawzi, A., Fawzi, O., Frossard, P.: Analysis of classifiers’ robustness to adversarial perturbations. arXiv preprint arXiv:1502.02590 (2015)

  8. Hinton, G., et al.: Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. IEEE Signal Process. Mag. 29(6), 82–97 (2012)

    Article  Google Scholar 

  9. Huang, X., Kwiatkowska, M., Wang, S., Wu, M.: Safety verification of deep neural networks. CoRR, abs/1610.06940 (2016)

    Google Scholar 

  10. Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R., Guadarrama, S., Darrell, T.: Caffe: convolutional architecture for fast feature embedding. In: ACM Multimedia Conference, ACMMM, pp. 675–678 (2014)

    Google Scholar 

  11. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  12. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT-2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30206-3_12

    Chapter  Google Scholar 

  13. TensorFlow, M.A., et al.: Large-scale machine learning on heterogeneous systems (2015). Software available from tensorflow.org

  14. Michalski, R.S., Carbonell, J.G., Mitchell, T.M.: Machine Learning: An Artificial Intelligence Approach. Springer Science & Business Media, Heidelberg (2013)

    MATH  Google Scholar 

  15. Moosavi-Dezfooli, S.-M., Fawzi, A., Frossard, P.: Deepfool: a simple and accurate method to fool deep neural networks. In: IEEE Computer Vision and Pattern Recognition, pp. 2574–2582 (2016)

    Google Scholar 

  16. Nguyen, A., Yosinski, J., Clune, J.: Deep neural networks are easily fooled: high confidence predictions for unrecognizable images. In: Computer Vision and Pattern Recognition, CVPR, pp. 427–436. IEEE (2015)

    Google Scholar 

  17. Niederreiter, H.: Low-discrepancy and low-dispersion sequences. J. Number Theory 30(1), 51–70 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Seshia, S.A., Sadigh, D., Sastry, S.S.: Towards verified artificial intelligence. CoRR, abs/1606.08514 (2016)

    Google Scholar 

  19. Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., Fergus, R.: Intriguing properties of neural networks. arXiv:1312.6199 (2013)

  20. Taeyoung, L., Kyongsu, Y., Jangseop, K., Jaewan, L.: Development and evaluations of advanced emergency braking system algorithm for the commercial vehicle. In: Enhanced Safety of Vehicles Conference, ESV, pp. 11–0290 (2011)

    Google Scholar 

  21. Vapnik, V.: Principles of risk minimization for learning theory. In: NIPS, pp. 831–838 (1991)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tommaso Dreossi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Dreossi, T., Donzé, A., Seshia, S.A. (2017). Compositional Falsification of Cyber-Physical Systems with Machine Learning Components. In: Barrett, C., Davies, M., Kahsai, T. (eds) NASA Formal Methods. NFM 2017. Lecture Notes in Computer Science(), vol 10227. Springer, Cham. https://doi.org/10.1007/978-3-319-57288-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57288-8_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57287-1

  • Online ISBN: 978-3-319-57288-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics