Skip to main content

Introducing the Dahu Pseudo-Distance

  • Conference paper
  • First Online:
Mathematical Morphology and Its Applications to Signal and Image Processing (ISMM 2017)

Abstract

The minimum barrier (MB) distance is defined as the minimal interval of gray-level values in an image along a path between two points, where the image is considered as a vertex-valued graph. Yet this definition does not fit with the interpretation of an image as an elevation map, i.e. a somehow continuous landscape. In this paper, based on the discrete set-valued continuity setting, we present a new discrete definition for this distance, which is compatible with this interpretation, while being free from digital topology issues. Amazingly, we show that the proposed distance is related to the morphological tree of shapes, which in addition allows for a fast and exact computation of this distance. That contrasts with the classical definition of the MB distance, where its fast computation is only an approximation.

E. Carlinet is now with DxO, France.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As a consequence (and despite how frustrating it might be for the reader), due to limited space, this paper does not address the following aspects of our work: practical applications that follow from this new distance definition, a quantitative comparison with the MB distance, considerations about the sampling grid and continuity, implementation details and execution times; last, some proofs have also been omitted.

References

  1. Aubin, J.P., Frankowska, H.: Set-Valued Analysis. Birkhäuser, Basel (2009)

    Book  MATH  Google Scholar 

  2. Boutry, N., Géraud, T., Najman, L.: On making nD images well-composed by a self-dual local interpolation. In: Barcucci, E., Frosini, A., Rinaldi, S. (eds.) DGCI 2014. LNCS, vol. 8668, pp. 320–331. Springer, Cham (2014). doi:10.1007/978-3-319-09955-2_27

    Google Scholar 

  3. Boutry, N., Géraud, T., Najman, L.: How to make nD functions digitally well-composed in a self-dual way. In: Benediktsson, J.A., Chanussot, J., Najman, L., Talbot, H. (eds.) ISMM 2015. LNCS, vol. 9082, pp. 561–572. Springer, Cham (2015). doi:10.1007/978-3-319-18720-4_47

    Chapter  Google Scholar 

  4. Burie, J., Chazalon, J., et al.: ICDAR 2015 competition on smartphone document capture and OCR (SmartDoc). In: Proceedings of ICDAR, pp. 1161–1165 (2015)

    Google Scholar 

  5. Cao, F., Lisani, J.L., Morel, J.M., Musé, P., Sur, F.: A Theory of Shape Identification. Lecture Notes in Mathematics, vol. 1948. Springer, Heidelberg (2008)

    MATH  Google Scholar 

  6. Carlinet, E., Géraud, T.: A comparative review of component tree computation algorithms. IEEE Trans. Image Process. 23(9), 3885–3895 (2014)

    Article  MathSciNet  Google Scholar 

  7. Carlinet, E., Géraud, T.: Morphological object picking based on the color tree of shapes. In: Proceedings of IPTA, pp. 125–130 (2015)

    Google Scholar 

  8. Carlinet, E., Géraud, T.: MToS: a tree of shapes for multivariate images. IEEE Trans. Image Process. 24(12), 5330–5342 (2015)

    Article  MathSciNet  Google Scholar 

  9. Caselles, V., Coll, B., Morel, J.M.: Topographic maps and local contrast changes in natural images. Int. J. Comput. Vis. 33(1), 5–27 (1999)

    Article  Google Scholar 

  10. Caselles, V., Monasse, P.: Geometric Description of Images as Topographic Maps. Lecture Notes in Mathematics, vol. 1984. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  11. Crozet, S., Géraud, T.: A first parallel algorithm to compute the morphological tree of shapes of \(n\)D images. In: Proceedings of ICIP, pp. 2933–2937 (2014)

    Google Scholar 

  12. Dubrovina, A., Hershkovitz, R., Kimmel, R.: Image editing using level set trees. In: Proceedings of ICIP, pp. 4442–4446 (2014)

    Google Scholar 

  13. Géraud, T., Carlinet, E., Crozet, S.: Self-duality and digital topology: links between the morphological tree of shapes and well-composed gray-level images. In: Benediktsson, J.A., Chanussot, J., Najman, L., Talbot, H. (eds.) ISMM 2015. LNCS, vol. 9082, pp. 573–584. Springer, Cham (2015). doi:10.1007/978-3-319-18720-4_48

    Chapter  Google Scholar 

  14. Géraud, T., Carlinet, E., Crozet, S., Najman, L.: A quasi-linear algorithm to compute the tree of shapes of nD images. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 98–110. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38294-9_9

    Chapter  Google Scholar 

  15. Mazo, L., Passat, N., Couprie, M., Ronse, C.: Digital imaging: a unified topological framework. J. Math. Imaging Vis. 44(1), 19–37 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Monasse, P., Guichard, F.: Fast computation of a contrast-invariant image representation. IEEE Trans. Image Process. 9(5), 860–872 (2000)

    Article  Google Scholar 

  17. Najman, L., Géraud, T.: Discrete set-valued continuity and interpolation. In: Hendriks, C.L.L., Borgefors, G., Strand, R. (eds.) ISMM 2013. LNCS, vol. 7883, pp. 37–48. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38294-9_4

    Chapter  Google Scholar 

  18. Najman, L.W.: I met a Dahu (2015). Private communication at ISMM

    Google Scholar 

  19. Saha, P.K., Strand, R., Borgefors, G.: Digital topology and geometry in medical imaging: a survey. IEEE Trans. Med. Imaging 34(9), 1940–1964 (2015)

    Article  Google Scholar 

  20. Strand, R., Ciesielski, K.C., Malmberg, F., Saha, P.K.: The minimum barrier distance. Comput. Vis. Image Underst. 117, 429–437 (2013)

    Article  Google Scholar 

  21. Tu, W.C., He, S., Yang, Q., Chien, S.Y.: Real-time salient object detection with a minimum spanning tree. In: Proceedings of IEEE CVPR, pp. 2334–2342 (2016)

    Google Scholar 

  22. Xu, Y., Carlinet, E., Géraud, T., Najman, L.: Hierarchical segmentation using tree-based shape spaces. IEEE PAMI (2017). In early access

    Google Scholar 

  23. Xu, Y., Géraud, T., Najman, L.: Connected filtering on tree-based shape-spaces. IEEE Trans. Pattern Anal. Mach. Intell. 38(6), 1126–1140 (2016)

    Article  Google Scholar 

  24. Xu, Y., Géraud, T., Najman, L.: Hierarchical image simplification and segmentation based on Mumford-Shah-salient level line selection. Pattern Recogn. Lett. 83, 278–286 (2016)

    Article  Google Scholar 

  25. Zhang, J., Sclaroff, S., Lin, Z., Shen, X., Price, B., Mech, R.: Minimum barrier salient object detection at 80 FPS. In: Proceedings of ICCV, pp. 1404–1412 (2015)

    Google Scholar 

Download references

Acknowledgments

The authors want to thank Guillaume Tochon (new evangelist with ) and Laurent W. Najman for their valuable comments on an erstwhile version of this paper, and the reviewers for their helpful remarks. This work has been conducted within the mobidem project, part of the “Systematic Paris-Region” and “Images & Network” Clusters. This project is partially funded by the French Government and its economic development agencies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Géraud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Géraud, T., Xu, Y., Carlinet, E., Boutry, N. (2017). Introducing the Dahu Pseudo-Distance. In: Angulo, J., Velasco-Forero, S., Meyer, F. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2017. Lecture Notes in Computer Science(), vol 10225. Springer, Cham. https://doi.org/10.1007/978-3-319-57240-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57240-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57239-0

  • Online ISBN: 978-3-319-57240-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics