Skip to main content

PDE for Bivariate Amoeba Median Filtering

  • Conference paper
  • First Online:
Mathematical Morphology and Its Applications to Signal and Image Processing (ISMM 2017)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10225))

Abstract

Amoebas are image-adaptive structuring elements for morphological filters that have been introduced by Lerallut et al. in 2005. Iterated amoeba median filtering on grey-scale images has been proven to approximate asymptotically for vanishing structuring element radius a partial differential equation (PDE) which is known in image filtering by the name of self-snakes. This approximation property helps to understand the properties of both, morphological and PDE, image filter classes. Recently, also the PDEs approximated by multivariate median filtering with non-adaptive structuring elements have been studied. Affine equivariant multivariate medians turned out to yield more favourable PDEs than the more popular \(L^1\) median. We continue this work by considering amoeba median filtering of bivariate images using affine equivariant medians. We prove a PDE approximation result for this case. We validate the result by numerical experiments on example functions sampled with high spatial resolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Austin, T.L.: An approximation to the point of minimum aggregate distance. Metron 19, 10–21 (1959)

    MathSciNet  MATH  Google Scholar 

  2. Brockett, R.W., Maragos, P.: Evolution equations for continuous-scale morphology. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, San Francisco, CA, vol. 3, pp. 125–128 (1992)

    Google Scholar 

  3. Burgeth, B., Kleefeld, A.: An approach to color-morphology based on Einstein addition and Loewner order. Pattern Recogn. Lett. 47, 29–39 (2014)

    Article  Google Scholar 

  4. Burgeth, B., Welk, M., Feddern, C., Weickert, J.: Mathematical morphology on tensor data using the Loewner ordering. In: Weickert, J., Hagen, H. (eds.) Visualization and Processing of Tensor Fields. Mathematics and Visualization, pp. 357–368. Springer, Berlin (2006)

    Chapter  Google Scholar 

  5. Chakraborty, B., Chaudhuri, P.: On a transformation and re-transformation technique for constructing an affine equivariant multivariate median. Proc. AMS 124, 2539–2547 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ćurić, V., Hendriks, C.L., Borgefors, G.: Salience adaptive structuring elements. IEEE J. Sel. Top. Sig. Process. 6, 809–819 (2012)

    Article  Google Scholar 

  7. Gini, C., Galvani, L.: Di talune estensioni dei concetti di media ai caratteri qualitativi. Metron 8, 3–209 (1929)

    MATH  Google Scholar 

  8. González-Castro, V., Debayle, J., Pinoli, J.C.: Color adaptive neighborhood mathematical morphology and its application to pixel-level classification. Pattern Recogn. Lett. 47, 50–62 (2014)

    Article  Google Scholar 

  9. Grazzini, J., Soille, P.: Edge-preserving smoothing using a similarity measure in adaptive geodesic neighbourhoods. Pattern Recogn. 42, 2306–2316 (2009)

    Article  MATH  Google Scholar 

  10. Guichard, F., Morel, J.M.: Partial differential equations and image iterative filtering. In: Duff, I.S., Watson, G.A. (eds.) The State of the Art in Numerical Analysis. Number 63 in IMA Conference Series (New Series), pp. 525–562. Clarendon Press, Oxford (1997)

    Google Scholar 

  11. Hayford, J.F.: What is the center of an area, or the center of a population? J. Am. Stat. Assoc. 8, 47–58 (1902)

    Google Scholar 

  12. Hettmansperger, T.P., Randles, R.H.: A practical affine equivariant multivariate median. Biometrika 89, 851–860 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kleefeld, A., Breuß, M., Welk, M., Burgeth, B.: Adaptive filters for color images: median filtering and its extensions. In: Trémeau, A., Schettini, R., Tominaga, S. (eds.) Computational Color Imaging. LNCS, vol. 9016, pp. 149–158. Springer, Cham (2015)

    Chapter  Google Scholar 

  14. Lerallut, R., Decencière, É., Meyer, F.: Image processing using morphological amoebas. In: Ronse, C., Najman, L., Decencière, E. (eds.) Mathematical Morphology: 40 Years On. Computational Imaging and Vision, vol. 30, pp. 13–22. Springer, Dordrecht (2005)

    Chapter  Google Scholar 

  15. Lerallut, R., Decencière, É., Meyer, F.: Image filtering using morphological amoebas. Image Vis. Comput. 25, 395–404 (2007)

    Article  Google Scholar 

  16. Oja, H.: Descriptive statistics for multivariate distributions. Stat. Probab. Lett. 1, 327–332 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rao, C.R.: Methodology based on the \(l_1\)-norm in statistical inference. Sankhyā A 50, 289–313 (1988)

    MathSciNet  MATH  Google Scholar 

  18. Sapiro, G.: Vector (self) snakes: a geometric framework for color, texture and multiscale image segmentation. In: Proceedings of 1996 IEEE International Conference on Image Processing, Lausanne, Switzerland, vol. 1, pp. 817–820 (1996)

    Google Scholar 

  19. Small, C.G.: A survey of multidimensional medians. Int. Stat. Rev. 58, 263–277 (1990)

    Article  Google Scholar 

  20. Spence, C., Fancourt, C.: An iterative method for vector median filtering. In: Proceedings of 2007 IEEE International Conference on Image Processing, vol. 5, pp. 265–268 (2007)

    Google Scholar 

  21. Ta, V.T., Elmoataz, A., Lézoray, O.: Nonlocal PDE-based morphology on weighted graphs for image and data processing. IEEE Trans. Image Process. 20, 1504–1516 (2012)

    MathSciNet  Google Scholar 

  22. Verdú-Monedero, R., Angulo, J., Serra, J.: Anisotropic morphological filters with spatially-variant structuring elements based on image-dependent gradient fields. IEEE Trans. Image Process. 20, 200–212 (2011)

    Article  MathSciNet  Google Scholar 

  23. Weber, A.: Über den Standort der Industrien. Mohr, Tübingen (1909)

    Google Scholar 

  24. Weiszfeld, E.: Sur le point pour lequel la somme des distances de \(n\) points donnés est minimum. Tôhoku Math. J. 43, 355–386 (1937)

    MATH  Google Scholar 

  25. Welk, M.: Analysis of amoeba active contours. J. Math. Imaging Vis. 52, 37–54 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Welk, M.: Partial differential equations for bivariate median filters. In: Aujol, J.F., Nikolova, M., Papadakis, N. (eds.) Scale Space and Variational Methods in Computer Vision. LNCS, vol. 9087, pp. 53–65. Springer, Cham (2015)

    Google Scholar 

  27. Welk, M.: Multivariate median filters and partial differential equations. J. Math. Imaging Vis. 56, 320–351 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  28. Welk, M., Breuß, M.: Morphological amoebas and partial differential equations. In: Hawkes, P.W. (ed.) Advances in Imaging and Electron Physics, vol. 185, pp. 139–212. Elsevier Academic Press (2014)

    Google Scholar 

  29. Welk, M., Breuß, M., Vogel, O.: Morphological amoebas are self-snakes. J. Math. Imaging Vis. 39, 87–99 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Welk, M., Feddern, C., Burgeth, B., Weickert, J.: Median filtering of tensor-valued images. In: Michaelis, B., Krell, G. (eds.) Pattern Recognition. LNCS, vol. 2781, pp. 17–24. Springer, Berlin (2003)

    Chapter  Google Scholar 

  31. Welk, M., Kleefeld, A., Breuß, M.: Non-adaptive and amoeba quantile filters for colour images. In: Benediktsson, J.A., Chanussot, J., Najman, L., Talbot, H. (eds.) Mathematical Morphology and Its Applications to Signal and Image Processing. LNCS, vol. 9082, pp. 398–409. Springer, Cham (2015)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Welk .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Welk, M. (2017). PDE for Bivariate Amoeba Median Filtering. In: Angulo, J., Velasco-Forero, S., Meyer, F. (eds) Mathematical Morphology and Its Applications to Signal and Image Processing. ISMM 2017. Lecture Notes in Computer Science(), vol 10225. Springer, Cham. https://doi.org/10.1007/978-3-319-57240-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-57240-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-57239-0

  • Online ISBN: 978-3-319-57240-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics