Skip to main content

Topological Relations Between Bipolar Fuzzy Sets Based on Mathematical Morphology

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10225))

Abstract

In many domains of information processing, both vagueness, or imprecision, and bipolarity, encompassing positive and negative parts of information, are core features of the information to be modeled and processed. This led to the development of the concept of bipolar fuzzy sets, and of associated models and tools. Here we propose to extend these tools by defining algebraic relations between bipolar fuzzy sets, including intersection, inclusion, adjacency and RCC relations widely used in mereotopology, based on bipolar connectives (in a logical sense) and on mathematical morphology operators.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Mereology is concerned with part-whole relations, while mereotopology adds topology and studies topological relations where regions (not points) are the primitive objects, useful for qualitative spatial reasoning, see e.g. [1] and the references therein.

  2. 2.

    All proofs are quite straightforward, and omitted due to lack of space.

  3. 3.

    Note that [0, 1] can be replaced by any poset or complete lattice, in the framework of L-fuzzy sets, and the proposed approach applies in this more general case.

  4. 4.

    i.e.: \(\forall (a_1,a_2,a'_1,a'_2) \in {\mathcal L}^4, a_1 \preceq a'_1 \text { and } a_2 \preceq a'_2 \Rightarrow C(a_1,a_2) \preceq C(a'_1,a'_2)\).

  5. 5.

    As detailed in [1], approaches for mereotopology differ depending on the interpretation of the connection and the properties of the considered regions (closed, open...).

References

  1. Aiello, M., Pratt-Hartmann, I., van Benthem, J. (eds.): Handbook of Spatial Logic. Springer, Netherlands (2007)

    Google Scholar 

  2. Bloch, I.: Dilation and erosion of spatial bipolar fuzzy sets. In: Masulli, F., Mitra, S., Pasi, G. (eds.) WILF 2007. LNCS (LNAI), vol. 4578, pp. 385–393. Springer, Heidelberg (2007). doi:10.1007/978-3-540-73400-0_49

    Chapter  Google Scholar 

  3. Bloch, I.: Bipolar fuzzy mathematical morphology for spatial reasoning. In: Wilkinson, M.H.F., Roerdink, J.B.T.M. (eds.) ISMM 2009. LNCS, vol. 5720, pp. 24–34. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03613-2_3

    Chapter  Google Scholar 

  4. Bloch, I.: Duality vs. adjunction for fuzzy mathematical morphology and general form of fuzzy erosions and dilations. Fuzzy Sets Syst. 160, 1858–1867 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bloch, I.: Bipolar fuzzy spatial information: geometry, morphology, spatial reasoning. In: Jeansoulin, R., Papini, O., Prade, H., Schockaert, S. (eds.) Methods for Handling Imperfect Spatial Information, vol. 256, pp. 75–102. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Bloch, I.: Mathematical morphology on bipolar fuzzy sets: general algebraic framework. Int. J. Approx. Reason. 53, 1031–1061 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bloch, I., Heijmans, H., Ronse, C.: Mathematical morphology. In: Aiello, M., Pratt-Hartman, I., van Benthem, J. (eds.) Handbook of Spatial Logics, chap. 13, pp. 857–947. Springer, Netherlands (2007)

    Chapter  Google Scholar 

  8. Bloch, I., Maître, H., Anvari, M.: Fuzzy adjacency between image objects. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 5(6), 615–653 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Clementini, E., Felice, O.D.: Approximate topological relations. Int. J. Approx. Reason. 16, 173–204 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cohn, A.G., Gotts, N.M.: The egg-yolk representation of regions with indeterminate boundaries. Geogr. Objects Indeterm. Bound. 2, 171–187 (1996)

    Google Scholar 

  11. Deschrijver, G., Cornelis, C., Kerre, E.: On the representation of intuitionistic fuzzy t-norms and t-conorms. IEEE Trans. Fuzzy Syst. 12(1), 45–61 (2004)

    Article  MATH  Google Scholar 

  12. Dubois, D., Prade, H.: Special issue on bipolar representations of information and preference. Int. J. Intell. Syst. 23(8–10), 999–1152 (2008)

    Google Scholar 

  13. Dubois, D., Gottwald, S., Hajek, P., Kacprzyk, J., Prade, H.: Terminology difficulties in fuzzy set theory - the case of “intuitionistic fuzzy sets”. Fuzzy Sets Syst. 156, 485–491 (2005)

    Article  MATH  Google Scholar 

  14. Dubois, D., Prade, H.: An overview of the asymmetric bipolar representation of positive and negative information in possibility theory. Fuzzy Sets Syst. 160, 1355–1366 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fargier, H., Wilson, N.: Algebraic structures for bipolar constraint-based reasoning. In: Mellouli, K. (ed.) ECSQARU 2007. LNCS (LNAI), vol. 4724, pp. 623–634. Springer, Heidelberg (2007). doi:10.1007/978-3-540-75256-1_55

    Chapter  Google Scholar 

  16. Goguen, J.: L-fuzzy sets. J. Math. Anal. Appl. 18(1), 145–174 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hazarika, S., Cohn, A.: A taxonomy for spatial vagueness: an alternative egg-yolk interpretation. In: Spatial Vagueness, Uncertainty and Granularity Symposium, Ogunquit, Maine, USA (2001)

    Google Scholar 

  18. Mélange, T., Nachtegael, M., Sussner, P., Kerre, E.: Basic properties of the interval-valued fuzzy morphological operators. In: IEEE World Congress on Computational Intelligence, WCCI 2010, Barcelona, Spain, pp. 822–829 (2010)

    Google Scholar 

  19. Randell, D., Cui, Z., Cohn, A.: A spatial logic based on regions and connection. In: Principles of Knowledge Representation and Reasoning, KR 1992, Kaufmann, San Mateo, CA, pp. 165–176 (1992)

    Google Scholar 

  20. Roy, A.J., Stell, J.G.: Spatial relations between indeterminate regions. Int. J. Approx. Reason. 27(3), 205–234 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Schockaert, S., De Cock, M., Cornelis, C., Kerre, E.E.: Fuzzy region connection calculus: an interpretation based on closeness. Int. J. Approx. Reason. 48(1), 332–347 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Schockaert, S., De Cock, M., Cornelis, C., Kerre, E.E.: Fuzzy region connection calculus: representing vague topological information. Int. J. Approx. Reason. 48(1), 314–331 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Schockaert, S., De Cock, M., Kerre, E.E.: Spatial reasoning in a fuzzy region connection calculus. Artif. Intell. 173(2), 258–298 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sussner, P., Nachtegael, M., Mélange, T., Deschrijver, G., Esmi, E., Kerre, E.: Interval-valued and intuitionistic fuzzy mathematical morphologies as special cases of L-fuzzy mathematical morphology. J. Math. Imaging Vis. 43(1), 50–71 (2012)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work has been partly supported by the French ANR LOGIMA project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabelle Bloch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Bloch, I. (2017). Topological Relations Between Bipolar Fuzzy Sets Based on Mathematical Morphology. In: Angulo, J., Velasco-Forero, S., Meyer, F. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2017. Lecture Notes in Computer Science(), vol 10225. Springer, Cham. https://doi.org/10.1007/978-3-319-57240-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57240-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57239-0

  • Online ISBN: 978-3-319-57240-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics