Skip to main content

Bandeirantes: A Graph-Based Approach for Curve Tracing and Boundary Tracking

  • Conference paper
  • First Online:
Mathematical Morphology and Its Applications to Signal and Image Processing (ISMM 2017)

Abstract

This work presents a novel approach for curve tracing and user-steered boundary tracking in image segmentation, named Bandeirantes. The proposed approach was devised using Image Foresting Transform with unexplored and dynamic connectivity functions, which incorporate the internal energy of the paths, at any curvature scale, resulting in better segmentation of smooth-shaped objects and leading to a better curve tracing algorithm. We analyze its theoretical properties and discuss its relations with other popular methods, such as riverbed, live wire and G-wire. We compare the methods in a curve tracing task of an automatic grading system. The results show that the new method can significantly increase the system accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The Bandeirantes were 17th-century Portuguese settlers in Brazil and fortune hunters from the São Paulo region. They led expeditions called bandeiras which penetrated the interior of Brazil far south and west of the Tordesillas Line of 1494. As they ventured into unmapped regions in search of profit and adventure, they expanded the effective borders of the Brazilian colony.

  2. 2.

    Consider the moment when the first pixel u not in \({{{\mathcal {O}}}}^1\) leaves the priority queue. Note that \(\tau ^{P}_u\) is optimum in \(G^2\), because otherwise, since f is monotone, an optimum path \(\langle a_0, \ldots , a_m = u \rangle \) to u in \(G^2\) would have a cost \(f(\langle a_0, \ldots , a_i \rangle ) < f(\tau ^{P}_u)\) for all \(i \le m\). So some ancestor of u in \(\langle a_0, \ldots , a_m = u \rangle \) not in \({{{\mathcal {O}}}}^1\) must be removed from \({{{\mathcal {Q}}}}\) prior to u, leading to a contradiction.

  3. 3.

    https://github.com/HiDiYANG/ActiveContour.

  4. 4.

    http://home.gna.org/auto-qcm/.

  5. 5.

    https://github.com/saebyn/munkres-cpp.

  6. 6.

    http://www.vision.ime.usp.br/~mtejadac/bandeirantes.html.

References

  1. Barreto, T.L.M., Almeida, J., Cappabianco, F.A.M.: Estimating accurate water levels for rivers and reservoirs by using SAR products: a multitemporal analysis. Pattern Recogn. Lett. Part 2 83, 224–233 (2016)

    Article  Google Scholar 

  2. Baumgartner, A., Steger, C., Wiedemann, C., Mayer, H., Eckstein, W., Ebner, H.: Update of roads in GIS from aerial imagery: verification and multi-resolution extraction. Int. Archiv. Photogram. Remote Sens. 31, 53–58 (1996)

    Google Scholar 

  3. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. (PAMI) 8(6), 679–698 (1986)

    Article  Google Scholar 

  4. Cappabianco, F.A., Lellis, L.S., Miranda, P.A.V., Ide, J.S., Mujica-Parodi, L.: Edge detection robust to intensity inhomogeneity: a 7T MRI case study. In: XXI IberoAmerican Congress on Pattern Recognition (CIARP), Lima, Peru (2016, to appear). Accepted November 2016

    Google Scholar 

  5. Chen, X., Udupa, J., Zheng, X., Torigian, D., Alavi, A.: Automatic anatomy recognition via multi object oriented active shape models. In: SPIE on Medical Imaging, Orlando, Florida, USA, vol. 7259, pp. 72594P–72594P–8, February 2009

    Google Scholar 

  6. Coppini, C., Demi, M., Poli, R., Valli, G.: An artificial vision system for x-ray images of human coronary arteries. IEEE Trans. Pattern Anal. Mach. Intell. 15(2), 156–162 (1993)

    Article  Google Scholar 

  7. Donoho, D., Huo, X.: Applications of beamlets to detection and extraction of lines, curves and objects in very noisy images. In: Proceedings of NSIP (2001)

    Google Scholar 

  8. Falcão, A., Stolfi, J., Lotufo, R.: The image foresting transform: theory, algorithms, and applications. IEEE TPAMI 26(1), 19–29 (2004)

    Article  Google Scholar 

  9. Falcão, A., Udupa, J., Miyazawa, F.: An ultra-fast user-steered image segmentation paradigm: live-wire-on-the-fly. IEEE Trans. Med. Imaging 19(1), 55–62 (2000)

    Article  Google Scholar 

  10. Falcão, A., Udupa, J., Samarasekera, S., Sharma, S., Hirsch, B., Lotufo, R.: User-steered image segmentation paradigms: live-wire and live-lane. Graph. Models Image Process. 60, 233–260 (1998)

    Article  Google Scholar 

  11. Farber, M., Ehrhardt, J., Handels, H.: Live-wire-based segmentation using similarities between corresponding image structures. Comput. Med. Imaging Graph. 31(7), 549–560 (2007)

    Article  Google Scholar 

  12. Frieze, A.: Minimum paths in directed graphs. Oper. Res. Q. 28(2), 339–346 (1977)

    Article  MATH  Google Scholar 

  13. He, H., Tian, J., Lin, Y., Lu, K.: A new interactive segmentation scheme based on fuzzy affinity and live-wire. In: Wang, L., Jin, Y. (eds.) FSKD 2005. LNCS (LNAI), vol. 3613, pp. 436–443. Springer, Heidelberg (2005). doi:10.1007/11539506_56

    Chapter  Google Scholar 

  14. Kang, H.: G-wire: a livewire segmentation algorithm based on a generalized graph formulation. Pattern Recogn. Lett. 26(13), 2042–2051 (2005)

    Article  Google Scholar 

  15. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1, 321–331 (1987)

    Article  Google Scholar 

  16. Liu, J., Udupa, J.: Oriented active shape models. IEEE Trans. Med. Imaging 28(4), 571–584 (2009)

    Article  Google Scholar 

  17. Malmberg, F., Vidholm, E., Nyström, I.: A 3D live-wire segmentation method for volume images using haptic interaction. In: Kuba, A., Nyúl, L.G., Palágyi, K. (eds.) DGCI 2006. LNCS, vol. 4245, pp. 663–673. Springer, Heidelberg (2006). doi:10.1007/11907350_56

    Chapter  Google Scholar 

  18. Martelli, A.: Edge detection using heuristic search methods. Comput. Graph. Image Process. 1, 169–182 (1972)

    Article  Google Scholar 

  19. Martelli, A.: An application of heuristic search methods to edge and contour detection. Commun. ACM 19(2), 73–83 (1976)

    Article  MATH  Google Scholar 

  20. Mille, J., Bougleux, S., Cohen, L.D.: Combination of piecewise-geodesic paths for interactive segmentation. Int. J. Comput. Vis. 112(1), 1–22 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mille, J., Cohen, L.D.: Geodesically linked active contours: evolution strategy based on minimal paths. In: Tai, X.-C., Mørken, K., Lysaker, M., Lie, K.-A. (eds.) SSVM 2009. LNCS, vol. 5567, pp. 163–174. Springer, Heidelberg (2009). doi:10.1007/978-3-642-02256-2_14

    Chapter  Google Scholar 

  22. Miranda, P., Falcao, A., Spina, T.: The riverbed approach for user-steered image segmentation. In: 18th IEEE International Conference on Image Processing (ICIP), pp. 3133–3136, September 2011

    Google Scholar 

  23. Miranda, P., Falcao, A., Spina, T.: Riverbed: a novel user-steered image segmentation method based on optimum boundary tracking. IEEE Trans. Image Process. 21(6), 3042–3052 (2012)

    Article  MathSciNet  Google Scholar 

  24. Mortensen, E., Barrett, W.: Interactive segmentation with intelligent scissors. Graph. Models Image Process. 60, 349–384 (1998)

    Article  MATH  Google Scholar 

  25. Nilsson, N.: Principles of Artificial Intelligence. Morgan Kaufmann Publishers Inc., San Francisco (1980)

    MATH  Google Scholar 

  26. Raghupathy, K.: Curve tracing and curve detection in images. Cornell University. A thesis Presented to the Faculty of the Graduate School of Cornell University, August 2004. https://books.google.com.br/books?id=QlNUAAAAYAAJ

  27. Spina, T.V., de Miranda, P.A.V., Falcão, A.X.: Hybrid approaches for interactive image segmentation using the live markers paradigm. IEEE Trans. Image Process. 23(12), 5756–5769 (2014)

    Article  MathSciNet  Google Scholar 

  28. Steger, C.: An unbiased detector of curvilinear structures. IEEE Trans. Pattern Anal. Mach. Intell. 20(2), 113–125 (1998)

    Article  Google Scholar 

  29. Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7(3), 359–369 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

Thanks to CNPq (308985/2015-0, 486083/2013-6, FINEP 1266/13), FAPESP (2011/50761-2,2014/12236-1), CAPES, and NAP eScience - PRP - USP for funding, and Alexandre Morimitsu and Fabio Albuquerque Dela Antonio for helping to build the dataset.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo A. V. Miranda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Condori, M.A.T., Mansilla, L.A.C., Miranda, P.A.V. (2017). Bandeirantes: A Graph-Based Approach for Curve Tracing and Boundary Tracking. In: Angulo, J., Velasco-Forero, S., Meyer, F. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2017. Lecture Notes in Computer Science(), vol 10225. Springer, Cham. https://doi.org/10.1007/978-3-319-57240-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57240-6_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57239-0

  • Online ISBN: 978-3-319-57240-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics