Skip to main content

Advances in Neuroimaging for Neurodegenerative Disease

  • Chapter
  • First Online:
Neurodegenerative Diseases

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 15))

Abstract

This chapter is intended as a primer to the most widely used neuroimaging methods available in the prediction, diagnosis and monitoring of the neurodegenerative diseases. We describe the imaging methods that allow us to examine brain structure, function and pathology and investigate neurodegenerative mechanisms in vivo. We describe methods to interrogate brain structure with magnetic resonance imaging (MRI), and brain function with molecular imaging, functional MRI and electro- and magneto-encephalography. We highlight the major neuroimaging advances, including brain stimulation and connectomics, which have brought new insights into a wide range of neurodegenerative diseases and describe some of the challenges in imaging clinical populations. Finally, we discuss the future of neuroimaging in neurodegenerative disease and its potential for generating predictive, diagnostic and prognostic biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AD:

Alzheimer’s disease

aD:

Axial diffusivity

BOLD:

Blood oxygenation level dependent

bvFTD:

Behavioural-variant fronto-temporal dementia

CBD:

Cortico-basal syndrome

CT:

Computed tomography

DBS:

Deep brain stimulation

DTI:

Diffusion tensor imaging

DWI:

Diffusion weighted imaging

EEG:

Electroencephalography

ERP:

Event-related potential

FA:

Fractional anisotropy

FDG:

Fluorodeoxyglucose

FLAIR:

Fluid attenuated inversion recovery

fMRI:

Functional magnetic resonance imaging

HD:

Huntington’s disease

HMPAO:

Hexamethylpropyleneamine oxime

ICA:

Independent components analysis

MCI:

Mild cognitive impairment

MEG:

Magnetoencephalography

MRA:

Magnetic resonance angiography

MRI:

Magnetic resonance imaging

MS:

Multiple sclerosis

NAA:

N-Acetylaspartate

PD:

Parkinson’s disease

PET:

Positron emission tomography

PNFA:

Primary non-fluent aphasia

rD:

Radial diffusivity

SD:

Semantic dementia

SPECT:

Single-photon emission computed tomography

SUV:

Standardised uptake value

T:

Tesla

TES:

Transcranial electrical stimulation

TMS:

Transcranial magnetic stimulation

References

  1. Ashburner J, Friston KJ (2000) Voxel-based morphometry—the methods. NeuroImage 11:805–821

    Article  CAS  PubMed  Google Scholar 

  2. Seeley WW, Crawford RK, Zhou J, Miller BL, Greicius MD (2009) Neurodegenerative diseases target large-scale human brain networks. Neuron 62:42–52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis: I. Segmentation and surface reconstruction. Neuroimage 9:179–194

    Article  CAS  PubMed  Google Scholar 

  4. Querbes O, Aubry F, Pariente J, Lotterie J-A, Démonet J-F, Duret V, Puel M, Berry I, Fort J-C, Celsis P (2009) Early diagnosis of Alzheimer’s disease using cortical thickness: impact of cognitive reserve. Brain 132:2036–2047

    Article  PubMed  PubMed Central  Google Scholar 

  5. Du A-T, Schuff N, Kramer JH, Rosen HJ, Gorno-Tempini ML, Rankin K, Miller BL, Weiner MW (2007) Different regional patterns of cortical thinning in Alzheimer’s disease and frontotemporal dementia. Brain 130:1159–1166

    Article  PubMed  PubMed Central  Google Scholar 

  6. Alexander-Bloch A, Giedd JN, Bullmore E (2013) Imaging structural co-variance between human brain regions. Nat Rev Neurosci 14:322–336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Evans AC (2013) Networks of anatomical covariance. NeuroImage 80:489–504

    Article  CAS  PubMed  Google Scholar 

  8. Zhou J, Gennatas ED, Kramer JH, Miller BL, Seeley WW (2012) Predicting regional neurodegeneration from the healthy brain functional connectome. Neuron 73:1216–1227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bernhardt BC, Worsley KJ, Besson P, Concha L, Lerch JP, Evans AC, Bernasconi N (2008) Mapping limbic network organization in temporal lobe epilepsy using morphometric correlations: insights on the relation between mesiotemporal connectivity and cortical atrophy. NeuroImage 42:515–524

    Article  PubMed  Google Scholar 

  10. Reuter M, Tisdall MD, Qureshi A, Buckner RL, van der Kouwe AJW, Fischl B (2015) Head motion during MRI acquisition reduces gray matter volume and thickness estimates. NeuroImage 107:107–115

    Article  PubMed  Google Scholar 

  11. Reuter M, Fischl B (2011) Avoiding asymmetry-induced bias in longitudinal image processing. NeuroImage 57:19–21

    Article  PubMed  PubMed Central  Google Scholar 

  12. Jones DK, Knösche TR, Turner R (2013) White matter integrity, fiber count, and other fallacies: the do’s and don’ts of diffusion MRI. NeuroImage 73:239–254

    Article  PubMed  Google Scholar 

  13. Johansen-Berg H, Behrens TEJ (2009) Diffusion MRI: from quantitative measurement to in-vivo neuroanatomy. In: Diffus MRI. Elsevier, Oxford. doi:10.1016/B978-0-12-374709-9.00002-X

    Google Scholar 

  14. Kantarci K, Avula R, Senjem ML et al (2010) Dementia with Lewy bodies and Alzheimer disease: neurodegenerative patterns characterized by DTI. Neurology 74:1814–1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rosas HD, Lee SY, Bender AC et al (2010) Altered white matter microstructure in the corpus callosum in Huntington’s disease: implications for cortical “disconnection.”. NeuroImage 49:2995–3004

    Article  PubMed  Google Scholar 

  16. Tournier J-D, Mori S, Leemans A (2011) Diffusion tensor imaging and beyond. Magn Reson Med 65:1532–1556

    Article  PubMed  PubMed Central  Google Scholar 

  17. Galantucci S, Tartaglia MC, Wilson SM et al (2011) White matter damage in primary progressive aphasias: a diffusion tensor tractography study. Brain 134:3011–3029

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jeurissen B, Leemans A, Tournier J-D, Jones DK, Sijbers J (2010) Estimating the number of fiber orientations in diffusion MRI voxels: a constrained spherical deconvolution study. Proc Int Soc Magn Reson Med 45:3536

    Google Scholar 

  19. Raffelt DA, Tournier JD, Smith RE, Vaughan DN, Jackson G, Ridgway GR, Connelly A (2017) Investigating white matter fibre density and morphology using fixel-based analysis. NeuroImage 144:58–73

    Article  PubMed  PubMed Central  Google Scholar 

  20. Harrison NA, Cooper E, Dowell NG, Keramida G, Voon V, Critchley HD, Cercignani M (2015) Quantitative magnetization transfer imaging as a biomarker for effects of systemic inflammation on the brain. Biol Psychiatry 78:49–57

    Article  PubMed  PubMed Central  Google Scholar 

  21. Theysohn JM, Kraff O, Maderwald S, Schlamann MU, De Greiff A, Forsting M, Ladd SC, Ladd ME, Gizewski ER (2009) The human hippocampus at 7 T—in vivo MRI. Hippocampus 19:1–7

    Article  PubMed  Google Scholar 

  22. Visser F, Zwanenburg JJM, Hoogduin JM, Luijten PR (2010) High-resolution magnetization-prepared 3D-FLAIR imaging at 7.0 tesla. Magn Reson Med 64:194–202

    Article  PubMed  Google Scholar 

  23. Zwanenburg JJM, Versluis MJ, Luijten PR, Petridou N (2011) Fast high resolution whole brain T2* weighted imaging using echo planar imaging at 7T. NeuroImage 56:1902–1907

    Article  PubMed  Google Scholar 

  24. van der Kolk AG, Hendrikse J, Zwanenburg JJM, Visser F, Luijten PR (2013) Clinical applications of 7T MRI in the brain. Eur J Radiol 82:708–718

    Article  PubMed  Google Scholar 

  25. Theysohn JM, Kraff O, Maderwald S, Barth M, Ladd SC, Forsting M, Ladd ME, Gizewski ER (2011) 7 tesla MRI of microbleeds and white matter lesions as seen in vascular dementia. J Magn Reson Imaging 33:782–791

    Article  PubMed  Google Scholar 

  26. van Rooden S, Maat-Schieman MLC, Nabuurs RJA, van der Weerd L, van Duijn S, van Duinen SG, Natté R, van Buchem MA, van der Grond J (2009) Cerebral amyloidosis: postmortem detection with human 7.0-T MR imaging system. Radiology 253:788–796

    Article  PubMed  Google Scholar 

  27. Dula AN, Virostko J, Shellock FG (2014) Assessment of MRI issues at 7 T for 28 implants and other objects. Am J Roentgenol 202:401–405

    Article  Google Scholar 

  28. Lerch JP, van der Kouwe AJW, Raznahan A, Paus T, Johansen-Berg H, Miller KL, Smith SM, Fischl B, Sotiropoulos SN (2017) Studying neuroanatomy using MRI. Nat Neurosci 20:314–326

    Article  CAS  PubMed  Google Scholar 

  29. Bandettini PA (2009) Functional MRI limitations and aspirations. In: Kraft E, Gulyas B, Pöppel E (eds) Neural correlates of thinking. Springer, Berlin, pp 15–38

    Chapter  Google Scholar 

  30. Ogawa S, Lee T-M (1990) Magnetic resonance imaging of blood vessels at high fields: in vivo and in vitro measurements and image simulation. Magn Reson Med 16:9–18

    Article  CAS  PubMed  Google Scholar 

  31. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci U S A 87:9868–9872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yacoub E, Shmuel A, Pfeuffer J, Van De Moortele PF, Adriany G, Ugurbil K, Hu X (2001) Investigation of the initial dip in fMRI at 7 Tesla. NMR Biomed 14:408–412

    Article  CAS  PubMed  Google Scholar 

  33. Amaro E, Barker GJ (2006) Study design in fMRI: basic principles. Brain Cogn 60:220–232

    Article  PubMed  Google Scholar 

  34. Abdulkadir A, Ronneberger O, Wolf RC, Pfleiderer B, Saft C, Kloppel S (2013) Functional and structural MRI biomarkers to detect pre-clinical neurodegeneration. Curr Alzheimer Res 10:125–134

    Article  CAS  PubMed  Google Scholar 

  35. Georgiou-Karistianis N, Stout JC, Domínguez DJF et al (2014) Functional magnetic resonance imaging of working memory in Huntington’s disease: cross-sectional data from the IMAGE-HD study. Hum Brain Mapp 35:1847–1864

    Article  PubMed  Google Scholar 

  36. Rosenow F, Lüders H (2001) Presurgical evaluation of epilepsy. Brain 124:1683–1700

    Article  CAS  PubMed  Google Scholar 

  37. Hage ZA, Alaraj A, Arnone GD, Charbel FT (2016) Novel imaging approaches to cerebrovascular disease. Transl Res 175:54–75

    Article  PubMed  Google Scholar 

  38. Veldsman M, Cumming T, Brodtmann A (2015) Beyond BOLD: optimizing functional imaging in stroke populations. Hum Brain Mapp 36:1620–1636

    Article  PubMed  Google Scholar 

  39. Biswal B, Yetkin FZ, Haughton VM, Hyde JS (1995) Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med 34:537–541

    Article  CAS  PubMed  Google Scholar 

  40. Biswal BB, Mennes M, Zuo X-N et al (2010) Toward discovery science of human brain function. Proc Natl Acad Sci U S A 107:4734–4739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Greicius MD, Krasnow B, Reiss AL, Menon V (2003) Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc Natl Acad Sci U S A 100:253–258

    Article  CAS  PubMed  Google Scholar 

  42. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98:676–682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci U S A 102:9673–9678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Fox MD, Greicius M (2010) Clinical applications of resting state functional connectivity. Front Syst Neurosci 4:19

    PubMed  PubMed Central  Google Scholar 

  45. Petrella JR, Sheldon FC, Prince SE, Calhoun VD, Doraiswamy PM (2011) Default mode network connectivity in stable vs progressive mild cognitive impairment. Neurology 76:511–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Greicius MD, Srivastava G, Reiss AL, Menon V (2004) Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI. Proc Natl Acad Sci U S A 101:4637–4642

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. He BJ, Snyder AZ, Vincent JL, Epstein A, Shulman GL, Corbetta M (2007) Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron 53:905–918

    Article  CAS  PubMed  Google Scholar 

  48. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711

    Article  CAS  PubMed  Google Scholar 

  49. Kiviniemi V, Kantola JH, Jauhiainen J, Hyvärinen A, Tervonen O (2003) Independent component analysis of nondeterministic fMRI signal sources. NeuroImage 19:253–260

    Article  PubMed  Google Scholar 

  50. Zuo X-N, Di Martino A, Kelly C, Shehzad ZE, Gee DG, Klein DF, Castellanos FX, Biswal BB, Milham MP (2010) The oscillating brain: complex and reliable. NeuroImage 49:1432–1445

    Article  PubMed  Google Scholar 

  51. McGill ML, Devinsky O, Wang X, Quinn BT, Pardoe H, Carlson C, Butler T, Kuzniecky R, Thesen T (2014) Functional neuroimaging abnormalities in idiopathic generalized epilepsy. NeuroImage Clin 6:455–462

    Article  PubMed  PubMed Central  Google Scholar 

  52. La C, Nair VA, Mossahebi P, Young BM, Chacon M, Jensen M, Birn RM, Meyerand ME, Prabhakaran V (2016) Implication of the slow-5 oscillations in the disruption of the default-mode network in healthy aging and stroke. Brain Connect 6:482–495

    Article  PubMed  PubMed Central  Google Scholar 

  53. Han Y, Wang J, Zhao Z, Min B, Lu J, Li K, He Y, Jia J (2011) Frequency-dependent changes in the amplitude of low-frequency fluctuations in amnestic mild cognitive impairment: a resting-state fMRI study. NeuroImage 55:287–295

    Article  PubMed  Google Scholar 

  54. Benadiba M, Luurtsema G, Wichert-Ana L, Buchpigel CA, Filho GB (2012) New molecular targets for PET and SPECT imaging in neurodegenerative diseases. Rev Bras Psiquiatr. doi:10.1016/j.rbp.2012.07.002

    PubMed  Google Scholar 

  55. Catafau AM, Bullich S (2016) Non-amyloid PET imaging biomarkers for neurodegeneration: focus on tau, alpha-synuclein and neuroinflamation. Curr Alzheimer Res 14(2):169–177

    Article  CAS  Google Scholar 

  56. Drzezga A, Barthel H, Minoshima S, Sabri O (2014) Potential clinical applications of PET/MR imaging in neurodegenerative diseases. J Nucl Med 55:47–55

    Article  Google Scholar 

  57. Zhu L, Ploessl K, Kung HF (2014) PET/SPECT imaging agents for neurodegenerative diseases. Chem Soc Rev 43:6683–6691

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Kadir A, Nordberg A (2010) Target-specific PET probes for neurodegenerative disorders related to dementia. J Nucl Med 51:1418–1430

    Article  CAS  PubMed  Google Scholar 

  59. Mosconi L, Tsui WH, Herholz K et al (2008) Multicenter standardized 18F-FDG PET diagnosis of mild cognitive impairment, Alzheimer’s disease, and other dementias. J Nucl Med 49:390–398

    Article  PubMed  PubMed Central  Google Scholar 

  60. Landau SM, Harvey D, Madison CM, Koeppe RA, Reiman EM, Foster NL, Weiner MW, Jagust WJ (2011) Associations between cognitive, functional, and FDG-PET measures of decline in AD and MCI. Neurobiol Aging 32:1207–1218

    Article  PubMed  Google Scholar 

  61. Villemagne VL, Doré V, Bourgeat P, Burnham SC, Laws S, Salvado O, Masters CL, Rowe CC (2017) Aβ-amyloid and tau imaging in dementia. Semin Nucl Med 47:75–88

    Article  PubMed  Google Scholar 

  62. Shah M, Catafau AM (2014) Molecular imaging insights into neurodegeneration: focus on tau PET radiotracers. J Nucl Med 55:871–874

    Article  CAS  PubMed  Google Scholar 

  63. Holman BL, Carvalho PA, Mendelson J, Teoh SK, Nardin R, Hallgring E, Hebben N, Johnson KA (1991) Brain perfusion is abnormal in cocaine-dependent polydrug users: a study using technetium-99m-HMPAO and ASPECT. J Nucl Med 32:1206–1210

    CAS  PubMed  Google Scholar 

  64. Karonen JO, Nuutinen J, Kuikka JT, Vanninen EJ, Vanninen RL, Partanen PLK, Vainio PA, Roivainen R, Sivenius J, Aronen HJ (2000) Combined SPECT and diffusion-weighted MRI as a predictor of infarct growth in acute ischemic stroke. J Nucl Med 41:788–794

    CAS  PubMed  Google Scholar 

  65. Benamer HTS, Uk M, Patterson J, Grosset DG, Joseph K, Tatsch K, Schwarz J, Ries V (2000) Accurate differentiation of parkinsonism and essential tremor using visual assessment of [123I]-FP-CIT SPECT imaging : the [123I]-FP-CIT study group. Mov Disord 15:503–510

    Article  CAS  Google Scholar 

  66. Loos C, Achten E, Santens P (2010) Proton magnetic resonance spectroscopy in Alzheimer’s disease, a review. Acta Neurol Belg 110:291–298

    PubMed  Google Scholar 

  67. Kantarci K, Weigand SD, Petersen RC et al (2007) Longitudinal 1H MRS changes in mild cognitive impairment and Alzheimer’s disease. Neurobiol Aging 28:1330–1339

    Article  CAS  PubMed  Google Scholar 

  68. Adalsteinsson E, Sullivan EV, Kleinhans N, Spielman DM, Pfefferbaum A (2000) Longitudinal decline of the neuronal marker N-acetyl aspartate in Alzheimer’s disease. Lancet 355:1695–1696

    Article  Google Scholar 

  69. Voevodskaya O, Sundgren PC, Strandberg O, Zetterberg H, Minthon L, Blennow K, Wahlund LO, Westman E, Hansson O (2016) Myo-inositol changes precede amyloid pathology and relate to APOE genotype in Alzheimer disease. Neurology 86:1754–1761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Murray ME, Przybelski SA, Lesnick TG et al (2014) Early Alzheimer’s disease neuropathology detected by proton MR spectroscopy. J Neurosci 34:16247–16255

    Article  PubMed  PubMed Central  Google Scholar 

  71. Wilson TW, Heinrichs-Graham E, Proskovec AL, McDermott TJ (2015) Neuroimaging with magnetoencephalography: a dynamic view of brain pathophysiology. Transl Res 175:17–36

    Article  Google Scholar 

  72. Luck SJ (2005) An introduction to the event-related potential technique. MIT Press Ltd, Cambridge

    Google Scholar 

  73. Grynszpan F, Geselowitz DB (1973) Model studies of the magnetocardiogram. Biophys J 13:911–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Cuffin N, Cohen D (1979) Comparison of the magnetoencephalogram and electroencephalogram. Electroencephalogr Clin Neurophysiol 47:132–146

    Article  CAS  PubMed  Google Scholar 

  75. Juckel G, Clotz F, Frodl T, Kawohl W, Hampel H, Pogarell O, Hegerl U (2008) Diagnostic usefulness of cognitive auditory event-related p300 subcomponents in patients with Alzheimers disease? J Clin Neurophysiol 25:147–152

    Article  PubMed  Google Scholar 

  76. Papadaniil CD, Kosmidou VE, Tsolaki A, Tsolaki M, Kompatsiaris IY, Hadjileontiadis LJ (2016) Cognitive MMN and P300 in mild cognitive impairment and Alzheimer’s disease: a high density EEG-3D vector field tomography approach. Brain Res 1648:425–433

    Article  CAS  PubMed  Google Scholar 

  77. Tallon-Baudry C, Bertrand O (1999) Oscillatory gamma activity in humans and its role in object representation. Trends Cogn Sci 3:151–162

    Article  CAS  PubMed  Google Scholar 

  78. Uhlhaas PJ, Haenschel C, Nikolić D, Singer W (2008) The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia. Schizophr Bull 34:927–943

    Article  PubMed  PubMed Central  Google Scholar 

  79. Gevins A, Smith ME, McEvoy L, Yu D (1997) High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cereb Cortex 7:374–385

    Article  CAS  PubMed  Google Scholar 

  80. Klimesch W (2012) Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn Sci 16:606–617

    Article  PubMed  PubMed Central  Google Scholar 

  81. Buzsáki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926–1929

    Article  PubMed  CAS  Google Scholar 

  82. Stoffers D, Bosboom JLW, Deijen JB, Wolters EC, Stam CJ, Berendse HW (2008) Increased cortico-cortical functional connectivity in early-stage Parkinson’s disease: an MEG study. NeuroImage 41:212–222

    Article  CAS  PubMed  Google Scholar 

  83. Stam CJ (2010) Use of magnetoencephalography (MEG) to study functional brain networks in neurodegenerative disorders. J Neurol Sci 289:128–134

    Article  CAS  PubMed  Google Scholar 

  84. Greicius M, Seeley W, Carter AR, Shulman GL, Corbetta M (2012) Why use a connectivity-based approach to study stroke and recovery of function? NeuroImage 62:2271–2280

    Article  Google Scholar 

  85. Smith SM, Beckmann CF, Andersson J et al (2013) Resting-state fMRI in the Human Connectome Project. NeuroImage 80:144–168

    Article  PubMed  PubMed Central  Google Scholar 

  86. Union E (2014) The human brain project—human brain project. Hum Brain Proj Website. 50–55

    Google Scholar 

  87. Bassett DS, Sporns O (2017) Network neuroscience. Nat Neurosci 20:353–364

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198

    Article  CAS  PubMed  Google Scholar 

  89. Crossley NA, Mechelli A, Scott J, Carletti F, Fox PT, McGuire P, Bullmore ET (2014) The hubs of the human connectome are generally implicated in the anatomy of brain disorders. Brain. doi:10.1093/brain/awu132

    PubMed  PubMed Central  Google Scholar 

  90. Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, Andrews-Hanna JR, Sperling RA, Johnson KA (2009) Cortical hubs revealed by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s disease. J Neurosci 29:1860–1873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Fornito A, Bullmore ET, Zalesky A (2017) Opportunities and challenges for psychiatry in the connectomic era. Biol Psychiatry Cogn Neurosci Neuroimaging 2:9–19

    Article  Google Scholar 

  92. Perlmutter JS, Mink JW (2006) Deep brain stimulation. Annu Rev Neurosci 29:229–257

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Bronstein JM, Tagliati M, Alterman RL et al (2011) Deep brain stimulation for Parkinson disease. Arch Neurol 68:165–165

    Article  PubMed  Google Scholar 

  94. Delorme C, Rogers A, Lau B, Francisque H, Welter M-L, Vidal SF, Yelnik J, Durr A, Grabli D, Karachi C (2016) Deep brain stimulation of the internal pallidum in Huntington’s disease patients: clinical outcome and neuronal firing patterns. J Neurol 263:290–298

    Article  PubMed  Google Scholar 

  95. Edwards TC, Zrinzo L, Limousin P, Foltynie T (2012) Deep brain stimulation in the treatment of chorea. Mov Disord 27:357–363

    Article  PubMed  Google Scholar 

  96. Sankar T, Chakravarty MM, Bescos A et al (2015) Deep brain stimulation influences brain structure in Alzheimer’s disease. Brain Stimul 8:645–654

    Article  PubMed  Google Scholar 

  97. Parkin BL, Ekhtiari H, Walsh VF (2015) Non-invasive human brain stimulation in cognitive neuroscience: a primer. Neuron 87:932–945

    Article  CAS  PubMed  Google Scholar 

  98. Vallence AM, Ridding MC (2014) Non-invasive induction of plasticity in the human cortex: uses and limitations. Cortex 58:261–271

    Article  PubMed  Google Scholar 

  99. Hoyer EH, Celnik PA (2011) Understanding and enhancing motor recovery after stroke using transcranial magnetic stimulation. Restor Neurol Neurosci 29:395–409

    PubMed  PubMed Central  Google Scholar 

  100. Lefaucheur J-P, André-Obadia N, Antal A et al (2014) Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS). Clin Neurophysiol 125:2150–2206

    Article  PubMed  Google Scholar 

  101. Jack CR, Bernstein MA, Fox NC et al (2008) The Alzheimer’s Disease Neuroimaging Initiative (ADNI): MRI methods. J Magn Reson Imaging 27:685–691

    Article  PubMed  PubMed Central  Google Scholar 

  102. Rohrer JD, Nicholas JM, Cash DM et al (2015) Presymptomatic cognitive and neuroanatomical changes in genetic frontotemporal dementia in the genetic frontotemporal dementia initiative (GENFI) study: a cross-sectional analysis. Lancet Neurol 14:253–262

    Article  PubMed  Google Scholar 

  103. Woo C-W, Chang LJ, Lindquist MA, Wager TD (2017) Building better biomarkers: brain models in translational neuroimaging. Nat Neurosci 20:365–377

    Article  CAS  PubMed  Google Scholar 

  104. Miller KL, Alfaro-Almagro F, Bangerter NK et al (2016) Multimodal population brain imaging in the UK Biobank prospective epidemiological study. Nat Neurosci 19:1523–1536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Bandettini P, Bullmore E (2012) The future of functional MRI in clinical medicine. NeuroImage 62:1267–1271

    Article  Google Scholar 

Download references

Acknowledgments

M.V. was supported by a grant from The Medical Research Council, project grant number MR/M023664/1. N.E. was supported by National Health and Medical Research Council project grant number APP1020526.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michele Veldsman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Veldsman, M., Egorova, N. (2017). Advances in Neuroimaging for Neurodegenerative Disease. In: Beart, P., Robinson, M., Rattray, M., Maragakis, N. (eds) Neurodegenerative Diseases. Advances in Neurobiology, vol 15. Springer, Cham. https://doi.org/10.1007/978-3-319-57193-5_18

Download citation

Publish with us

Policies and ethics