Skip to main content

An Affinity Score for Grains Merging and Touching Grains Separation

  • Conference paper
  • First Online:
Mathematical Morphology and Its Applications to Signal and Image Processing (ISMM 2017)

Abstract

The physical properties of granular materials on a macroscopic scale derive from their microstructures. The segmentation of CT-images of this type of material is the first step towards simulation and modeling but it is not a trivial task. Non-spherical, elongated or non-convex objects fail to be separated with classical methods. Moreover, grains are commonly fragmented due to external conditions: aging, storage conditions, or even user-induced mechanical deformations. Grains are crushed into multiple fragments of different shape and volume; those fragments drift from one another in the binder phase. This paper focuses on reconstruction of grains from these fragments using scores that match the local thickness and the regularity of the interface between two objects from a given primary segmentation of the material. An affinity graph is built from those scores and optimized for a given application using a user-generated ground truth on a 2D slice of the tridimensional structures. A minimum spanning tree is generated, and a hierarchical cut is performed. This process allows to reassemble drifted fragments into whole grains and to solve the touching grains problem in tridimensional acquisitions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beucher, S.: Segmentation d’Images et Morphologie Mathématique. Ph.D. thesis, Ecole Nationale Supérieure des Mines de Paris, June 1990

    Google Scholar 

  2. Beucher, S., Lantuejoul, C.: Use of watersheds in contour detection. In: International Workshop on Image Processing: Real-Time Edge and Motion Detection/Estimation, September 1979

    Google Scholar 

  3. Dejnozkova, E., Dokladal, P.: Modelling of overlapping circular objects based on level set approach. In: Campilho, A., Kamel, M. (eds.) ICIAR 2004. LNCS, vol. 3211, pp. 416–423. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30125-7_52

    Chapter  Google Scholar 

  4. Faessel, M., Courtois, F.: Touching grain kernels separation by gap-filling. Image Anal. Stereol. 28, 195–203 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Faessel, M., Jeulin, D.: Segmentation of 3D microtomographic images of granular materials with the stochastic watershed. J. Microsc. 239(1), 17–31 (2010). doi:10.1111/j.1365-2818.2009.03349.x

    Article  Google Scholar 

  6. Gillibert, L., Jeulin, D.: Stochastic multiscale segmentation constrained by image content. In: Soille, P., Pesaresi, M., Ouzounis, G.K. (eds.) ISMM 2011. LNCS, vol. 6671, pp. 132–142. Springer, Heidelberg (2011). doi:10.1007/978-3-642-21569-8_12

    Chapter  Google Scholar 

  7. Gillibert, L., Jeulin, D.: 3D reconstruction and analysis of the fragmented grains in a composite material. Image Anal. Stereol. 32(2), 107–115 (2013)

    Article  MathSciNet  Google Scholar 

  8. Heijmans, H.J.A.M., van den Boomgaard, R.: Algebraic framework for linear and morphological scale-spaces. J. Vis. Commun. Image Represent. 13(1–2), 269–301 (2002)

    Article  Google Scholar 

  9. Leavers, V.F.: Shape Detection in Computer Vision Using the Hough Transform. Springer, London (1992). doi:10.1007/978-1-4471-1940-1

    Book  MATH  Google Scholar 

  10. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  11. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Cam, L.M.L., Neyman, J. (eds.) Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  12. Powel, M.J.D.: An efficient method for finding the minimum of a function of several variables without calculating derivatives. Comput. J. 7(2), 155–162 (1964)

    Article  MathSciNet  Google Scholar 

  13. Press, W., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, New York (1988)

    MATH  Google Scholar 

  14. Rosin, P.L.: Shape partitioning by convexity. IEEE Trans. Syst. Man Cybern. Part A Syst. Hum. 30(2), 202–210 (2000). doi:10.1109/3468.833102

    Article  MathSciNet  Google Scholar 

  15. Schmitt, O., Hasse, M.: Morphological multiscale decomposition of connected regions with emphasis on cell clusters. Comput. Vis. Image Underst. 113(2), 188–201 (2009)

    Article  Google Scholar 

  16. Schüpp, S., Elmoataz, A., Fadili, M.-J., Bloyet, D.: Fast statistical level sets image segmentation for biomedical applications. In: Kerckhove, M. (ed.) Scale-Space 2001. LNCS, vol. 2106, pp. 380–388. Springer, Heidelberg (2001). doi:10.1007/3-540-47778-0_36

    Chapter  Google Scholar 

  17. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, London (1983)

    Google Scholar 

  18. Soille, P.: Morphological Image Analysis: Principles and Applications. Springer, Heidelberg (2004). doi:10.1007/978-3-662-05088-0

    Book  MATH  Google Scholar 

  19. Talbot, H., Appleton, B.C.: Elliptical distance transforms and object splitting. In: International Symposium on Mathematical, Morphology, pp. 229–240, April 2002

    Google Scholar 

  20. Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16(3), 645–678 (2005). doi:10.1109/TNN.2005.845141

    Article  Google Scholar 

Download references

Acknowledgment

This work has received funding from DGA and is a collaboration between Transvalor, DGA, CEA Gramat. The acquisitions are carried out at the CEA Gramat, a french public laboratory affiliated to the Commission of Atomic Energy and Alternative Energies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Théodore Chabardès .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Chabardès, T., Dokládal, P., Faessel, M., Bilodeau, M. (2017). An Affinity Score for Grains Merging and Touching Grains Separation. In: Angulo, J., Velasco-Forero, S., Meyer, F. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2017. Lecture Notes in Computer Science(), vol 10225. Springer, Cham. https://doi.org/10.1007/978-3-319-57240-6_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57240-6_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57239-0

  • Online ISBN: 978-3-319-57240-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics